
Finding Critical Backbone Structures with Genetic
Algorithms

Adam Prugel-Bennett
School of Electronics and Computer Science University of Southampton SO17 1BJ, UK

apb@ecs.soton.ac.uk

ABSTRACT
This paper introduces the concept of a critical backbone as
a minimal set of variables or part of the solution necessary
to be within the basin of attraction of the global optimum.
The concept is illustrated with a new class of test problems
Backbone in which the critical backbone structure is com-
pletely transparent. The performance of a number of stan-
dard heuristic search methods is measure for this problem.
It is shown that a hybrid genetic algorithm that incorporates
a descent algorithm solves this problem extremely efficiently.
Although no rigorous analysis is given the problem is suf-
ficiently transparent that this result is easy to understand.
The paper concludes with a discussion of how the emergence
of a critical backbone may be the salient feature in a phase
transition from typically easy to typically hard problems.

Categories and Subject Descriptors
F.2 [Theory of Computation]: Analysis of Algoruthms
and Problem Complexity.

General Terms
Algorithms, Theory

Keywords
Combinatorial Optimisation, Backbone, Genetic Algorithm,
Crossover

1. INTRODUCTION
A frequently observed phenomena of constrained optimi-

sation problems is the existence of a ‘backbone’ structure.
That is, some core part of the solution which is essential
to get right to find high quality solutions. The concept
of a backbone is a metaphor drawn from the percolation
literature in statistical mechanics and first applied to com-
binatorial optimisation problems in [1]. In that paper, it
was define as the set of variables that remain fixed in all

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

global optimal solutions. The definition was modified in
the Graph K-Colouring problem to be the set of pairs of
nodes each of which has the same colour in all optimal solu-
tions. Although these definitions are easy to understand and
relatively simple to calculate they miss the idea of a small
critical subset of variables necessary to be in the basin of at-
traction of the global solution—a definition that we believe
captures the true nature of the structure of the landscape
underlying many hard optimisation problems. To make this
distinction we define the critical backbone to be this subset
of variables. The critical backbone may be a small sub-
set of the traditional backbone. Although the concept of a
critical backbone is less tangible than the formal definition,
nevertheless, we believe it is more informative about the
nature of constrained optimisation problems and how they
are solved by heuristic algorithms. To make our notion of
a critical backbone clearer we define a ‘toy’ problem class,
Backbone, which has a set of variables that can be viewed
as forming a critical backbone. In instances of Backbone
it is easy to find local optima much superior to average solu-
tions, but to find very high quality solutions requires having
a good backbone structure. The purpose of introducing the
class Backbone is to illustrate in a very simple model how
a small set of variables can be critical to finding the optimal
solution. Furthermore we will see that this problem can be
tackled effectively using a hybrid genetic algorithm.

Since the backbone structure of a problem was given a
precise definition it may appear counter productive to try to
introduce a new notation of backbone which is much harder
to define precisely. However, we argue that the term has
taken on a folk meaning which is far richer and more perti-
nent than the formal definition. This is not just a semantic
argument, but one of significant practical importance. The
concept of a critical backbone structure that we are advocat-
ing has clear implications for heuristic search algorithms: A
successful search algorithm is one that can effectively search
the space of critical backbones. This is certainly true for
Backbone where we show empirically that a hybrid genetic
algorithm is considerably more efficient than many other
standard search heuristics such as multiple descents or sim-
ulated annealing precisely because it can efficiently search
the space of critical backbones. The structure of Backbone
is sufficiently transparent to understand this result without
detailed theoretical analysis. We will argue that the same
mechanism of efficiently searching the space of backbones ex-
plains the success of some genetic algorithms on real world
problems. An implication of this thesis is that a key to
designing successful genetic algorithms (GAs) is to find a

1343

recombination operator that efficiently explores the space of
backbones.

After submitting the first draft of this paper, the author
has become aware of closely related work on backdoors [2, 3].
These are defined as sets of variables which when set allow
a problem to be solved in polynomial time using some well
defined algorithm (whether a set of variables is considered a
backdoor will depend on the algorithm used). This idea has
been examined almost exclusively in the area of Sat prob-
lems which, being a decision problem, has a slightly differ-
ent character to many optimisation problems. These studies
find that for small Sat problems it is necessary only to set
a very few variables variables in order for a Sat solver to
find a satisfying solution in polynomial time. Interestingly
they find very little correlation between backdoors and back-
bones, although this result appears slightly at variance with
other studies on backbones.

The rest of this paper is organised as follows. In the next
section, we formally define Backbone and describe its prop-
erties. In section 3, we discuss how different search heuris-
tics explore the space of critical backbones and present some
representative empirical results. Finally in section 4, we re-
turn to our discussion about the definition of a backbone
and argue why the notion of critical backbone is important
in many classical constrained optimisation problems.

2. BACKBONE

We propose a new class of test problems, Backbone,
which defines a cost function for an n-element binary string,
X ∈ {−1, 1}n (throughout we assume all binary strings con-
sist of elements ±1). The optimisation problem is to find a
binary string to minimise the cost. We can formally define
the problem class Backbone as a 6-tuple

〈nb, nl, nx, W , f(·), π(·)〉

where

• nb is a positive integer defining the size of the critical
backbone

• nl is a non-negative integer defining the number of
variables in each of nb block

• nx is a non-negative integer defining the number of
variables in the cross-linking component of the cost
function

• W is a weight vector consisting of n = nb×(nl+1)+nx

real numbers

• f : {−1, 1}nb → {−1, 1}nx is a function that takes a
binary string of length nb (the projection of X onto
the set of backbone variables1) and returns a binary
string of length nx

• π : N → N is a permutation of the numbers from 1
to n = nb × (nl + 1) + nx defining the position of the
variables in the string.

1We define P̂BB : {−1, 1}n → {−1, 1}nb to be the projection
from the full binary string to a binary string containing only
the backbone variables

The total number of variables is n = (nl + 1)nb + nx. The
cost is given by

c(X) = cbb(X) + cbl(X) + cx(X)

cbb(X) =

nbX
i=1

WiXπ(i)

cbl(X) =

nbX
i=1

cbl
i (X)

cbl
i (X) =

nlX
j=1

Wπ(inb+j)Xπ(i)Xπ(inb+j)

cx(X) =

nxX
j=1

Wπ((nl+1)nb+j)fj(P̂BB(X))Xπ((nl+1)nb+j).

Note that permutation π(i) defines where the ith variable
sits on the string. The first nb variables (before making the
permutation) are the critical backbone variables. The next
nb×nl variables form nb blocks of length nl and the last nx

variable form a ‘cross-linking block’.
The cost function is made up of three pieces. The first

piece, cbb, depends only on backbone variables and is min-
imised when these variables take the opposite sign to their
associated weights, Wi. The second piece cbl consist of a
set of blocks; one block for each backbone variables. If
the backbone variable remains fixed then the block vari-
ables can be chosen to minimise the cost by setting them to
− sign(WjXπ(i)) where Xπ(i) is one of the critical backbone
variable. Changing one of the backbone variables will com-
pletely change the cost of the associated block. Without the
last term the cost function could be completely split into nb

independent pieces. The last term provides a cross-linking of
the variables. For each backbone P̂BB(X) we define an nx-

dimensional binary ‘mask’ f(P̂BB(X)). The cross-linking
variables are minimised with respect to this binary mask.
That is they minimise the cost when

Xπ((nl+1)nb+j) = − sign
“
Wπ((nl+1)nb+j)fj(P̂BB(X))

”
.

In this paper, the weights, Wi, are assumed to be iid Gaus-
sian variables (with mean zero and unit variance). However,
the structure of the problem remains unchanged for many
different choices of weight vector. For example, if we choose
all the weights to be equal to one, we observe very similar
behaviour. The binary masks, f(P̂BB(X)), are taken to
be random binary strings (implemented as a look-up table).
We consider two types of permutations, π; a random permu-
tation, πr, and a high ordered permutation, πo, where the
block variables and their associated backbone variables are
tightly linked. More specifically the variables are arranged
in a set of nb sections where each section consists of a sin-
gle critical backbone variable its associated block variables
and some number of cross-linking block variables. For ex-
ample, if we had as many cross-linking variable as backbone
variable (nx = nb) each section would be built up as shown
below.

Xi Xnbi+1 · · · Xnbi+nl
Xnb(nl+1)+i

The ordered version of Backbone (with no cross-linking
between backbone variables, i.e. nx = 0) is similar to a
model recently proposed by Richard Watson which consisted

1344

of similar blocks of variables. The motivation and interpre-
tation of these two models is however very different. In the
model of Watson, linkage is seen to be key to solving the
problem. In Backbone, the key to solving the model is to
discover the critical backbone. As we will see later, there
seems to be no advantage in exploiting linkage even when it
exists.

For a fixed set of backbone variables the block variables
and cross linked variables are easily optimised by any simple
descent algorithm—in this sense the critical backbone can
been seen as playing the same role as backdoors in Sat prob-
lems [2, 3]. The difficulty in solving the problem is to learn
the backbone variables since changing a backbone variable,
Xπ(i), will not only change the backbone cost, cbb, but will

also change the cost of the associated block, cbl
i , and the

cross-linking cost, cx. Provided the weights Wi in the back-
bone cost, cbb, are not too large, there will be a local opti-
mum associated with every possible assignment of the back-
bone variables. Thus the backbone variables in this problem
precisely encode the information about which basin of at-
traction the solution is in. A feature of this problem, which
is commonly observed in many classic optimisation prob-
lem, is that given a good solution (which may have taken
many hours to discover) it is possible to perform a large per-
turbation (i.e. a macro-mutation) which would significantly
increase the cost. However, if one then applies a descent
algorithm one rapidly returns to the cost one started from.
It is clear that this will happen in Backbone provided the
backbone variables are not changed by the macro-mutation.

A feature of Backbone that has been observed, for exam-
ple, in Max-Sat is that lower cost local minima are typically
closer in Hamming distance to the global optima than higher
cost local minima [4]. This phenomena has important con-
sequences for heuristic search as it provides an opportunity
to learn the backbone structure. We discuss this in the next
section.

3. HEURISTICS SEARCH ON BACKBONE

In this section, we discuss how a few well known heuristic
search algorithms explore the space of Backbone. To pro-
vide a quantitative comparison between different algorithms
we consider an instance of Backbone, 〈8, 6, 8, W g, fr, π〉,
where W g is a vector of Gaussian variables, fr are ran-
domly drawn masks, and we consider two permutations; πr

where the variables are in random position and πo where the
variables are arranged in sections as described above. We
measure run times in terms of the number of fitness evalua-
tions, however, we distinguish between performing a fitness
evaluation on a random string and making a fitness evalu-
ation after one local move (i.e. changing a single variable).
This reflects the situation in many real world search prob-
lems where computing the change in cost caused by a local
move is typically quicker than calculating the cost on the
whole string (this is also the case for Backbone).

We first consider a simple descent algorithm where a ran-
dom position on the string is chosen and the corresponding
variable has its sign changed if this reduces the cost. This
algorithm will reach one of the local minima defined by the
critical backbone variables. For instances when the weights
of the backbone variable are of the same magnitude as the
other weights there will be 2nb local minima. The basin of
attraction of the local minima are the set of configurations
where the cost of flipping a backbone variable is less than

the penalty caused by disrupting the associated block cost
and cross-linking cost. Once in a basin of attraction, the
local minimum will be reached after every variable has been
tried. Lower cost (fitter) local optima that are closer to the
global optimum will typically have slightly larger basins of
attraction than high cost local optima. However, because
there are a large number (2nb) of local minima and the bias
in the size of basins of attraction is not great, the likelihood
of finding the global optima via descent is small.

We can increase this probability of finding the global op-
tima by using multiple descents where we re-initialise the
string to a random string after a given number of descents
moves. The efficiency of this ‘restart’ algorithm is deter-
mined by the number of descent moves performed before
reinitialising. For the instance we are using the optimal
number of descent moves is around 250 (the precise opti-
mum balance between descent moves and restart moves will
depend on the complexity of recomputing the cost for a ran-
dom string compared with the complexity of computing the
change in cost following a local move). The average num-
ber of local descent moves need to find the optimal was
(4.3± 0.1)× 104 with an average of 170± 5 restarts (requir-
ing the full evaluation of the cost of a random string). These
numbers are computed over 1 000 runs. Not all descents will
have reached a local minima before the string is reinitialised.
If we increase the number of descent moves to 1 000 then
the average number of restarts need to find the optimum
solution is 95±3 which indicates that the probability of fin-
ishing in the global optimum is somewhat greater than that
for the average local optima (in this instance there are 256
local optima so if they had identical basins of attraction the
expected number of restart moves to reach one particular
optimum would be 256). Although increasing the number
of descent moves per restarts reduces the number of restarts
it increases the number of descent moves overall.

Another commonly used heuristic search strategy for prob-
lems with many local minima is simulated annealing [5]. In
this method a local move is made if it reduces the cost. If
a local move increases the cost then a move is made with
a probability exp(−β∆c) where ∆c is the increase in cost
and β is a control parameter known as the inverse temper-
ature. The efficiency of simulated annealing depends criti-
cal on how β is chosen (it is usually changed at each time
step; starting from a low value and slowly increased over
time). For this problem, we used a self-adaptive mechanism
to ensure that the probability of accepting any move is 0.2.
More specifically we started from β = 0.1 and computed
a running average for the acceptance rate, r(t), according
to r(t + 1) = 0.95 r(t) + 0.5 χ(t) where χ(t) is one if the
move was accepted and zero otherwise. After each move the
value of β was increased by a factor of 1.1 if r(t) was above
0.2 and decreased by a factor of 0.9 otherwise. The pa-
rameters were chosen after a small amount of testing. The
average number of local descent moves needed to find the
global optimum were (8.8 ± 0.3) × 104; thus taking around
twice the time of the restart strategy. It is easy to see why
simulated annealing finds this problem hard. The difference
in the costs between local minima (which is determined by
the weights in cb) is small compared to the barrier between
local minima which depends on the set of weights in the cor-
responding block variables and weights for the cross-linking
variables. This ratio between the difference in cost of local
minima and the barriers, is known to determine the hardness

1345

of a problem for simulated annealing. The reason for this
is that a low temperature is needed to distinguish between
local minima, but this makes escaping from local minima
difficult.

Backbone is also a difficult problem for a traditional gen-
erational genetic algorithm to solve. To maintain a reason-
ably low cost (fit) population the selection pressure must
be very high. However, such a high selection pressure re-
moves all diversity in the population. This lack of diversity
prevents the population from searching the space of critical
backbones effectively. We could find no set of parameters
where a GA could solve the problem in a reasonable num-
ber of fitness evaluations.

The situation changes dramatically when we considered a
hybrid GA where we performed descent combined with selec-
tion and crossover. We used a population of size 30. At each
generation we performed 200 attempted descent moves fol-
lowed by selection. For selection we used scaled Boltzmann
selection with a selection strength β = 0.1 [6], combined
with stochastic universal sampling [7]. After selection, we
performed uniform crossover on all members of the popula-
tion (i.e. we created a child string by randomly choosing a
variable from either of two parents independently at each po-
sition on the string). These parameters were chosen after a
limited amount of experimentation. The average number of
local moves used to solve the problem was (2.45±0.04)×104

with a total of 122 ± 2 full fitness evaluations. This corre-
sponds to solving the problem in an average of just over
three generations. The hybrid algorithm takes just over half
the time of the restart algorithm. One disadvantage of this
approach is that it is possible to get fixation in one of the
backbone variables that prevents the algorithm from finding
the global optimum. The probability of fixation is reduced
by increasing the population size. With the parameters used
we were able to find the global optimum in all 1 000 runs for
which we tested the algorithm.

When the string is randomly ordered (i.e. we use the per-
mutation πr) applying single-point crossover increases the
number of local moves needed to solve the problem to (3.56±
0.06)×104 with 177±3 full fitness evaluations required. We
would expect single-point crossover to be less effective at ex-
ploring the space of critical backbones as it typically mixes
solutions much slower than uniform crossover [8]. Using the
ordered string (πo) the disruption caused by single-point
crossover is much smaller. This allowed us to reduce the
number of descent moves per generation to 100. However,
we still paid the penalty of poor mixing so that the even with
an ordered string we require an average of (2.48±0.05)×104

local moves and 248± 2 full fitness evaluations to solve the
problem. The difference in the number of local moves used
by single-point crossover and uniform crossover is not statis-
tically different. In single-point crossover we used half the
number of descents moves per generation, but it required
twice as many generation to find the solution. In conclu-
sion, it appeared that there was little or no advantage in
exploiting any linkage structure in the string.

We can easily understand the success of the hybrid algo-
rithm. Each round of descent leaves every member of the
population close to or in a local minima. Selection, then
selects for the lower cost local minima which are typically
closer in Hamming distance to the global minimum than the
high cost local minima. Crossover then searches the critical
backbone space. Thus there are two very distinct levels of

search. The descent method for finding local minima and
crossover for exploring backbone space. The structure of
the search space is easy at both levels. That is, finding a lo-
cal minima through descent is relatively fast and finding the
critical backbone through crossover is relatively fast. For
a small problem the advantage of the hybrid search is not
so significant, but as the size of the backbone increases, the
advantage of the hybrid algorithm becomes more evident.
Thus for 〈16, 6, 16, W g, fr, πr〉 the average number of local
moves for the restart algorithm using 500 descents between
restarts is (1.8 ± 0.6) × 107 with (3.6 ± 1.1) × 104 restarts
(calculated over 10 runs). A hybrid GA with a population
size of 50 and performing 400 attempted descent moves each
generation solved this larger problem in (3.0± 0.1)× 105 lo-
cal moves and 745± 30 full function evaluations (calculated
over 1 000 runs). That is almost two orders of magnitude
faster than the descent algorithm. We could not find a set
of parameters that allowed simulated annealing to solve this
large instance problem in a sensible time scale.

Although these comparisons are somewhat ad hoc, with
only a limited amount of parameter optimisation for each
algorithm, they are sufficiently clear cut to demonstrate the
general trends. In particular, they show a very clear advan-
tage of the hybrid genetic algorithm. It may appear that
the problem has been contrived to favour hybrid algorithm.
(Although, it is clear this is a contrived problem, it was orig-
inally designed to demonstrate the concept of a critical back-
bone.) The moot point is whether there exists any evidence
for a similar structure to occur in real optimisation prob-
lems. As we have already pointed out, in Max-Sat it has
been shown that lower cost local minima tend to be closer
in Hamming distance to a global minimum than higher cost
local minima [4]—this is clearly a necessary requirement for
a hybrid algorithm to be successful. However, the situation
for Max-Sat is more complicated than Backbone in that
there can be many global minima so the structure of the
space of critical backbones may be more complicated. In-
terestingly, there is some support for the success of hybrid
genetic algorithms for another classic optimisation problem,
namely Graph K-Colouring.

Graph K-Colouring is a very well studied problem.
The problem is to colour a graph with K colours in such
a way as to minimise the number of edges whose nodes have
the same colour. Interestingly, the best known algorithm for
this task is a hybrid genetic algorithm designed by Galinier
and Hao [9]. They recognised that Graph K-Colouring
is not really a colouring problem, but rather a partitioning
problem where the graph is partitioned into K sub-graphs
such that there are as few edges in each sub-graph as pos-
sible. They designed a crossover operator which attempted
to preserve sub-graphs. It combined two parents by consid-
ering each parent in turn for K steps. At each step it took
the largest colour class (i.e. set of nodes with one colour)
from the parent it was considering and copied it into the
child. The actual colour of the colour class was ignored. Af-
ter choosing the colour class, these nodes were removed from
both parents. This is repeated until the child had K colour
classes. Not all nodes of the child will be coloured at this
stage. The remaining nodes are coloured at random. The
algorithm was combined with a sophisticated Tabu search
which acted as a very powerful local search method. Al-
though the initial cost of crossover was very high (due to
the random colouring of the final nodes), Tabu search very

1346

quickly repaired the children. This algorithm substantially
out-performed previous methods on a large range of test
problems. This is a significant achievement as this is a com-
petitive problem which has received considerable attention
from across the optimisation community. Crossover was es-
sential to the success of the hybrid algorithm. The Tabu
search on its own, although it had a very respectable per-
formance, was substantially out-performed by the hybrid
algorithm. Nor was the the Tabu search strictly necessary.
The same quality of results were obtained using a standard
descent algorithm in combination with Galinier and Hao’s
crossover (although, it took considerably longer to obtain
these results) [10].

An interpretation of Galinier and Hao’s result is that the
local search method (Tabu search) is finding good critical
backbone structures while the crossover operator is combin-
ing solutions to efficiently search the space of good back-
bones. Just as in Backbone, the cost after crossover is
typically relatively high, however, the local search method
very quickly reduces the cost.

4. CONCLUSIONS
The traditional idea of a backbone arose in studying phase

transitions in some of the classic constraint optimisation
problems. As the number of constraints increase the op-
timisation problems are frequently observed to undergo a
transition from simple to hard [1, 11] (for decision prob-
lems the problem often becomes easy again as the number of
constraints increases further). At the phase transition, the
backbone defined as the number of variables common to all
global optimum solutions was observed to increase dramati-
cally. The idea being that the problem became hard because
it was necessary to fix a large proportion of the variables.
We argue that this may be a misinterpretation. The back-
bone becoming large at the phase transition may only be
indicating that the global optimum is becoming unique (or
there may be a small number of neighbouring configuration
making up the global optimum). Notice, that in Backbone
all variables would be considered to be backbone variables as
there is a unique global optimum. We observe also that the
fact that every variable has to take on a particular value is
not an indication that the problem is hard. The Ones-Max
problem has a backbone equal to the number of variables
but is easy to solve.

A feature which seems to be much more indicative of the
easy-hard phase transition is the “shattering” of the land-
scape into many valleys [12]. Search becomes difficult be-
cause if one starts in the wrong valley a neighbourhood
search algorithm will only find a local optimum. The idea of
the critical backbone is that it is a minimum set of variables
(or more generally a part of the solution) needed to ensure
that you are in the valley containing the global optima. The
number of variable in the critical backbone may be a small
fraction of the total number of variables or may even be sub-
linear (e.g. Θ(

√
n)). The size of the critical backbone may

be a crude measure of the hardness of the problem. This
is not true of the traditional backbone, which becomes ex-
tensive (i.e. Θ(n)) at the easy-hard phase-transition. Nev-
ertheless, for a problem like Max-Sat, the hardness of the
problem (as measured by algorithm run time) continues to
increase as the number of constraints (clauses in the case
of Max-Sat) increases without a significant change in the
size of the traditional backbone. We would speculate that

the size of the critical backbone increases with the problem
difficulty indicating that more information is required to be
in the basin of attraction of a global optima.

There is however, an important difference between the
traditional backbone and the critical backbone. The tradi-
tional backbone is defined independently of the neighbour-
hood structure. The critical backbone depends on the basins
of attraction of the global minimum which depends on the
neighbourhood structure imposed on the problem. Thus
the critical backbone is a much more global concept, which
makes it harder to compute and is the reason why it has
a much more vague definition than the traditional back-
bone. Despite this it is our contention that it is a much
more pertinent concept for understanding heuristic search.
Understanding, what constitutes the critical backbone may
be vital to designing efficient algorithms and in particular
recombination in genetic algorithms. A good crossover op-
erator should preserve the structure of the critical back-
bone. For Backbone this is rather easy to do, however
for Graph K-Colouring preserving the critical backbone
is highly non-trivial. A naive crossover operator such as
uniform crossover will not preserve the critical backbone
for Graph K-Colouring and gives a very poor algorithm.
Thus a better understand of critical backbones may result
in a significant improvement in the application of genetic
algorithms.

5. REFERENCES
[1] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman,

and L. Troyansky. Determining computational
complexity from characteristic ‘phase transisition’.
Nature, 400:133–137, 1999.

[2] R. Williams, C. Gomes, and B. Selman. Backdoors to
typical case complexity.

[3] P. Kilby, J. Slaney, and T. Walsh S. Thiebaux.
Backbones and backdoors in satisfiability. In 2005,
editor, Proceedings of the 20th National conference on
artificial intelligence and the 17th innovative
appllications of artificial intelligence conference, pages
1368–1373, Menlo park, CA. AAAI/MIT Press.

[4] W. Zhang, A. Rangan, and M. Looks. Backbone
guided local search for maximum satisfiability. In
Proc. of the 18th Intern. Joint Conference on Artifical
Intelligence, pages 1179–84, 2003.

[5] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by simulated annealing. Science,
220:671–680, 1983.

[6] A. Prügel-Bennett and J. L. Shapiro. The dynamics of
a genetic algorithm for simple random Ising systems.
Physica D, 104:75–114, 1997.

[7] J. E. Baker. Reducing bias and inefficiency in the
selection algorithm. In Proceedings of the Second
International Conference on Genetic Algorithms.
Lawrence Erlbaum Associates (Hillsdale), 1987.

[8] A. Prügel-Bennett. The mixing rate of different
crossover operators. In W. N. Martin and W. M.
Spears, editors, Foundations of Genetic Algorithms 6,
pages 261–274. Morgan Kaufmann, San Francisco,
2001.

[9] P. Galinier and J. K. Hao. Hybrid evolutionary
algorithms for graph coloring. Journal of
Combinatorial Optimization, 3(4):379–397, 1999.

1347

[10] C. A. Glass and A. Prügel-Bennett. Genetic
algorithms for graph colouring: Exploration of
Galinier and Hao’s algorithm. Journal of
Combinatorial Optimization, 7:229–236, 2003.

[11] O. C. Martin, R. Monasson, and R. Zecchina.
Statistical mechanics methods and phase transitions
in optimization problems. Theoretical Computer
Science, 265(1-2):3–67, 2001.

[12] A. Prügel-Bennett. Symmetry breaking in
population-based optimization. IEEE Transactions on
Evolutionary Computation, 8(1):63–79, 2004.

1348

