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ABSTRACT
The Negative Slope Coefficient (nsc) is an empirical measure
of problem hardness based on the analysis of offspring-fitness
vs. parent-fitness scatterplots. The nsc has been tested em-
pirically on a large variety problems showing considerable
reliability in distinguishing easy from hard problems. How-
ever, neither a theoretical justification nor a theoretical anal-
ysis of the nsc have ever been given. This paper presents a
modification of nsc, the fitness-proportional negative slope
coefficient (fpncs), for which it is possible to give a theoreti-
cal explanation and analysis. To illustrate the approach we
compute fpnsc theoretically for the class of invertible func-
tions of unitation, and for two mutation operators. We apply
the theory to compute fpnsc for three benchmark functions:
Onemax, Trap and Onemix. We then compare the predic-
tions of fpnsc with the success probability recorded in actual
runs. The results suggest that fpnsc is able to broadly dis-
criminate between easy and hard GA problems.

Categories and Subject Descriptors
I.2.m.c [Artificial Intelligence]: Miscellaneous: evolution-
ary computing and genetic algorithms

General Terms
Algorithms, Performance

Keywords
Negative slope coefficient, theory, problem difficulty

1. INTRODUCTION
For classical algorithms a well-developed theory exists to

categorise problems into complexity classes. Problems in the
same class have roughly the same complexity, i.e., they con-
sume (asymptotically) the same amount of computational
resources, usually time [15]. Although, properly speaking,
Evolutionary Algorithms (EAs) are randomised heuristics
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and not algorithms, it would be useful to be somehow able
to likewise classify problems according to some measure of
difficulty. Difficulty studies in Genetic Algorithms (GAs)
have been pioneered by Goldberg and coworkers (e.g., see
[4, 11]). Their approach consisted in constructing functions
that should a priori be easy or hard for GAs to solve. These
ideas have been followed by many others (e.g. [14, 7]) and
have been at least partly successful in the sense that they
have been the source of a considerable amount of other work
on what makes a problem easy or difficult for GAs. One con-
cept that underlies many approaches is the notion of fitness
landscape, originally proposed in [28].

The fitness landscape metaphor can be helpful to under-
stand the difficulty of a problem for a searcher that is trying
to find the optimal solution for that problem. For exam-
ple, imagine a very smooth and regular landscape with a
single hill top. This is the typical fitness landscape of an
easy problem: most search strategies (hill climbing, simu-
lated annealing, EAs, etc.) are able to find the top of the
hill in a straightforward manner. The opposite is true for
a very rugged landscape, with many hills and local optima
which are not as high as the best one. In this case, even
approaches based on populations of individuals, like GAs or
GP, might have problems.

The graphical visualisation of fitness landscapes, when-
ever possible, can give an indication about the difficulty of
a problem for a searching agent like EAs. However, even as-
suming that one is able to draw a fitness landscape (which
is generally not the case, given the huge sizes of typical
search spaces and neighbourhoods), the mere observation
of its graph surely lacks formality [9, 6]. The ideal situation
would be to have a numeric measure able to condense useful
information on fitness landscapes.

In [12], Jones introduced a heuristic called fitness distance
correlation (fdc), as an algebraic indicator of problem diffi-
culty for GAs. Those studies have been extended to GP,
for instance, in [20, 21]. fdc can be considered quite a re-
liable indicator of problem hardness. However, it has some
flaws, the most severe one being that the optimal solution
(or solutions) must be known beforehand. This is obviously
unrealistic in applied search and optimisation problems, and
prevents one from applying fdc to more usual benchmarks
and real-life applications. Thus, although the study of fdc is
useful, it is also important to try other approaches based on
quantities that can be measured without any explicit knowl-
edge of the genotype of optimal solutions.

One measure that does not require knowledge of landscape
optima, the negative slope coefficient (nsc), was introduced
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in [22, 23, 21]. It is closely related to the notion of evolv-
ability and it has given some promising results on a variety
of GP problems. However, this measure has neither theo-
retically been justified nor assessed on genetic algorithms.

The origin, a definition and a brief discussion of nsc and
of a slightly modified version of it, that we call fitness pro-
portional nsc (fpnsc) is given in Section 2. In Section 3, we
model fpnsc theoretically and provide a simple explanatory
example. Then (Section 4) we use the theory to compute
fpnsc for all invertible functions of unitation, when the ge-
netic operator used is a single, random, bit-flip. We compute
fpnsc for the same class of functions but for standard bit-
flip mutation in Section 5. In both cases we compare the
predicted difficulty with empirical measures of the actual
success rates of a GA using these operators. We discuss
the benefits and drawbacks of fpnsc in Section 6. We draw
some conclusions in Section 7.

2. NSC AND FPNSC
Evolvability is a feature that is intuitively related, al-

though not exactly identical, to problem difficulty. It has
been defined as the ability of genetic operators to improve
fitness quality [1]. The most natural way to study evolv-
ability is, probably, to plot the fitness values of individuals
against the fitness values of their neighbours, where a neigh-
bour is obtained by applying one step of a genetic operator
to the individual. Such a plot has been presented in [25, 3,
24, 2] and it is called a fitness cloud.

Since high-fitness points tend to be much more important
than low-fitness ones in determining the behaviour of evo-
lutionary algorithms, an alternative algorithm to generate
fitness clouds was proposed in [22]. The main steps of this
algorithm can be informally summarised as follows: (1) Gen-
erate a set of individuals Γ = {γ1, ..., γn} by sampling the
search space and let fi = f(γi), where f(.) is the fitness func-
tion. (2) For each γj ∈ Γ generate k neighbours, vj

1, . . . , v
j
k,

by applying a genetic operator to γj and let f ′
j = maxj f(vj).

(3) Finally, take C = {(f1, f
′
1), . . . , (fn, f ′

n)} as the fitness
cloud. This is the interpretation of fitness cloud we will use
in this paper. Note how this algorithm essentially corre-
sponds to the sampling produced by a set of n stochastic
hill-climbers at their first iteration after initialisation.

The fitness cloud can be of help in determining some char-
acteristics of the fitness landscape related to evolvability and
problem difficulty, but the mere observation of the scatter-
plot is not sufficient to quantify these features. The Negative
Slope Coefficient nsc has been defined to capture with a sin-
gle number some interesting characteristics of fitness clouds.
It can be calculated as follows: let us partition C into a cer-
tain number of separate ordered “bins” C1, . . . , Cm such that
(fa, f ′

a) ∈ Cj and (fb, f
′
b) ∈ Ck with j < k implies fa < fb.

Consider the averages fitnesses f̄i = 1
|Ci|

P
(f,f ′)∈Ci

f and

f̄ ′
i = 1

|Ci|
P

(f,f ′)∈Ci
f ′. The points (f̄i, f̄

′
i) can be seen as

the vertices of a polyline, which effectively represents the
“skeleton” of the fitness cloud. For each of the segments
of this we can define a slope, Si = (f ′

i+1 − f ′
i)/(fi+1 − fi).

Finally, the nsc is defined as:

nsc =

m−1X
i=1

min (0, Si). (1)

The hypothesis proposed in [22] is that ncs should classify
problems in the following way: if nsc = 0, the problem is

easy; if nsc < 0 the problem is difficult and the value of
nsc quantifies this difficulty: the smaller its value, the more
difficult the problem. The justification put forward for this
hypothesis was that the presence of a segment with negative
slope would indicate a bad evolvability for individuals having
fitness values contained in that segment as neighbours would
be, on average, worse than their parents in that segment [21].
(We will discuss an alternative, but related, justification for
nsc later in this paper.)

The definition of nsc is very general and has many degrees
of freedom. In particular, a question must be answered to
be able to calculate the nsc: how should we partition the
abscissas of a fitness cloud into bins? In [22], fitness clouds
were statically partitioned into bins of the same size. Al-
though this method is arbitrary, the results reported in [22]
were encouraging and confirmed that the nsc is a suitable
hardness indicator for many well-known GP benchmarks,
including various versions of the symbolic regression prob-
lem, the even parity problem of many different orders and
the artificial ant problem on the Santa Fe trail (all these
benchmarks are documented in [13]). Furthermore, the nsc
proved suitable also for some synthetic GP problems, such
as GP Trap Functions [4], Royal Trees [17] and the Max
problem [8], which naturally capture some typical features
of easy and difficult fitness landscapes.

In [23] some limitations of the standard partitioning tech-
nique were pointed out and it was shown that it can gener-
ate bins that contain too few points. Furthermore, it was
empirically shown that the nsc with this partitioning tech-
nique is not able to correctly predict the difficulty of two
well known GP benchmarks: the multiplexer problem and
the intertwined spirals problem [13]. To overcome these lim-
itations, an alternative partitioning technique, size driven
bisection, was proposed inspired by the well-known bisec-
tion algorithm. With this modification, nsc was shown to
be a suitable hardness indicator for all the GP problems on
which it had been tested, included the multiplexer and the
intertwined spirals problems.

However, even nsc with size-driven bisection still lacks for-
mality: e.g., a threshold for the minimum number of points
belonging to a bin and the minimum admissible bin width
have to be chosen arbitrarily. Even more importantly, still
a formal justification of the nsc approach is missing.

In this paper, we propose a modified definition of nsc, the
fitness-proportional negative slope coefficient (fpnsc), which
we believe has the same qualities as the original nsc with
the added bonus that it has a clear theoretical justification.
The new coefficient has exactly the same definition of nsc,
except for one thing: we create fitness clouds using fitness
proportional selection. That is, for each individual γj ∈ Γ we
still generate k neighbours, vj

1, . . . , v
j
k, by applying a genetic

operator. However, in fpnsc we then select a vj using fitness
proportionate selection and set f ′

j = f(vj) instead of setting
f ′

j = maxj f(vj) as is done in nsc.

3. MODELLING FPNSC
Let F be a stochastic variable representing the fitness of

an individual randomly drawn from the population. If Φ(f)
is the proportion of individuals in a population having fit-
ness f , we have E[F ] =

P
f fΦ(f). Let us assume that the

offspring are obtained by a unary operator, that, for simplic-
ity, we will call mutation, and let F ′ be a stochastic variable
representing the fitness of the offspring. Let pn(f ′|f) be the
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probability that the offspring of an individual of fitness f
created by mutation have fitness f ′. Then it is possible to
compute the fitness distribution after a round of mutation

Φ(f ′) =
X

f

pn(f ′|f)Φ(f) (2)

and also the expected value of the fitness of the offspring:

E[F ′] =
X
f ′

f ′Φ(f ′)

=
X
f ′

f ′X
f

pn(f ′|f)Φ(f) =
X

f

Φ(f)
X
f ′

f ′pn(f ′|f).

By definition of conditional expected value we have thatP
f ′ f ′pn(f ′|f) = E[F ′|f ] and, so, E[F ′] =

P
f E[F ′|f ]Φ(f).

Note that the function E[F ′|f ] tells us how the fitness
of the offspring varies as a function of the fitness of the
parents. So, its definition is very similar to that of the curve
connecting the offspring-fitness-distribution centroids in the
definition of fpnsc. In fact, E[F ′|f ] is exactly the polyline
one would obtain if selection was not used when computing
the fpnsc (if the bins are sized in such a way that each one
only includes points with the same parental fitness).

However, the fpnsc is based on the notion of first gen-
erating some neighbours of a point and then applying pro-
portional selection on them. So, to provide a more precise
interpretation of the fpnsc we need to add selection to our
model. We do so by applying selection to the mutants of
each individual. This is a local form of selection, known
as soft brood selection. In the model we will assume that
all the neighbours of all individuals of a particular fitness f
take part in the selection step. This corresponds to taking
the limit k → ∞ which effectively is an infinite population
assumption.1

In fitness proportionate selection, the selection probability
for individuals of a particular fitness f is given by

p(f) =

„
f

E[F ]

«
Φ(f).

So, if by ps(f
′|f) we denote the probability that the offspring

(after mutation and selection) of an individual of fitness f
will have fitness f ′, we have

ps(f
′|f) =

„
f ′

E[F ′|f ]

«
pn(f ′|f)

where we used E[F ′|f ] instead of E[F ′] and pn(f ′|f) in-
stead of Φ(f ′) to account for the fact that selection is local
(conditional) to the neighbours of a parent of fitness f .

So, if F ′′ is a stochastic variable representing the fitness
of the offspring after mutation and selection, and E[F ′′|f ] is
the conditional expected value of F ′′, we take as our model
of fpnsc the following equation:

fpnsc =
X

i

min

„
0,

E[F ′′|fi+1] − E[F ′′|fi]

fi+1 − fi

«
. (3)

1The infinite population assumption is a standard tool in
the theory of evolutionary algorithms. This is an essential
assumption if we wish to separate the intrinsic algorithm
biases from the bias due to genetic drift.

Note that E[F ′′|f ] can be computed as follows

E[F ′′|f ] =
X
f ′′

f ′′ps(f
′′|f)

=
X
f ′′

f ′′
„

f ′′

E[F ′|f ]

«
pn(f ′′|f)

=
E[F ′2|f ]

E[F ′|f ]
.

From the well-known relation

V ar[X] = E[(X − E[X])2] = E[X2] − (E[X])2

we then obtain

E[F ′′|f ] =
V ar[F ′|f ] + (E[F ′|f ])2

E[F ′|f ]
=

V ar[F ′|f ]

E[F ′|f ]
+ E[F ′|f ]

(4)
which indicates that, under (localised) fitness proportionate
selection, the improvement in mean fitness of the offspring
after selection is given by the ratio between variance and
mean of the fitness of the offspring before selection. It is clear
that whether or not the mean fitness after mutation and
selection, E[F ′′] =

P
f E[F ′′|f ]Φ(f), is going to be higher

or lower than E[F ] =
P

f fΦ(f) depends on the shape of the

function E[F ′′|f ] and whether or not this is above or below
the diagonal f ′′ = f , particularly in densely populated areas
of the fitness distribution Φ(f) (e.g., near the mean parental
fitness). More discussion on the interpretation of fpnsc is
provided in Section 6.

As a simple example, let us consider an (unrealistic) prob-
lem and a mutation operation where each individual of fit-
ness f has two equally-likely neighbours: one with fitness
f + 1, the other with fitness f − 1. Therefore,

pn(f ′|f) =

8><
>:

1/2 if f ′ = f + 1,

1/2 if f ′ = f − 1,

0 otherwise,

and

E[F ′|f ] =
X
f ′

f ′pn(f ′|f) = (f + 1)/2 + (f − 1)/2 = f.

With the value of E[F ′|f ] in hand, we can then compute

V ar[f ′|f ] =
X
f ′

`
f ′ − f

´2
pn(f ′|f)

=
(f + 1 − f)2

2
+

(f − 1 − f)2

2
= 1.

So, the expected fitness of the offspring after mutation and
selection is given by E[F ′′|f ] = 1/f + f . This shows that as
the parental fitness increases, the mean fitness of the individ-
uals produced with a mutation/selection step progressively
approaches the average offspring fitness (without selection).
This makes sense, since the selection pressure exerted by
proportional selection progressively decreases in these cir-
cumstances. Also, assuming f ≥ 1 and that the fitness-cloud
bins are of the form Ci = {(i, i − 1), (i, i + 1)}, the slope of
the E[F ′′|f ] curve

Si =
1/(i + 1) + (i + 1) − 1/i − i

i + 1 − i
=

i(i + 1) − 1

i(i + 1)

is always positive, and, so, fpnsc =
P

i min(0, Si) = 0, sug-
gesting that this problem would be easy.
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3.1 Related work
In [24], Verel studied fitness clouds and computed an ex-

plicit expression [24, page 26] for the function E[F ′|f ] for
a particular set of functions, namely the uniform embedded
(UE) functions, and for a mutation operator that gener-
ates offspring by sampling uniformly at random among the
strings of a given Hamming distance d from the parent so-
lution. UE functions – a subset of the embedded functions
defined in [10] – generalise the NK and MAX-SAT land-
scapes. Verel’s results generalised previous results for NKp
and NKq landscapes presented in [19] and for NKp land-
scapes presented in [2].

Verel also considered [24, page 35] the conditional ex-
pected fitness for the offspring generated by a hill-climber,
a quantity we called E[F ′′|f ], for the same landscapes and
mutation operator mentioned above. No explicit expression
for E[F ′′|f ] was obtained, and the study of the hill-climber
for UE functions was empirical. The particular hill-climber
considered was deterministic since it was based on an ex-
treme form of selection where all valid neighbours of an in-
dividual are generated and the one with the highest fitness
is selected as offspring.

These results are important and relevant to our work, but
they are orthogonal to ours. For example, they do not ap-
ply to the invertible functions of unitation, to standard GA
mutation and to the more typical forms of selection that are
considered in this paper. Also, since an explicit formulation
for E[F ′′|f ] was not obtained, Verel’s results were not used
to give a formal interpretation and assessment of the nsc,
while this is the main objective of this paper.

Our work has also some similarities with the work pre-
sented in [5, 26], where the (1+1) EA’s behavior is mod-
elled for a particular subset of separable functions. Also,
in [18], the fixed points of a simple GA were theoretically
obtained for some functions of unitations similar to the ones
that will be studied later in this paper. Finally, our work
has a strong relation with [27], where the behavior of sim-
ple GAs for some functions of unitation was studied, even
though the goal of [27] was not the formalization or theoret-
ical assessment of the nsc.

4. INVERTIBLE FUNCTIONS OF UNITA-
TION UNDER ONE-BIT MUTATION

Let us use one-bit mutation as our search operation. Un-
der this mutation operator the offspring is produced by flip-
ping the bit at a randomly chosen locus in the parental
string. So, mutants are Hamming distance 1 from parents.

Let us consider a generic function of unitation, f(u), that
is invertible. Let h be the inverse of f . This means that it is
possible to compute the unitation value, u, of an individual
from its fitness, f̃ , i.e., u = h(f̃). It is then possible to com-

pute the fitness of the mutants of an individual of fitness f̃ ,
namely f+ = f(h(f̃)+1) and f− = f(h(f̃)−1). How many
neighbours of an individual have fitness f+ vs. fitness f−

depends on the unitation value of the parent. Namely, there
are h(f̃) neighbours with fitness f− and �−h(f̃) neighbours
with fitness f+. More precisely, it is easy to see that

pn(f ′|f) =

h(f)

�
δ(f ′ = f(h(f) − 1)) +

� − h(f)

�
δ(f ′ = f(h(f) + 1)),

Table 1: Performances of a GA using one-bit mu-
tations on different functions of unitation and two
values of bit-string length.

Onemax Trap Onemix
� = 10 1 0.1 0.1
� = 100 1 0 0

where δ(x) is 1 if x is true, 0 otherwise. Therefore,

E[F ′|f ] =
X
f ′

f ′pn(f ′|f)

= f(h(f) − 1)
h(f)

�
+ f(h(f) + 1)

� − h(f)

�

By applying effectively the same steps in the previous cal-
culation to the stochastic variable (F ′)2 instead of F ′, we
obtain

E
h`

F ′´2 |fi
= (f(h(f) − 1))2

h(f)

�
+ (f(h(f) + 1))2

� − h(f)

�
.

Taking the ratio between the last two results, we can com-
pute the expected fitness of the offspring after selection:

E[F ′′|f ] =
(f(h(f) − 1))2 h(f) + (f(h(f) + 1))2 (� − h(f))

f(h(f) − 1)h(f) + f(h(f) + 1)(� − h(f))
.

If we apply the calculation to Onemax for � = 10 (see
Fig. 1(a)), we obtain the plot shown in Fig. 1(d), which
has always positive slope. As a result fpnsc = 0, indicating
an easy problem. If, instead, we apply the calculations to
the deceptive trap function in Fig. 1(b), we obtain the plot
in Fig. 1(e), which has two sections with negative slope.
In this case fpnsc = −10.568, indicating, according to the
fpnsc hypothesis, that the problem is harder. Finally, if
we calculate E[F ′′|f ] with selection for the Onemix func-
tion [16] shown in Fig. 1(c) we obtain the plot in Fig. 1(f).
The latter has negative slope in 6 segments out of 10, and
fpnsc = −12.257, indicating that the problem is slightly
harder than Trap under one-bit flip mutation.

In order to experimentally confirm these results, we used
a simple GA with the following characteristics: one-bit mu-
tation was applied to each individual at each generation, no
crossover was used, populations were of size 100, tourna-
ment selection with tournament size 10 was used, and the
maximum number of generations was 100. We defined as
our performance measure the fraction of runs in which the
global optimum was found by generation 100. To assess this,
we performed 100 independent runs. Tab. 1 shows the suc-
cess rates obtained in our experiments with different fitness
functions and string lengths. With this form of mutation the
GA is able to find solutions to the Onemix and Trap prob-
lems effectively only if they happen to be in the population
at generation 0. On the contrary, Onemax is consistently
solved. This confirms the fpnsc predictions.

5. INVERTIBLE FUNCTIONS OF UNITA-
TION UNDER STANDARD MUTATION

Let us consider again a generic invertible function of uni-
tation, f(u), with inverse h(f). However, this time, let us

1338



 0

 2

 4

 6

 8

 10

 0  2  4  6  8  10

fit
ne

ss

unitation

onemax fitness function

 0

 2

 4

 6

 8

 10

 12

 0  2  4  6  8  10

fit
ne

ss

unitation

trap fitness function

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  2  4  6  8  10

fit
ne

ss

unitation

onemix fitness function

(a) (b) (c)

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0  2  4  6  8  10

se
le

ct
ed

 n
ei

gh
bo

ur
 fi

tn
es

s

individual fitness

E[f’|f] after selection

 1

 2

 3

 4

 5

 6

 7

 8

 9

 2  4  6  8  10

se
le

ct
ed

 n
ei

gh
bo

ur
 fi

tn
es

s

individual fitness

E[f’|f] after selection

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  2  4  6  8  10  12  14  16  18  20

se
le

ct
ed

 n
ei

gh
bo

ur
 fi

tn
es

s

individual fitness

E[f’|f] after selection

(d) (e) (f)

Figure 1: (a) Onemax, (b) Trap, (c) Onemix, (d) plot of E[F ′′|f ] for Onemax, (e) plot of E[F ′′|f ] for Trap,
and (f) plot of E[F ′′|f ] for Onemix.

assume that we use standard bit-flip mutation with a muta-
tion rate (per bit) pm.

An individual with unitation class u will have u bits set
to 1 and � − u bits set to 0. Let us imagine that we cre-
ate the offspring by going through the bits that are 0 and
flipping a biased coin to decide whether to mutate them or
not. Let Z0 be a stochastic variable that describes the num-
ber of 0’s mutated into 1’s and let Z1 be the number of 1’s
mutated into 0’s. Naturally, both Z0 and Z1 are binomially
distributed, with success probability pm. So

Pr(Z0 = z) =

 
� − u

z

!
pz

m(1 − pm)�−u−z

and

Pr(Z1 = z) =

 
u

z

!
pz

m(1 − pm)u−z.

The unitation value of the offspring produced by bit-flip
mutation will then be described by the stochastic variable
U = u+Z0−Z1, the distribution of which can be computed
as follows

Pr(U = y) = Pr(Z0 − Z1 = y − u)

=
uX

z1=0

Pr(Z1 = z1) Pr(Z0 = z1 + y − u)

It is then easy to show that

Pr(U = y) =

min(u,�+u−y)X
z1=max(0,u−y)

 
u

z1

! 
� − u

z1 + y − u

!

× p(2z1+y−u)
m (1 − pm)�−(2z1+y−u)

Let F(f) = {f0, f1, · · · , f�} be the set of codomain values
associated to the unitation values u = 0, 1, · · · , �. That is,

f0 = f(0), f1 = f(1), etc. Note that these are all distinct,
since f is invertible. Then we can write

pn(f ′|f) =

(
Pr(U = h(f ′)) if f ′ ∈ F(f),

0 otherwise,

or, more explictly,

pn(f ′|f) = δ(f ′ ∈ F(f))

min(h(f),�+h(f)−h(f ′))X
z=max(0,h(f)−h(f ′))

 
h(f)

z

!

×
 

� − h(f)

z + h(f ′) − h(f)

!
p(2z+h(f ′)−h(f))

m

× (1 − pm)�−(2z+h(f ′)−h(f))

By applying the definition of conditional expected value,
one can then easily prove that

E[F ′|fj ] =

�X
i=0

fi

min(j,�+j−i)X
z=max(0,j−i)

 
j

z

! 
� − j

z + i − j

!
p(2z+i−j)

m

× (1 − pm)�−(2z+i−j)

and

E
h`

F ′´2 ˛̨̨fj

i
=

�X
i=0

f2
i

min(j,�+j−i)X
z=max(0,j−i)

 
j

z

! 
� − j

z + i − j

!

× p(2z+i−j)
m (1 − pm)�−(2z+i−j) .

The ratio between the last two results gives us the expected
fitness of the offspring after selection, E[F ′′|f ].

If we apply the calculation to the Onemax function for
� = 10 (Fig. 1(a)), we obtain the plots shown in Fig. 2.
These have always positive slope. As a result, as shown in
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Figure 2: Plot of E[F ′′|f ] for Onemax for different
mutation probabilities.
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Figure 3: Plot of E[F ′′|f ] for Trap for different
mutation probabilities.
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mutation probabilities.

-1

-0.5

 0

 0.5

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4  0.45  0.5

ns
c

pm

Figure 5: Plot of fpnsc for Onemax for different
values of mutation probability.
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Figure 6: Plot of fpnsc for Trap for different val-
ues of mutation probability.
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Figure 7: Plot of fpnsc for Onemix for different
values of mutation probability.

Fig. 5, fpnsc is zero irrespective of the value of pm, indicating
an easy problem.

If, instead, we apply the calculations to the deceptive trap
function (Fig. 1(b)), we obtain the plots in Fig. 3. Unlike for
Onemax, here the the plot of E[F ′′|f ] changes significantly
with the mutation rate, showing two sections with negative
slopes for most mutation rates except very high and very
low ones. So, as shown in Fig. 6, fpnsc is non-zero, indi-
cating a harder problem. Also fpnsc varies slightly with the
mutation rate, suggesting that the problem difficulty may
be maximum at mutation rates of around 0.3.

Finally, if we calculate E[F ′′|f ] for the Onemix function
(Fig. 1(c)) we obtain the plots in Fig. 4 and Fig. 7. Clearly,
this problem presents several segments with negative slope
(except for very low and very high mutation rates). As a
result the values of fpnsc are significantly more negative than
the corresponding values for Trap, for most values of pm.
This would suggest that the problem is harder than Trap.
Also, note that the fpnsc values are higher than the value
recorded with one-bit mutations (namely, -10.568). This

suggests that with bit-flip mutation the problem is not as
hard. The difference is due to the right hand side of the
offspring fitness plots, where, with bit flip mutation, the
slope is positive. This is due to the fact that, with this
mutation, it is always possible (albeit with a probability
depending on pm) for the offspring of an individual at one
of the fitness peaks on the left of Fig. 1(c) to jump on another
fitness peak without having to go through a low-fitness ditch
(as is the case for one-bit mutation). Finally, note that
in Fig. 7, fpnsc vary widely with the mutation probability,
reaching its minimum for values of pm between 0.03 and
0.1. Again, this would suggest that the problem is hardest
at those mutation rates.

We should note that for all problems, the offspring fitness
vs. parent fitness plots tend to coincide with the main diago-
nal of the diagram whenever pm ≈ 0. This is because, when
the mutation probability is very small, the offspring tend to
be exact copies of the parents. So, their fitness is on average
very close to the parental fitness. It is also worth noting that
when pm ≈ 0.5 the offspring are effectively random strings,
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Table 2: Performances of a GA with a population
of 100 individuals, run for 100 generations with a
tournament size 10, for various values of � and pm.

Onemax Trap Onemix
� = 10, pm = 0.1 1 0.4 1
� = 10, pm = 0.01 1 0.11 0.65
� = 10, pm = 0.001 1 0.1 0.1
� = 100, pm = 0.1 1 0 0
� = 100, pm = 0.01 1 0 0
� = 100, pm = 0.001 1 0 0

irrespective of what parent they came from. So, the average
fitness of the offspring becomes independent of the parental
fitness, leading to a flat offspring fitness vs. parent fitness
curve. As a result, in both these cases the curves present no
negative slopes and fpnsc = 0. So, one should not expect
the fpnsc figure to be a good predictor of problem difficulty
whenever pm is either very small or very large.

Tab. 2 reports the success rate for runs with populations
of 100 individuals evolved for 100 generations with a tour-
nament size of 10. Results are means over 100 independent
runs. Naturally, the process of sampling taking place in a ge-
netic algorithm or GP system is very different from the sam-
pling process used in the definition of fpnsc. So, we should
not expect to obtain a one-to-one correspondence between
fpnsc and performance. However, fpnsc correctly predicted
that Onemix and Trap would be hard while Onemax would
be easy. Also, fpnsc predicted that Onemix would become
easier as the mutation rate increases while Onemax would
remain easy irrespective of the mutation rate. In addition,
fpnsc predicted that both Trap and Onemix would be harder
to solve using one-bit mutations than standard bit-flip mu-
tations. However, fpnsc incorrectly predicted that Trap is
easier than Onemix with bit-flip mutation.

To emphasise these effects for the case of � = 10, where
the search space includes only 1024 strings, we performed a
larger set of runs (1000 independent runs for each mutation
rate and problem) with a smaller population (10 individu-
als) and a reduced selection pressure (tournament size 2).
Also the maximum number of generations was reduced to
30. The success rates recorded in these runs are shown in
Fig. 8. These results confirm the previous observations. In
particular, we should note that, except for unreasonably low
mutation rates, Onemax is solved with a much higher suc-
cess rate than what is expected from random search (around
30% for random search without resampling, a bit less for
random search with resampling) if one performed the same
number of trials as our GA. On the contrary, irrespective of
the mutation rate, Onemix and Trap are consistently hard
for our GA, being its performance well below that of random
search.

6. DISCUSSION
In Section 3 we explicitly formalised the relation between

the curve, E[F ′′|f ], used to compute the fpnsc, and the con-
ditional mean and variance in the fitness of the offspring
produced by mutation. In Sections 4 and 5 we then applied
this relation to compute E[F ′′|f ] for two mutation operators
and for all invertible functions of unitation. This allowed
us, for the first time, to compute fpnsc exactly and from
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Figure 8: Plot of the success probability for runs of
a simple GA on Onemax, Trap and Onemix for dif-
ferent values of mutation probability, a population
of 10 individuals, evolved for 30 generations with a
tournament size 2.

first principles rather than using sampling. In the same two
sections we also saw how the fpnsc appears to be quite a
reliable classifier for problem hardness, although, being an
unnormalised integral measure, the fpnsc does not appear
to have the resolution necessary to predict fine differences
in problem hardness.

In this section we want to discuss what may be the reasons
for the good reliability of the fpnsc and see if there are ways
of improving it further.

Whenever the curve E[F ′′|f ] falls under the diagonal (f ′′ =
f), the average fitness of the offspring of an individual is
lower than the fitness of the parent. So, the difference
E[F ′′|f ]−f indicates the absolute evolvability of a genotype.
Clearly it is unavoidable that at least in some part of the
E[F ′′|f ] curve evolvability will be low, e.g., near the global
optimum. However, it would appear that if high fitness val-
ues are the objective, any situation where the offspring are
less fit than their parents will be an obstacle to the progress
of the population towards high fitness values. So, in prin-
ciple depressions in the E[F ′′|f ] curve may be indicators of
potential problem difficulty for a hill-climber.

However, in a GA, whether or not a genotype and its
offspring can reproduce successfully depends not only on
their absolute evolvability but also on what else is compet-
ing for survival in the population. Typically, because of
the selection phase, phenotypic (fitness) diversity will be
limited and, therefore, competitors will be all densely dis-
tributed around a particular fitness value. If the E[F ′′|f ]
curve presents a negative slope at that particular value, we
have the situation that the offspring of above average fitness
parents will be less fit than the offspring of below average
fitness parents. So, over two generations we expect a slower
increase, a stagnation, or even a lowering of the mean fit-
ness of the population. If the slope was positive instead, we
would expect rapid progress towards high mean fitness val-
ues. So, negative-slope segments in E[F ′′|f ] are obstacles to
the progress of the population towards high fitness values,
and this is why the fpnsc is an indicator of problem difficulty
for GAs.

7. CONCLUSIONS
The negative slope coefficient is an empirical measure of

problem hardness based the analysis of offspring-fitness vs.
parent-fitness scatterplots. The nsc has been tested empir-
ically on a large variety of genetic programming problems
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showing considerable reliability in evaluating problem hard-
ness. However, no theoretical investigation or explanation
for nsc has ever been proposed. In this paper, by slightly
modifying the way in which nsc is computed, we have ob-
tained a new hardness measure, the fitness-proportional nsc,
which is amenable to theoretical analysis. In particular, we
have theoretically clarified what exactly fpnsc computes and
evaluated the applicability of the fpnsc to GAs operating on
fixed-length strings. More specifically, we computed the fp-
nsc theoretically for the class of invertible functions of uni-
tation, and for two mutation operators. We then applied the
theory to compute the fpnsc for three benchmark functions
– Onemax, Trap and Onemix – and compared the predic-
tions of the fpnsc with the success probability recorded in
actual runs.

The results suggest that the fpnsc is able to broadly dis-
criminate between easy and hard GA problems, although
it appears also to be unable to pick up small differences in
problem hardness. In future work we hope to be able to
overcome this limitation.
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