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ABSTRACT
The Blob Code is a bijective tree code that represents each
tree on n labelled vertices as a string of n− 2 vertex labels.
In recent years, several researchers have deployed the Blob
Code as a GA representation, and have reported promising
results across a range of tree-based optimization problems.

In this paper, we exploit a recently discovered linear-time
decoding algorithm for the Blob Code to develop some novel
locality results, extending previous work by Julstrom.

Let Δ be the random variable representing the number
of tree edges that are changed by a random single-element
string mutation. Under the Blob Code, we demonstrate that
pessimal mutations (i.e., mutations for which Δ = n−1) can
arise for any n > 4. However, as n grows, the probability
of perfect mutation P (Δ = 1) approaches one, following a
power-law relationship, and E(Δ) approaches two. These
results show that the locality of the Blob Code is high, but
not as high as that of Dandelion-like codes.

We also show that the choice of mutation position places
restrictions on the range of Δ, and therefore influences the
distribution of Δ. In particular, mutating the kth element
of a Blob string alters at most n − k tree edges.
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1. INTRODUCTION

1.1 Representing trees in genetic algorithms
There are numerous ways to represent tree structures as

linear strings of symbols [13],[19],[20]. However, for such a
representation to perform effectively in a genetic algorithm
(GA), five key properties [13],[20] must be satisfied:

1. ‘Full coverage’ or ‘completeness’ — Every tree should
be represented by at least one string;

2. ‘Zero bias’ — Every tree should be represented by the
same number of strings;

3. ‘Perfect feasibility’ or ‘closure’ — Every string should
represent a valid tree;

4. ‘Efficiency’ — Encoding (converting tree to string)
and decoding (converting string to tree) should be fast;

5. ‘High locality’ — Making small changes to a string
should lead to small changes in the corresponding tree.

A tree representation is a Cayley code [20] if it represents
each possible tree on n labelled vertices as a string of n − 2
vertex labels, such that the correspondence between trees
and strings is bijective (i.e., each tree corresponds to a unique
string, and each string corresponds to a unique tree).

Cayley codes are an attractive method for representing
trees in GAs, as their bijective nature ensures that properties
1 to 3 above are automatically satisfied [14].

Many different Cayley codes have been described in the
mathematical literature. These codes divide naturally into
two categories: Prüfer-like Cayley codes and High-locality
Cayley codes [1],[4],[14] (or equivalently, Deletion codes and
Transformation codes [11]).

The Cayley codes in the first category — namely, the
Prüfer Code [17] and the ‘Prüfer-like’ codes of Neville [12]
and Deo & Micikevicius [5] — perform poorly as GA repre-
sentations because they have low locality [6],[19],[20],[21].

The nine Cayley codes in the second category — namely,
the Blob Code, Dandelion Code, and Happy Code described
by Picciotto [16], the MHappy Code devised by Caminiti and
Petreschi [2], and the other five ‘Dandelion-like’ codes given
in [15] — have much higher locality than those in the first
category, and exhibit superior performance when deployed
as GA representations [2],[7],[11],[14],[15],[20],[21].

Although the Blob Code has lower locality than the eight
Dandelion-like codes in this second category [15],[20],[21],
research has shown that it is still an effective GA represen-
tation. For instance, in 2005, Julstrom showed that the Blob
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Code is competitive with the ‘edge-sets’ representation on
the minimum routing cost spanning tree problem [8].

In this paper, we develop a number of novel locality results
concerning the Blob Code, building on previous work by
Julstrom [7] and Thompson [20].

1.2 Essential notation and terminology
A Cayley string of order n is a string of n − 2 integers

from the set [1, n] = {1, 2, . . . , n}, with repeats allowed. For
notational convenience, the n − 2 elements in such a string
will be indexed from 2 to n− 1 rather than from 1 to n− 2.
The symbol Cn denotes the set of Cayley strings of order n.

The symbol Tn denotes the set of trees on the vertex set
[1, n] (or equivalently, the set of spanning trees of the com-
plete graph Kn, where the vertex set is [1, n]).

It is well-known that |Tn| = nn−2 for each integer n ≥ 2;
this is Cayley’s formula [3],[16]. Therefore, |Tn| = |Cn|.

A Cayley code is a bijective mapping between Tn and Cn.
Therefore, for each integer n ≥ 2, there are (nn−2)! possible
Cayley codes [14]. When a Cayley code is deployed in a GA,
the genotype space is Cn and the phenotype space is Tn.

In this paper, we focus on a particular Cayley code known
as the Blob Code (that is, we consider just one particular
bijective mapping between the tree space Tn and the string
space Cn, as described in the next section). Under the Blob
Code bijection, it is usual to refer to the strings in Cn as
Blob strings, and we use this term in the rest of the paper.

Finally, we note that Picciotto [16] originally defined the
Blob Code for trees on the vertex set [0, n]; in this paper,
we redefine the Blob Code for trees on the vertex set [1, n]
by relabelling the vertices. Specifically, our formulation of
the Blob Code is created by taking Picciotto’s formulation
on the vertex set [0, n − 1], and adding one to each vertex
label; this procedure transforms the vertex set into [1, n],
with vertex 1 now playing the role of Picciotto’s vertex 0.

2. THE BLOB CODE
In this section, we present decoding (string-to-tree) and

encoding (tree-to-string) algorithms for the Blob Code, and
illustrate these algorithms through an example.

The two algorithms described in this section both run
in linear time, and are therefore quicker and easier than
the traditional algorithms for the Blob Code, which require
quadratic time in the worst case [16],[20].

The improved algorithms, first given in [15], are based on
a little-known 1991 paper by Kreweras and Moszkowski [9],
in which the authors present a tree code that is identical to
the Blob Code — eight years before the work of Picciotto
appeared. Recently, several other researchers [2],[11] have
independently rediscovered the approach described in [9].

Later, we shall see that these alternative algorithms make
it much easier to analyse the Blob Code’s properties.

2.1 Decoding algorithm for the Blob Code
The algorithm below decodes any given Blob string in Cn

into the corresponding tree in Tn. As shown in [15], this
algorithm can easily be implemented in linear time.

Input: A Blob string B = (b2, b3, . . . , bn−1) ∈ Cn

Output: The tree T ∈ Tn corresponding to B

Step 1: Let G be the digraph whose vertex set is [1, n] and
whose edge set is {(i → bi) : i ∈ [2, n − 1]}. Note that the
edge set of G contains exactly n − 2 directed edges.

Step 2: Colour each vertex v ∈ [1, n] either black or white
according to the following rule: vertex v is coloured black if
none of the descendants of v in the digraph G has a label
exceeding v, and coloured white otherwise. (The vertex w
is a descendant of vertex v in the digraph G if and only if
there is a directed path in G from v to w.)
Step 3: Label the black vertices as x1 < x2 < . . . < xt,
where t ∈ [2, n] is the total number of black vertices; observe
that x1 = 1 and xt = n, since vertices 1 and n must be black.
Step 4: To construct the tree T ∈ Tn corresponding to B,
take a set of n isolated vertices (labelled with the integers
from 1 to n), create the edge (i, bi) for each white vertex
i ∈ [2, n − 1], create the edge (xi, bxi−1) for each i ∈ [3, t],
and finally create the edge (x2, 1).

2.2 Encoding algorithm for the Blob Code
The algorithm presented in this subsection encodes any

given tree T ∈ Tn as the corresponding Blob string B ∈ Cn.
Like the decoding algorithm in the previous subsection, this
encoding algorithm can be implemented in linear time [15].

Input: A tree T ∈ Tn

Output: The Blob string B = (b2, b3, . . . , bn−1) ∈ Cn that
corresponds to B

Step 1: Treat the tree T as being rooted at vertex 1, and
direct every edge towards this root to form the directed tree
T ′. For each i ∈ [2, n], define succ(i) such that (i → succ(i))
is the unique directed edge leaving vertex i in T ′.
Step 2: Colour each vertex v ∈ [1, n] either black or white
according to the following rule: vertex v is coloured black
if none of the descendants of v in the directed tree T ′ has
a label exceeding v, and coloured white otherwise. (The
vertex w is a descendant of vertex v in the directed tree T ′

if and only if there is a directed path in T ′ from v to w.)
Step 3: Label the black vertices as x1 < x2 < . . . < xt,
where t ∈ [2, n] is the total number of black vertices; observe
that x1 = 1 and xt = n, since vertices 1 and n must be black.
Step 4: To construct the Blob string B ∈ Cn corresponding
to T , set bi = succ(i) for every white vertex i ∈ [2, n − 1],
and set bxi = succ(xi+1) for each i ∈ [2, t − 1].

2.3 An example of decoding and encoding
In this subsection we provide an example to illustrate the

decoding and encoding algorithms described above.
Suppose we wish to decode the Blob string B = (17, 5, 7, 3,

13, 1, 8, 1, 20, 4, 6, 18, 4, 17, 7, 13, 12, 10) ∈ C20 into the cor-
responding tree T ∈ T20. Following Step 1 of the decod-
ing algorithm, we form the directed graph G on the vertex
set [1, 20] that has 18 directed edges: (2 → 17), (3 → 5),
(4 → 7), . . . , (18 → 12), (19 → 10). In Step 2, we find that
there are ten black vertices (namely, 1, 5, 7, 8, 9, 11, 14, 16,
18, 20), and Step 3 tells us to assign the labels x1 through
to x10 to these vertices. The other ten vertices (namely,
2, 3, 4, 6, 10, 12, 13, 15, 17, 19) are white. Finally, in
Step 4, we form the tree T corresponding to B. The white
vertices provide the ten edges (2, 17), (3, 5), (4, 7), (6, 13),
(10, 20), (12, 6), (13, 18), (15, 17), (17, 13), and (19, 10); the
black vertices provide the eight edges (7, 3), (8, 1), (9, 8),
(11, 1), (14, 4), (16, 4), (18, 7), and (20, 12), along with the
additional edge (5, 1). Together, these nineteen edges con-
stitute the tree T ∈ T20 corresponding to the given Blob
string B ∈ C20; this tree is shown in Figure 1 at the top of
the following page.
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Figure 1: The tree T ∈ T20 that corresponds to
the Blob string B = (17, 5, 7, 3, 13, 1, 8, 1, 20, 4, 6, 18, 4, 17,
7, 13, 12, 10) ∈ C20.

The Blob Code’s encoding algorithm simply reverses the
effect of the decoding algorithm. To illustrate this, we will
reverse the example in the previous paragraph, by encoding
the tree T ∈ T20 in Figure 1 as the corresponding Blob string
B ∈ C20. Following Step 1 of the encoding algorithm, we di-
rect all edges of T towards the vertex 1; this immediately
shows us that succ(2) = 17, succ(3) = 5, succ(4) = 7, . . . ,
succ(19) = 10, succ(20) = 12. Then, in Step 2, we easily
recover the list of black vertices (namely, 1, 5, 7, 8, 9, 11,
14, 16, 18, 20), and in Step 3, we label these ten black ver-
tices as x1, x2, . . . , x10. Clearly, the remaining ten vertices
(namely, 2, 3, 4, 6, 10, 12, 13, 15, 17, 19) are white. Finally,
in Step 4, we build the Blob string B. The white vertices
provide ten elements of the string: b2 = 17, b3 = 5, b4 = 7,
b6 = 13, b10 = 20, b12 = 6, b13 = 18, b15 = 17, b17 = 13,
and b19 = 10. The black vertices provide the other eight
elements: b5 = 3, b7 = 1, b8 = 8, b9 = 1, b11 = 4, b14 = 4,
b16 = 7, and b18 = 12. Thus, the encoding algorithm recov-
ers the Blob string B = (17, 5, 7, 3, 13, 1, 8, 1, 20, 4, 6, 18, 4,
17, 7, 13, 12, 10) ∈ C20 from the tree T ∈ T20 in Figure 1.

3. LOCALITY

3.1 The importance of locality
It is well-known that an effective GA representation must

possess high locality — in other words, making small changes
to the genotype should always lead to small changes in the
corresponding phenotype. When a representation with low
locality is used, similar strings in the genotype space may
represent wildly different structures in the phenotype space,
and the process of evolutionary search may hold negligible
advantage over random search.

3.2 Distance metrics
Under the Blob Code, the genotype space (i.e., the space

of Blob strings, Cn) and the phenotype space (i.e., the space
of trees, Tn) both have natural notions of distance — and
thus, natural notions of adjacency.

In the space of Blob strings, the simplest definition of
the distance between two strings is the number of positions
in which the strings differ (or equivalently, the number of
single-element mutations required to transform one string
into the other). Under this metric, the distance between
two distinct Blob strings in Cn is always an integer in the
range [1, n − 2], as each string in Cn has n − 2 elements.
We say that two Blob strings are ‘adjacent’ if the distance
between them is one.

In the space of trees, the simplest definition of the distance
between two trees T1 and T2 is the number of edges that
belong to T1 but not T2 (or equivalently, the number of edge
swaps required to transform one tree into the other); this
distance metric is commonly known as the ‘tree distance’.
Under this metric, the distance between two distinct trees
in Tn is always an integer in the range [1, n−1], as each tree
in Tn has n − 1 edges. We say that two trees are ‘adjacent’
if the distance between them is one.

3.3 Mutation innovation
The locality of the Blob Code can be quantified using the

concept of ‘mutation innovation’ [18], which describes the
extent to which new phenotypic features arise when a given
mutation operator is applied.

In general terms, the mutation innovation is the random
variable Δ defined by the formula Δ = dP (x, x�); that is,
the phenotypic distance between a random solution x and a
new solution x� obtained by randomly mutating x.

In the context of the Blob Code, this mutation innovation
formula may be rewritten as Δ = dT (T [B], T [B�]), where:

• dT () denotes the tree distance metric described in the
previous subsection;

• B denotes a random Blob string;

• B� denotes a Blob string obtained by making a random
single-element mutation to the Blob string B;

• T [B] and T [B�] denote the trees corresponding to B
and B� respectively under the Blob Code.

Thus, Δ is simply the random variable which represents
the number of tree edges that change when a random Blob
string undergoes a random single-element mutation. (Single-
element mutation is the most natural mutation operator for
us to consider, since the distance metric in the genotype
space is defined in terms of this operator.)

Observe that the distribution of Δ depends on n — in
particular, Δ only takes values in the range [1, n− 1]. Since
high locality is advantageous, small values of Δ are desirable.

We define a mutation to be ‘perfect’ or ‘optimal’ if its
associated value of Δ is one (i.e., if the mutation causes
just a single edge-change in the corresponding tree). Perfect
mutations are highly desirable, as they mean that a minimal
step in the genotype space Cn causes a minimal step in the
phenotype space Tn.

Conversely, a mutation is ‘pessimal’ if its associated value
of Δ is n− 1 (i.e., if the mutation changes every edge of the
corresponding tree). Pessimal mutations are highly unde-
sirable, as they mean that a minimal step in the genotype
space Cn causes a maximal step in the phenotype space Tn.

Previous research [7],[20] into the locality of the Blob Code
has considered only simple measures, such as the expected
mutation innovation E(Δ), or the maximum value of Δ that
is observed over a large number of mutations. In the next
section, we significantly extend this work by investigating
the distribution of Δ for different values of n.

4. LOCALITY OF THE BLOB CODE
In this section, we present exact and empirical locality

measurements for the Blob Code, and then discuss the key
features of the resulting data.

1322



Table 1: The exact frequency distribution of Δ for small n.
n Δ = 1 Δ = 2 Δ = 3 Δ = 4 Δ = 5 Δ = 6 Δ = 7 Δ = 8 Δ = 9 Total
3 6 0 6
4 80 16 0 96
5 1116 356 26 2 1500
6 17974 6862 930 144 10 25920
7 334494 137602 25668 5632 768 46 504210
8 7100806 2997954 685364 184996 36198 4476 254 11010048
9 169650116 71684686 18928836 5847936 1441096 261934 30034 1626 267846264

10 4508332630 1880489456 553908190 187865610 54400364 12632554 2126892 232594 11710 7200000000

Table 2: The proportional distribution of Δ for small n. All figures are given to 5 d.p.
n E(Δ) Δ = 1 Δ = 2 Δ = 3 Δ = 4 Δ = 5 Δ = 6 Δ = 7 Δ = 8 Δ = 9
3 1.00000 100.00000 0.00000
4 1.16667 83.33333 16.66667 0.00000
5 1.27600 74.40000 23.73333 1.73333 0.13333
6 1.35471 69.34414 26.47377 3.58796 0.55556 0.03858
7 1.41478 66.34022 27.29061 5.09074 1.11699 0.15232 0.00912
8 1.46252 64.49387 27.22925 6.22490 1.68025 0.32877 0.04065 0.00231
9 1.50160 63.33862 26.76337 7.06705 2.18332 0.53803 0.09779 0.01121 0.00061

10 1.53433 62.61573 26.11791 7.69317 2.60924 0.75556 0.17545 0.02954 0.00323 0.00016

4.1 Exact enumeration results for small n
For any given n ≥ 3, there are exactly nn−2(n− 1)(n− 2)

mutation events associated with the Blob Code — that is,
nn−2 possible choices for the original Blob string B ∈ Cn,
(n − 2) possible choices for the position of B to experience
mutation, and (n − 1) possible choices for the new value in
that position.

Each of these nn−2(n − 1)(n − 2) mutation events has
an associated value of Δ (i.e., the tree distance between
the tree corresponding to the original string and the tree
corresponding to the mutated string). For each n ∈ [3, 10],
these nn−2(n− 1)(n− 2) cases were exhaustively examined,
and the distribution of Δ was constructed.

Table 1 shows the exact frequency distribution of Δ for
each n ∈ [3, 10]; we refer to this as the ‘locality signature’ of
the Blob Code.

To facilitate comparison between the data obtained for
each n, Table 2 shows the expected value of Δ for each
n ∈ [3, 10] (rounded to 5 decimal places), along with the
‘proportional’ distribution of Δ for each n ∈ [3, 10] (with all
figures expressed as percentages to 5 decimal places).

4.2 Empirical results for large n
When n is greater than 10, exact enumeration becomes

too computationally expensive, and the distribution of Δ
must be estimated empirically through examining a large
number of random mutation events.

In our experiments, we examined 12 larger values of n,
chosen to lie roughly on a logarithmic scale: 20, 50, 100,
200, 500, 1000, 2000, 5000, 10000, 20000, 50000, and 100000.
(Since previous studies have not considered values of n larger
than 10000, we believed it would be useful to gain an insight
into the asymptotic behaviour of Δ through examining some
extreme values of n.)

For each of these 12 values of n, a large number of inde-
pendent runs were performed (107 runs for each n ≤ 2000,
and 106 runs for each n > 2000). In each run, a Blob string
B ∈ Cn was generated uniformly at random, and a random
single-element mutation was applied to B to form a new
Blob string B�. (Note that the term ‘random single-element
mutation’ means a single-element mutation generated uni-

formly at random from the set of all (n− 1)(n− 2) possible
single-element mutations.) The trees T ∈ Tn and T � ∈ Tn

corresponding to B and B� under the Blob Code were then
determined, and the associated value of Δ recorded. There-
fore, for each value of n under study, we generated a large
number (106 or 107) of independent realizations of the mu-
tation innovation Δ.

To ensure the reliability of our simulation results, all of
our experiments used pseudo-random numbers produced by
a fifth-order multiple recursive generator with a period of
around 1046, as described by L’Ecuyer et al. [10]

Table 3 summarises the key data obtained through these
experiments. For each value of n investigated, the table
shows the expected mutation innovation E(Δ); the value
of P (Δ = i) for i ∈ [1, 5] and the remaining probability
P (Δ > 5), all expressed as percentages to 3 decimal places;
the extreme percentiles of the distribution, which indicate
the shape of the distribution’s tail; and the maximum value
of Δ observed in the sample. For ease of comparison, the
table also shows the measurements associated with n = 10,
calculated directly from the exact enumeration results in
Tables 1 and 2.

4.3 Discussion of locality results
In this subsection, we discuss the key features of the exact

and empirical locality results presented in Tables 1 to 3.

4.3.1 Perfect mutation probability
The exact enumeration results shown in Tables 1 and 2

prove that P (Δ = 1) decreases as n increases in the range
[3, 10]. However, the figures presented in Table 3 indicate
that P (Δ = 1) increases towards a value of one as n increases
from 20 through to 100000.

Our empirical results lead us to conjecture that P (Δ = 1)
tends to one (albeit rather slowly) as n tends to infinity;
thus, in the terminology of [14], it appears that the Blob
Code has ‘asymptotically optimal locality’. Unfortunately,
there does not seem to be a simple proof of this result, along
the lines of the proof presented in [14] for the Dandelion
Code, because the Blob Code mapping is much more un-
wieldy than that of the Dandelion Code.
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Table 3: The proportional distribution of Δ for various values of n. All figures have been rounded to three
decimal places. The final seven columns show the extreme tail percentiles for each distribution. The figures
are based on 107 runs for each n ≤ 2000, and 106 runs for each n > 2000; the dividing line appears in the table.

n E(Δ) Δ = 1 Δ = 2 Δ = 3 Δ = 4 Δ = 5 Δ > 5 95% 97.5% 99% 99.5% 99.75% 99.9% Max
10 1.534 62.616 26.118 7.693 2.609 0.756 0.208 3 4 4 5 5 6 9
20 1.706 62.409 19.908 9.501 4.207 2.164 1.812 4 5 6 7 8 9 15
50 1.843 67.127 12.676 9.001 3.820 2.783 4.592 5 7 9 10 12 14 26

100 1.908 71.321 8.985 8.160 2.957 2.673 5.905 6 8 11 14 16 18 39
200 1.945 75.391 6.404 7.315 2.130 2.415 6.347 7 10 14 17 20 24 57
500 1.973 80.072 4.145 6.332 1.296 2.045 6.110 7 11 18 23 28 35 83

1000 1.985 83.092 2.988 5.681 0.855 1.787 5.597 7 12 21 28 36 46 130
2000 1.991 85.638 2.169 5.087 0.562 1.567 4.976 5 12 24 34 45 58 182
5000 1.992 88.486 1.416 4.345 0.313 1.313 4.128 5 11 26 42 58 80 208

10000 1.987 90.273 1.055 3.819 0.193 1.130 3.529 3 9 27 47 70 100 329
20000 2.014 91.741 0.739 3.360 0.124 0.983 3.053 3 7 26 52 84 128 469
50000 1.996 93.327 0.496 2.841 0.067 0.811 2.458 3 5 22 51 93 162 647

100000 1.991 94.444 0.341 2.427 0.043 0.691 2.054 3 5 17 47 101 191 1050

A detailed analysis of the perfect mutation probabilities in
Table 3, using a log-log plot, suggests that P (Δ = 1) follows
the relation P (Δ = 1) ≈ 1−n−0.25 for large n. For the three
largest values of n (namely, 20000, 50000, and 100000), this
formula evaluates to 0.91591, 0.93313, and 0.94377, each of
which is within 0.2% of the corresponding empirical value
shown in Table 3.

When the results in Table 3 are compared to those in [15],
it is apparent that P (Δ = 1) approaches one much more
slowly for the Blob Code than it does for any of the eight
Dandelion-like codes (including the Dandelion Code, Happy
Code, and MHappy Code). Indeed, for each of these eight
codes, P (Δ = 1) is around 0.85 when n = 100, around 0.95
when n = 1000, and around 0.98 when n = 10000 [15].

Finally, additional numerical experiments indicate that
the global minimum of P (Δ = 1) is 0.61759 (correct to 5
decimal places) at the point n = 14, and it appears that
P (Δ = 1) increases monotonically as one moves away from
this point in either direction. Thus, for any value of n, the
Blob Code provides us with a perfect mutation probability
exceeding 61.7%. The corresponding figure for the Dande-
lion Code is marginally higher — approximately 69.9% [14].

4.3.2 Existence of pessimal mutations
The exact enumeration results in Tables 1 and 2 show

that, under the Blob Code, pessimal mutations cannot arise
when n = 3 or n = 4, but do arise for each value of n in
the range [5, 10]. Based on this observation, it is natural to
wonder whether pessimal mutations can arise for larger n.
The following theorem shows that the answer is ‘yes’.

Theorem 1. Pessimal mutations can arise for any value
of n greater than four.

The proof of this theorem, which is given in Appendix
A.1., is made significantly easier by the improved linear-time
decoding algorithm presented earlier.

Theorem 1 shows that, for any n > 4, the tail of the Δ
distribution extends all the way to Δ = n − 1 (although
the probability mass present in this tail may be exceedingly
small, as indicated by the maximum observed values shown
in Table 3). Thus, the theoretical worst-case behaviour of
the Blob Code is inferior to that of the Dandelion-like codes,
for which the range of Δ is always [1, 5], no matter what
value of n we consider [14],[15].

4.3.3 Expected mutation innovation
The exact enumeration results in Tables 1 and 2 prove

that the expected mutation innovation E(Δ) increases as
n increases in the range [3, 10], and Table 3 suggests that
E(Δ) continues to increase steadily as n increases further,
stabilising at a value of around 2.000 for large n (allowing
for fluctuations caused by simulation error).

On the basis of these figures, we conjecture that E(Δ)
increases monotonically with n, and that the theoretical
asymptoptic value of E(Δ) is exactly equal to two.

The observation that E(Δ) stabilises for very large n is
not evident from the results presented by Julstrom [7] and
Thompson [20], due to the higher level of random error in
their simulations. Indeed, these previous experiments relied
on just 105 or even 104 runs, whereas our simulations are
based on 106 or 107 runs (depending on the value of n).

Our results indicate that the locality behaviour of the
Blob Code is significantly weaker than that of the eight
Dandelion-like codes, in the sense that the Blob Code does
not possess the property of ‘asymptotically optimal expected
locality’ (i.e., E(Δ) does not tend to one as n tends to in-
finity) [14]. Indeed, the results in [15] show that, for any of
the eight Dandelion-like codes, E(Δ) is around 1.27 when
n = 100, around 1.11 when n = 1000, and around 1.04
when n = 10000; these measurements are significantly more
favourable than the corresponding figures for the Blob Code.

4.3.4 Alternating phenomenon
The results in Table 3 also indicate that an alternating

phenomenon manifests itself for large n; for instance, when
n = 100000, it is apparent that P (Δ = 2) < P (Δ = 1),
P (Δ = 3) > P (Δ = 2), P (Δ = 4) < P (Δ = 3), and so on.
In particular, for large n (but not for small n), odd values
of Δ are much more likely than even values of Δ.

Further analysis of the figures suggests that within each
alternating distribution, two regular decay patterns manifest
themselves — one for the even values of Δ, and one for the
odd values of Δ (starting at Δ = 3). However, we have not
yet determined the underlying cause of this phenomenon.

4.4 Further analysis

4.4.1 Nature of the distribution
Under the Blob Code, we have observed the probability of

perfect mutation P (Δ = 1) approaches one for large n. If the
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range of Δ were bounded above by a constant (independent
of n), then the convergence of P (Δ = 1) to one would imply
that E(Δ) also converges to one (that is, asymptotically
optimal locality and bounded locality together guarantee
asymptotically optimal expected locality.)

However, for the Blob Code, such a bound on Δ does not
exist (since pessimal mutations exist for each n > 4), and
there is therefore no guarantee that E(Δ) approaches one.

In fact, the figures in Table 3 show that the value of E(Δ)
approaches two for large n; this is because the probability
that Δ is large is not negligible, and compensates for the
increasing probability mass at Δ = 1.

4.4.2 Significance of ‘black & white’ configuration
When a Blob string undergoes mutation, the number of

edge-changes caused by the mutation is intimately linked to
changes in the black and white configuration of the vertices.

Suppose we define a mutation to be ‘colour-preserving’ if
each vertex v ∈ [1, n] has the same colour before the muta-
tion as after the mutation (where a vertex’s colour is either
black or white). It is then easy to see that any colour-
preserving mutation must also be a perfect mutation.

Although a mutation may still be perfect even if it is not
colour-preserving, additional numerical simulations indicate
that the proportion of perfect mutations that are not colour-
preserving is very small (around 1/n).

Thus, it appears that the probability of perfect mutation
P (Δ = 1) approaches one as n increases because the pro-
portion of mutations that are colour-preserving approaches
one as n increases.

5. EFFECT OF MUTATION POSITION
So far, we have considered the distribution of Δ over the

set of all nn−2(n−1)(n−2) possible mutation events. In this
section, we show that the distribution of Δ strongly depends
on the choice of mutation position µ ∈ [2, n − 1].

5.1 A combinatorial result
We begin the section with a theorem which indicates that

fixing the mutation position µ ∈ [2, n−1] limits the possible
values of Δ to the range [1, n+1−µ]. This neat relationship
was conjectured — but not proved — by Thompson [20]. For
convenience, the theorem’s proof is given in Appendix A.2.

Theorem 2. If we perform the single-element mutation
bμ � b�

μ on the Blob string B = (b2, b3, . . . , bn−1) ∈ Cn to
create the mutated Blob string B� (where µ ∈ [2, n − 1] and
b�
μ �= bμ), then the tree T ∈ Tn corresponding to B and the

tree T � ∈ Tn corresponding to B� differ in at most n+1−µ
edges (that is, T and T � have at least µ− 2 common edges).

This theorem demonstrates that whenever a Blob string
is mutated in position µ ∈ [2, n−1], the resulting number of
edge-changes (i.e., the value of Δ) always lies in the range
[1, n+1−µ]. In particular, mutating the rightmost element
of a Blob string can never change more than two edges in
the corresponding tree; conversely, every pessimal mutation
must involve changing the leftmost element of a Blob string.

5.2 Some empirical results
We now report additional experimental results that give

further insight into the effect of mutation position on the
distribution of Δ.

Figure 2: The upper graph shows how the distribu-
tion of Δ varies with mutation position µ. The lower
graph shows how the expected mutation innovation
E(Δ) decreases as the mutation position µ increases.
In both cases, n = 20, and so µ ∈ [2, 19].
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For the purposes of these experiments, we focused on the
case n = 20. For each possible mutation position µ ∈ [2, 19],
we performed 106 independent runs. In each run, a Blob
string B ∈ C20 was generated uniformly at random, and
a random mutation was applied to element bμ to form a
new Blob string B� (with the new value b�

μ being chosen
uniformly at random from the nineteen elements in the set
[1, 20]\{bμ}). The trees T ∈ T20 and T � ∈ T20 corresponding
to B and B� under the Blob Code were then determined,
and the associated value of Δ recorded. Therefore, for each
µ ∈ [2, 19], we generated 106 independent realizations of Δ.

The upper graph in Figure 2 shows the distribution of Δ
observed for each mutation position µ ∈ [2, 19]; the lower
graph in Figure 2 shows the expected mutation innovation
E(Δ) for each value of µ ∈ [2, 19].

The two graphs have a number of noteworthy features. In
the upper graph, we see that the probability of perfect mu-
tation P (Δ = 1) takes its minimum value (around 57.6%)
at the point µ = 14, and rises as one moves away from this
point in either direction, taking its maximum value (around
78.8%) when µ = 19. Conversely, P (Δ = 2) takes its min-
imum value (around 10.0%) when µ = 2, rises to its maxi-
mum value (around 32.1%) at the point µ = 17, and then
falls again as µ increases further. The other four curves
decrease steadily towards zero as µ increases in the range
[2, 19]. Note that, in accordance with Theorem 2, the curves
for P (Δ = 3), P (Δ = 4), P (Δ = 5), and P (Δ > 5) reach
zero at µ = 19, µ = 18, µ = 17, and µ = 16 respectively
(and remain at zero for all larger values of µ). In the lower
graph, we see that the expected mutation innovation E(Δ)
decreases from around 1.87 to around 1.21 as the value of
µ increases in the range [2, 19], with the rate of decrease
becoming steadily greater as µ increases.

Further experiments revealed that the qualitative features
of all these curves are similar for other values of n; however,
two additional trends should be briefly noted. Firstly, as n
increases, the minimum point of P (Δ = 1) and the maxi-
mum point of P (Δ = 2) shift further to the right in relative
terms — for instance, when n = 1000, the minimum of
P (Δ) = 1 occurs when µ ≈ 970 (i.e., 97% of the way along
the Blob string) and the maximum of P (Δ) = 2 occurs when
µ ≈ 980 (i.e., 98% of the way along the Blob string). Sec-
ondly, for much larger values of n, it was noted that the
curve corresponding to P (Δ = 4) exhibits a rise-and-fall
pattern similar to that of P (Δ = 2), but very much smaller
in magnitude; further tests may show that this phenomenon
extends to other even values of Δ.

5.3 Discussion
Theorem 2 establishes that the choice of the mutation

position µ ∈ [2, n − 1] places restrictions on the range of Δ
— specifically, the maximum possible value of Δ decreases as
µ increases. The empirical results in the previous subsection
build on this result by showing how the distribution of Δ
changes with µ, using the case n = 20 as an example.

Our results show that, on average, larger values of µ are
associated with more desirable mutations, both in terms of
the expected mutation innovation E(Δ) and the maximum
value of Δ that can arise (as both of these measures de-
crease as µ increases). In terms of the perfect mutation
probability P (Δ = 1), we find that the largest (and thus,
most favourable) value occurs when µ = n − 1, but larger
values of µ do not necessarily give larger values of P (Δ = 1).

However, while all three of the above locality measures
identify µ = n − 1 as the most desirable mutation position,
it would be foolish to conclude that we should perform mu-
tations exclusively in this position — of course, our mutation
operator should allow random variation to be introduced in
all string positions, and allow any Blob string to be mutated
into any other through a suitable series of mutations.

Nonetheless, our results do raise an interesting prospect:
when working with the Blob Code (or indeed, any other
Cayley code), it may be possible to enhance the locality of
the standard single-element mutation operator (under which
the mutation position is selected uniformly at random from
[2, n − 1]) by introducing a positional bias to exploit the
superior locality at different string positions. This idea is a
topic of ongoing research.

6. CONCLUSION AND FUTURE WORK
In this paper, we have extended previous research into

the locality properties of the Blob Code, by establishing a
number of different exact and empirical results relating to
the distribution of the mutation innovation Δ.

Our experiments showed that the Blob Code possesses the
desirable property of asymptotically optimal locality (i.e.,
the perfect mutation probability P (Δ = 1) approaches one
as n grows). However, we also found that pessimal muta-
tions (i.e., mutations for which Δ = n − 1) can arise under
the Blob Code for any n > 4. Consequently, the Blob Code
does not possess asymptotically optimal expected locality:
as n becomes large, the expected mutation innovation E(Δ)
approaches two, rather than the ideal value of one. These
results confirm that the locality of the Blob Code is high,
but not as high as that of the eight Dandelion-like codes.

We also studied the effect of the mutation position µ on
the distribution of Δ, and found that mutation positions
towards the end of the Blob string exhibited the highest
locality; it might be possible to exploit this phenomenon.

Finally, in terms of future work, it would be valuable to
perform a detailed comparison of the locality of the Blob
Code and that of other Cayley codes, building on the work in
this paper. This investigation could also consider alternative
mutation operators, such as swap mutation. It would also
be interesting to see how the mutation position µ affects the
distribution of Δ for each of the different Cayley codes.
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APPENDIX

A. PROOFS OF THEOREMS
In this section, we provide proofs of Theorems 1 and 2.

In both cases, the proofs follow quickly from the improved
linear-time decoding algorithm given earlier in the paper.

A.1 Theorem 1

Proof. We will prove that at least one pessimal mutation
exists for each n > 4 by providing an explicit construction.

Given n > 4, consider the Blob string B = (1, 2, . . . , n−2).
The digraph G associated with B consists of the directed
edges (i → i − 1) for each i ∈ [2, n − 1]. Thus, when the
Blob Code decoding algorithm is applied, every vertex in G
will be classified black. Thus, the tree T corresponding to B
under the Blob Code consists of the edge (i, i + 2) for each
i ∈ [1, n − 2], along with the single edge (1, 2).

Now suppose that B is mutated in its leftmost position to
produce the new string B� = (n, 2, 3, . . . , n − 2). It is clear
that the mutated digraph G� associated with B� consists of
the directed edges (i → i− 1) for each [3, n− 1], along with
the single directed edge (2 → n). Clearly, in the mutated
digraph G�, each vertex in [2, n− 1] is white, and vertices 1
and n are black. It follows that the tree T � corresponding
to B� under the Blob Code consists of the edges (i, i + 1)
for i in [2, n− 2], along with the two edges (1, n) and (2, n).

Since T and T � have no common edges, the mutation
that transformed B into B� is a pessimal mutation. Thus,
at least one pessimal mutation exists for each n > 4.

A.2 Theorem 2
Proof. For any Blob string B ∈ Cn, we wish to prove

that mutating the value of bμ causes at most n+1−µ edge-
changes in the corresponding tree.

Firstly, we observe that any i < µ which was classified
black prior to the mutation still remains black after the mu-
tation. This is simple to prove: prior to the mutation, µ
cannot have been a descendant of i in G (because i < µ,
and we know that i is black); thus, the descendants of i
in G are identical to the descendants of i in G�, and so i
must remain its original colour after the mutation — that
is, black.

We then assert that any i < µ which was classified white
prior to the mutation remains white after the mutation. To
demonstrate this, we consider two mutually exclusive and
exhaustive cases: (1) If µ was a descendant of i in G prior
to the mutation, then µ remains a descendant of i in G� after
the mutation, and thus i remains white because i < µ; (2) If
µ was not a descendant of i in G prior to the mutation, then
the descendants of i in G are identical to the descendants of
i in G�, and so i must remain its original colour after the
mutation — that is, white.

We have therefore shown that the black or white status of
each vertex i < µ is not altered by the mutation bμ � b�

μ.
It is then easy to see that during the decoding of B�, each
i < µ will be joined to exactly the same vertex as during the
decoding of B (namely, vertex bi if i is white, or vertex bxj−1

if i = xj for some j > 2, or vertex 1 if i = x2). Thus, there
are guaranteed to be µ−2 edges common to both the original
tree T and the mutated tree T � — in other words, mutating
the value of bμ can cause at most n + 1− µ edge-changes in
the corresponding tree.
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