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ABSTRACT
ExGA I, a previously presented genetic algorithm, success-
fully solved numerous instances of the multiple knapsack
problem (MKS) by employing an adaptive repair function
that made use of the algorithm’s modular encoding. Here we
present ExGA II, an extension of ExGA I that implements
additional features which allow the algorithm to perform
more reliably across a larger set of benchmark problems.
In addition to some basic modifications of the algorithm’s
framework, more specific extensions include the use of a
biased mutation operator and adaptive control sequences
which are used to guide the repair procedure. The success
rate of ExGA II is superior to its predecessor, and other al-
gorithms in the literature, without an overall increase in the
number of function evaluations required to reach the global
optimum. In fact, the new algorithm exhibits a significant
reduction in the number of function evaluations required
for the largest problems investigated. We also address the
computational cost of using a repair function and show that
the algorithm remains highly competitive when this cost is
accounted for.
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G.3 [Mathematics of Computing]: Probability and Statis-
tics – Probabilistic Algorithms

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
GAs (see [5], [9]) are abstract implementations of evo-

lutionary systems designed to search difficult and usually
highly rugged search spaces. A population of potential so-
lutions is maintained which evolves by means of selection,
crossover and mutation to explore promising regions of the
search space. Traditionally, GAs are inspired by the field
of population genetics, although over time many additions
have been suggested that follow more closely the principles
of molecular genetics. In [10], we presented an adaptive GA,
labelled ExGA I, that was inspired by molecular genetics
utilising a modular encoding and adaptive repair approach
that is loosely analogous to RNA editing. Here we continue
the trend of using molecular genetics as inspiration to im-
prove upon the accuracy and reliability of ExGA I. The al-
gorithm presented in this paper, labelled ExGA II, exhibits
a very high degree of success on a large set of benchmark
problems. The results improve on the success rate of ExGA I
in several cases without an overall increase in the number of
function evaluations required to reach the global optimum.

Furthermore, we also consider the computational cost im-
plications of using a repair function in the algorithm. The
stochastic nature of crossover and mutation may produce
offspring that encode solutions violating one or more con-
straints even if both parents are feasible. This is a common
phenomena of constraint optimisation where care has to be
taken that an encoding represents a valid solution to the
problem of interest. This issue is usually addressed by using
specialised variation operators, penalty functions or repair
procedures. A direct comparison of the latter two has shown
that repair-based approaches are superior to penalty-based
ones for the MKS [10]. Here we show that this result still
holds if the cost of repair is properly accounted for. We ap-
proximate the cost of repair in terms of function evaluations
and find a similar degree of success. This allows a direct
comparison to other approaches that do not use an explicit
repair to cope with the problem’s constraints.

The remainder of this paper is organised as follows: Sec-
tion 2 outlines the multiple knapsack problem in more detail.
Section 3 describes ExGA I including a discussion of the
algorithm’s performance followed by a description of how
the individual shortcomings have been addressed to yield
ExGA II in section 4. The computational cost of the repair
function is discussed in section 5. The experimental setup is
described in section 6, and the results and analysis are pre-
sented in section 7. The final section concludes this paper
and addresses potential future work.
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2. THE MULTIPLE KNAPSACK PROBLEM
The multiple knapsack problem (MKS) is a widely studied

combinatorial optimisation problem that has several direct
counterparts in industry, such as the stock cutting problem.
Well-established benchmarks for this NP-complete problem
may be found online allowing a direct comparison to other
approaches in the literature. The MKS is a generalisation of
the single knapsack problem: Its objective is to fill a series
of m knapsacks each of capacity ci with any number of n
items maximising the items’ combined value. Each item
has a weight w and a value v and is placed in all knapsacks
simultaneously. The items’ weights depend on the knapsacks
and the sum of weights of all items considered for inclusion
may not exceed any of the capacities. More formally, we
wish to maximize the fitness

nX

i=1

vixi subject to
nX

i=1

wijxi ≤ cj

for j = 1, 2, . . . , m and where xi ∈ {0, 1}.
We make use of the SAC’94 library of benchmark prob-

lems1 and test our algorithm on the entire suite. The suite
contains 55 problem instances ranging in size from 15-105
objects and 2-30 knapsacks. The algorithms are judged by
their success rate at finding optimal solutions and the num-
ber of function evaluations required to reach the global op-
timum: The success rate measures the reliability of the al-
gorithm as the percentage of times a problem instance has
been solved in any given number of trials. This measure
is complemented by the average number of function evalu-
ations required to reach the global optimum, indicating the
computational cost of the algorithm. The MKS is very pop-
ular in the GA community as it may be encoded using a
binary string: Each bit in the binary vector indexes an item
and the state of the bit (0 or 1) indicates whether the item
is to be included in the solution.

3. EXGA I
As mentioned above, the design of the original ExGA I al-

gorithm was inspired by certain aspects of molecular genet-
ics: The majority of eukaryotic genes are composed of exons
and introns in an alternating fashion. Once a gene is tran-
scribed from DNA to RNA, it undergoes a processing step
that removes all non-coding regions (introns). The remain-
ing segments, exons, are finally translated into a polypep-
tide of amino acids (a protein). The modular composition of
genes is essential to the evolution of complexity and numer-
ous processes are in place that affect the traditional path-
way of expression. As such, processes like alternative splic-
ing or RNA editing may alter the RNA in several differ-
ent ways to produce a variety of distinct proteins from the
same underlying strand of DNA. The repair procedure of
ExGA I was loosely inspired by RNA editing which selec-
tively targets individual nucleotides for modification prior
translation. Mitochrondrial DNA, for example, may con-
tain premature stop codons that would cause the strand’s
degradation upon translation [4]. RNA editing selectively
targets these premature stop codons to restore the DNA’s
functionality. This form of natural repair alongside the mod-
ular composition of eukaryotic genes inspired the design of
ExGA I.

1This library is available online at http://elib.zib.de/
pub/Packages/mp-testdata/ip/sac94-suite/.
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Figure 1: A schematic view of the exonic encoding
and repair approach: Each encoding may be viewed
consisting of triplets each of which contains the item
to be represented, its segment number and binary
value. This information is then used to repair the
encoding if necessary. Groups are prioritised but
items in each group are chosen at random for re-
moval/inclusion.

The basis of ExGA I is a modular encoding defined in
terms of a number of “segments” as shown in figure 1: Con-
ceptually, each knapsack item is represented as a triplet com-
posed of the item’s number, its segment number, and a bi-
nary value indicating whether that item is to be included in
the solution (1) or not (0). These triplets are encoded as
movable elements and are thus free to move from one seg-
ment to another allowing the grouping of variables. The en-
coding is thus composed of stationary segments whose con-
tents are dynamic. The encoding’s dynamics are used to re-
pair infeasible solutions using a two-phase repair technique:
First, items are removed (invert 1 to 0) until all constraints
have been satisfied. This phase proceeds by considering the
segments in order from left to right choosing items within
the same segment at random. The dynamics of the encoding
therefore evolve a partial ordering in which items in different
segments are chosen deterministically while all items within
the same segment are chosen stochastically. In a similar
manner, the second phase of the repair procedure attempts
to add items (invert 0 to 1), if possible, proceeding in op-
posite direction, from right to left. The repair approach is
also shown in figure 1. It should be noted that the exclusion
phase considers as many segments as necessary to restore
the encoding’s feasibility. If the encoding is feasible prior to
repair, the exclusion phase is skipped. The inclusion phase,
on the other hand, considers all of the segments. This tech-
nique produces tightly packed feasible solutions in a man-
ner similar to [6] without using instance specific knowledge.
This adaptive approach has further advantages over a static
repair procedure as discussed in [10].

The remaining algorithmic framework that surrounds the
aforementioned encoding employs standard GA processes
throughout, slightly adapted to the MKS. A steady-state
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update scheme is used where a single parent is selected at
random and the second parent is chosen as the individual
in the population that is maximum hamming distance from
the first. Although this concept is counterintuitive from a
biological point of view (crossover may only occur amongst
homologous species), it slows the population’s loss of diver-
sity. Standard uniform crossover is used followed by a mu-
tation operator that either inverts a bit or moves an item
from one segment to another. The offspring generated com-
pete in a tournament with a randomly chosen parent and
are subsequently placed into the population if their fitness
is at least as good as that of their competitor (i.e. one of
the parents).

ExGA I produces results of quality equal to or superior
to other evolutionary approaches in the literature [10]. In
particular, it shows improvement over the EGA algorithm
of Jin, Xiande and Lu [6], which uses a static version of the
same repair procedure that utilises instance specific value-
weight ratios to repair infeasible solutions. This superi-
ority was demonstrated on on a subset of 18 problem in-
stances chosen from the SAC’94 library. The success rate for
ExGA I is 100% for most of these instances, although a sig-
nificant drop in performance is evident in a few cases. This
prompted further analysis of the algorithm’s behaviour on
these instances of poor behavior, and several improvements
to the algorithm’s design were identified as discussed in the
next section.

4. EXGA II
A full analysis of the ExGA I results reveals several issues

affecting its performance when used across a wide range of
different problem instances. The major issue was found to
be related to the population’s diversity. The repair proce-
dure is very greedy and limits the search to a small subset of
the search space, as indicated in figure 2. This leads to a sig-
nificant proportion of offspring being generated by crossover
that match an encoding already present in the population.
A simple checking procedure that removes these duplicates
slows down the loss of diversity within the population and
subsequently increases the algorithm’s performance. How-
ever, there is an obvious computational cost associated with
this approach: While it may be verified efficiently whether
an individual is already in the population, any duplicates are
discarded after the costly repair process has already been
carried out. Moreover, since the repair process is partly
stochastic, it is impossible to compare individuals prior to
repair. The algorithm’s improvement in performance is thus
associated with an increased computational cost in repair
which needs to be accounted for in the comparison of the
two algorithms.

It proved difficult to identify reliable predictors as to which
problem instances the ExGA I algorithm would perform
poorly on. However, tests revealed how different instances
react differently to the repair procedure. Some of the more
difficult instances were solved more efficiently by allowing
the extent of the repair to be adaptive. This may be achieved
by using two binary control sequences, one for each phase
of the repair. The binary control sequences are part of the
encoding and are thus subject to crossover and mutation
allowing their adaptation throughout the algorithm’s run.
Each sequence is translated to its integer value, which sub-
sequently dictates the number of segments to be considered
during repair as shown in figure 3: In ExGA I, the exclusion

Legal solutions

Illegal solutions

Optimal solutions

Figure 2: A schematic visualization of the search
space from the point of view of feasibility. Solutions
violating any of the imposed constraints are illegal.
Optimal solutions are likely to be situated very close
to the boundary separating the legal and illegal so-
lutions, as there the waste of capacity is minimised.

phase, which proceeds from left to right, considers individual
segments in turn until feasibility is obtained. The number
of segments considered is thus determined by the encoding’s
number of constraint violations. Now, the control sequence
may force the repair process to consider segments in addi-
tion to those necessary. The exclusion phase will consider
the y first segments where y is the integer value of the first
control sequence. For those segments, items are not con-
sidered one by one but instead all items’ binary values are
set to 0. In case the encoding remains unfeasible after all y
segments have been targeted, the standard exclusion phase
proceeds as normal from segment y + 1. The same principle
applies to the inclusion phase which only considers the first
z segments where z is the integer value of the second control
sequence. In this case, however, items are considered one by
one. The use of a binary control sequence implies that the
number of exons used has to be to the power of 2. This
limitation may be overcome easily by allowing the control
sequence to express a percentage of exons to be considered
rather than an absolute number. In this work, however, we
use the former case and instead develop a meaningful rela-
tionship between n and the number of exons as explained
next.

It is very difficult to design a generic algorithm that per-
forms equally well across a wide range of different problem
instances. Some instances react very differently to certain
parameter settings than others. A large body of research
addresses the issue of using adaptive parameters that evolve
during the algorithm’s execution in response to the instance
being solved (e.g. [1]). Here we do not consider such adjust-
ments, but investigate whether there is a meaningful rela-
tionship between the number of items and number of exons
that should be used. Systematic experimentation reveals
that it is beneficial to have approximately 2 items per seg-
ment. As the number of segments is a number to the power
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Figure 3: ExGA II introduces two nature inspired additions to ExGA I. Top: The mutation operator has a
bias to consider for inclusion those segments containing the least number of items first. Bottom: The repair
procedure is influenced by two adaptive control sequences that determine the number of segments to be
considered for exclusion and inclusion.

of two, we take the closest approximation possible. An in-
stance with 20 items thus has 7 exons while an instance with
100 items has 63.

The final addition introduces a bias to the mutation oper-
ator. It has been shown that mutations in natural systems
have a positional bias and that the genetic code, a mapping
used during translation, has adapted according to this bias
(see [3]). We found it useful to bias the mutation operator
that moves items from one segment to another: If a variable
is chosen to be moved to an alternative segment, the new
mutation operator considers segments in non-decreasing or-
der of their content: Items are always placed into segments
containing the least number of items with some probability
allowing to skip a segment. This bias generates a more even
spread of items across all segments and hence reduces the
randomness of the repair procedure. Furthermore, the con-
trol sequences work more efficiently if all segments contain
a similar number of items.

In summary, there are four fundamental changes between
ExGA I and II: Two changes that affect the algorithm’s over-
all design are the detection of duplicates in the population
and the relationship between the number of items n and the
number of exons. The additional two changes inspired by
molecular genetics are the use of control sequences to make
the repair procedure more adaptive, and the use of a bi-
ased mutation operator that facilitates a more even spread
of items across all exons. It should be noted that almost
all other parameter settings are identical to the experiments
carried out in [10]. However, it is possible that the improved
performance of ExGA II is due to a better choice of param-
eters alone, or that a single extension is solely responsible
for an increase in the algorithm’s performance. This was
checked and found not to be the case: Systematic elimi-
nation of any of the aforementioned changes always caused
a degradation in performance on one or more problem in-
stances. We therefore conclude that these additions are mu-
tually required to produce the performance improvements
shown in section 7.

5. THE COST OF REPAIR
As mentioned in section 1 there are several ways of deal-

ing with constraints: Penalty based approaches, in which
constraint violations map to reductions in solution fitness,
have the advantage that standard GAs may be used without
the need for alteration. However, the design of the penalty
function may greatly affect the algorithm’s ability to explore
the feasible regions of the search space. Specialised variation
operators or repair functions, on the other hand, restrict the
search to the feasible regions and also allow the use of prob-
lem specific knowledge. Here we address the computational
overhead of using a repair function to determine whether
our results still hold if this cost is properly accounted for.
The remainder of this section explains how this cost can be
approximated.

The fitness of an individual is calculated as the sum of
values of all items indicated to be in the knapsacks. Each
problem instance has n items and m knapsacks and the fit-
ness may be obtained at a cost of O(mn). A penalty may
subsequently be applied to decrease an individuals fitness
proportionally to the number or magnitude of constraint vi-
olations. The 2-phase repair procedure, on the other hand,
considers each variable for modification to ensure the encod-
ing’s feasibility: First, the individual’s fitness is calculated.
This is followed by two loops considering every bit in turn
and inverting it if possible. Every time an inversion occurs,
the sum of weights has to be recalculated. The exclusion
phase considers all bits equal to 1 while the exclusion phase
considers all other bits. The total cost of repair is therefore
O(mn+n), and the total cost of an individual’s evaluation is
O(2mn+n). However, this is an upper bound: The removal
phase stops as soon as enough items have been removed to
make the encoding feasible and the inclusion phase may be
constrained by the control sequence. Our experiments con-
firm this as the actual number of weight recalculations is
much lower than the given bound. In order to get a realistic
estimate on the true cost of repair, an explicit counter is
used during the experiments. The resulting count is divided
by mn to obtain an approximate cost in terms of function
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evaluations which are subsequently added to give the total
effective number of function evaluations required.

6. EXPERIMENTAL SETUP
The experimental setup is almost identical to the one em-

ployed in [10]: A steady-state GA is used with a population
of size 150. The probability of the uniform crossover oper-
ator is 0.9. The mutation operator either inverts a bit in
the gene or control sequence or moves one item from one
segment to another. The binary inversion occurs with a
probability of 0.5/l where l is the length of the gene (num-
ber of items) plus the length of both control sequences. The
probability of an item being shifted is 0.5/n where n is the
number of items. The bias of the mutation operator con-
siders segments in non-decerasing order of their content. A
probability of 3/4 is used to skip a segment for considera-
tion. The algorithm is run 100 times on each problem in-
stance with the number of function evaluations limited to
20, 000. The number of exons used (which is a power of 2)
is a simple function of n such that average content of each
exon is closest to 2 items. This, in conjunction with the
biased mutation operator, allows for the stochasticity of the
repair function to be controlled. For each problem instance,
we note the number of times this instance has successfully
been solved within the upper limit on the number of func-
tion evaluations. We also note the computational cost, in
terms of function evaluations, required on average to do so.

7. RESULTS AND ANALYSIS
The results of all our experiments are presented in table

1. ExGA II has a very high degree of success, solving all
but two instances in all 100 trials. Furthermore, ExGA II
improves on all 4 instances where ExGA I failed to reach a
success rate of 100%, although Weing7 and Weing8 remain
below 100% at 83% and 95% respectively. Nevertheless,
in addition to a greater reliability, ExGA II also achieves
a significant reduction in the number of function evalua-
tions required in 20 of the 55 instances. On the other hand,
ExGA II requires significantly more function evaluations in
12 cases. Interestingly, the performance of the two algo-
rithms seems to be related to the number of variables in the
problem instance. ExGA II outperforms ExGA I as n in-
creases and we see a distribution of significant reductions in
function evaluations that is skewed towards higher values of
n. This could indicate better scaling properties of ExGA II
and further testing on larger problem instances is required
to validate this trend. This is also consistent with the rea-
soning that the smaller and simpler test cases do not require
any advanced computations, while the larger cases do.

Table 1 also includes two columns that explicitly address
the cost of repair in terms of function evaluations. Using
the measure as explained in section 5, the last two columns
of the table show the performance in terms of success rate
and number of function evaluations accounting for the cost
of repair. Although there is an increase in the number of
function evaluations required to reach the global optimum,
the success rate remains at 100% across almost all instances.
The only decreases occur for for cases that already show less
than perfect performance: Weing7 and Weing8, with 13%
and 5% reductions respectively. Nevertheless, this data con-
firms that the algorithm remains highly competitive despite
the additional computational cost of repair.

Naturally, it is important to compare our algorithm against
other approaches. In [10], we compared the performance of
ExGA I against a number of other evolutionary algorithms
in the literature that have also been tested on instances from
the SAC’94 library as used in our study. The first approach
due to Khuri et al. [7], SGA, is a simple GA with standard
penalty function which penalises invalid encodings propor-
tionally to their number of constraint violations. A simi-
lar approach is due to Kimbrough et al. [8] who used a
2-market GA, 2-MGA, that employs two phases, optimal-
ity improvement and feasibility improvement, to generate
valid solutions of high quality. A greater success rate on
the same set of instances is achieved using problem specific
knowledge: Cotta et al. [2] suggest a hybrid GA, HGA, that
uses a greedy construction heuristic making use of the item’s
value-weight ratios. The last approach in our comparison is
the most successful one and uses a repair procedure closely
related to the one proposed here: The evolutionary game al-
gorithm, EGA, by Jun et al. [6] uses a two phase repair pro-
cedure that first removes items in increasing order of their
value-weight ratios followed by a phase that includes items,
if possible, in order of their decreasing value-weight ratios.
A direct comparison of all these approaches, together with a
random repair technique, Rep2, described in [10], is shown
in table 4. We see that ExGA II performs better on almost
all instances compared to the other approaches, including
the most promising approach, EGA. The only instance of
worse performance is on the weing7 problem instance, which
proves difficult for all algorithms except EGA.

Finally, a graphical comparison of the computational costs
is shown in figure 4. Predictably, the required number of
function evaluations tends to increase as n increases, indi-
cating that larger problem instances are solved with greater
computational cost (although there are notable exceptions
as evident in the peaks). It is interesting to see that ExGA
II is slightly worse on the smaller instances, and better on
the larger ones, while there is no significant difference for
the majority of medium sized instances. Again, this may be
explained by the fact that the additional features of ExGA
II do not pay off if the problem is solved easily in the first
place. The graph also indicates the better scaling properties
of ExGA II with a slower increase in the number of function
evaluations in proportion to n than ExGA I.

ExGA II shows a robust and reliable performance across
all instances. However, two instances remain that are not
solved 100%. It is interesting to establish whether this is
solely due to the difficulty of the problem or a result of
the limit imposed on the number of function evaluations.
Table 3 shows the results using different limits and as it
turns out, all instances of WEING7 may be solved if the
limit is increased. Only a slight increase is required and the
worst case is solved within 35,000 function evaluations. For
WEING8, however, there is only a fractional increase in the
number of successful trials. Despite a limit of 500,000 func-
tion evaluations, 2 trials remain unsuccessful. Nevertheless,
a simple restart procedure is used to overcome this: If the
global optimum has not been located within 20,000 function
evaluations, the population is reinitialised. This allows for
all trials to be successful.

An analysis of the distribution of items confirms that the
biased mutation operator allows for an even spread across
all segments. The notable exception is the leftmost segment,
which in almost all cases, contains significantly more items
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Instance n m Optimum I % II % I Avg II Avg S II C % II C Avg

FLEI 20 10 2139 100 100 2054.7 3122.42 - 100 3294.99
HP1 28 4 3418 100 100 3707.2 4314.6 100 4894.56
HP2 35 4 3186 100 100 5386.38 6104.34 100 6936.15
PB1 27 4 3090 100 100 2909.12 4055.52 - 100 4616.87
PB2 34 4 3186 100 100 5596.46 5966.7 100 6769.28
PB4 29 2 95168 100 100 3123.14 3479.68 100 4532.43
PB5 20 10 2139 100 100 2214.34 2852.36 100 3011.41
PB6 40 30 776 100 100 2515.72 2723.96 100 2784.09
PB7 37 30 1035 100 100 6288.24 5891.72 100 6007.81
PET2 10 10 87061 100 100 150.8 204.46 - 100 214.16
PET3 15 10 4015 100 100 705.6 1062.54 - 100 1105.44
PET4 20 10 6120 100 100 1450.86 1690.24 - 100 1766.94
PET5 28 10 12400 100 100 2193.42 2904.48 - 100 3018.97
PET6 39 5 10618 82 100 10888.84 7012.38 + 100 7706.72
PET7 50 5 16537 100 100 9918.24 9602.48 100 10424.45
SENT01 60 30 7772 100 100 9470.98 8032.94 + 100 8179.30
SENT02 60 30 8722 92 100 15680.6 11464.7 + 100 11637.29
WEING1 28 2 141278 100 100 3888.24 3944.14 100 4787.49
WEING2 28 2 130883 100 100 3484.64 3518.44 100 4335.70
WEING3 28 2 95677 100 100 2920.62 2669.46 100 3377.47
WEING4 28 2 119337 100 100 2327.44 3050.18 - 100 3858.61
WEING5 28 2 98796 100 100 2555.64 2499.06 100 3058.89
WEING6 28 2 130623 100 100 4211.92 3716.2 + 100 4546.49
WEING7 105 2 1095445 15 83 19438.68 15465.86 + 70 18091.00
WEING8 105 2 624319 90 95 14110.46 12091.46 + 90 15498.31
WEISH01 30 5 4554 100 100 3963.68 3376.26 + 100 3708.11
WEISH02 30 5 4536 100 100 3423.8 3730.48 100 4101.72
WEISH03 30 5 4115 100 100 2554.82 2804.54 100 3090.68
WEISH04 40 5 4561 100 100 1509.82 1934.28 - 100 2141.52
WEISH05 30 5 4514 100 100 1111.6 1675.6 - 100 1859.25
WEISH06 40 5 5557 100 100 4929.62 5085.86 100 5577.00
WEISH07 40 5 5567 100 100 4329.5 4717.74 - 100 5188.56
WEISH08 40 5 5605 100 100 4692.26 4632.32 100 5077.52
WEISH09 40 5 5246 100 100 3637.08 3863.9 100 4252.32
WEISH10 50 5 6339 100 100 6597.96 6144.16 100 6755.51
WEISH11 50 5 5643 100 100 4115.02 4716.66 - 100 5219.05
WEISH12 50 5 6339 100 100 5919.34 5677.68 100 6248.86
WEISH13 50 5 6159 100 100 5030.8 5273.22 100 5806.75
WEISH14 60 5 6954 100 100 6430.8 6450 100 7107.74
WEISH15 60 5 7486 100 100 6463.2 6457.18 100 7169.02
WEISH16 60 5 7289 100 100 7382.08 6926.04 + 100 7577.20
WEISH17 60 5 8633 100 100 5661.14 6476.74 - 100 6943.84
WEISH18 70 5 9580 100 100 10520.24 9144.02 + 100 9911.98
WEISH19 70 5 7698 100 100 7997.62 7087.9 + 100 7830.04
WEISH20 70 5 9450 100 100 9491.18 8689.68 + 100 9564.39
WEISH21 70 5 9074 100 100 8809.24 7916.42 + 100 8760.60
WEISH22 80 5 8947 100 100 10776.86 8500.5 + 100 9355.75
WEISH23 80 5 8344 100 100 9167.98 8649.38 100 9564.78
WEISH24 80 5 10220 100 100 12494.06 10167.58 + 100 11034.73
WEISH25 80 5 9939 100 100 11957.18 10448.68 + 100 11496.02
WEISH26 90 5 9584 100 100 12249.78 9705.28 + 100 10711.76
WEISH27 90 5 9819 100 100 10253.76 8786.56 + 100 9672.29
WEISH28 90 5 9492 100 100 11498.32 9617.54 + 100 10628.08
WEISH29 90 5 9410 100 100 11743.14 9361.74 + 100 10348.27
WEISH30 90 5 11191 100 100 11839.54 10942.72 + 100 11939.40

Table 1: All instances are listed by name and size (number of items n, number of knapsacks m) and optimal
solution. I and II stand for ExGA I and ExGA II respectively and % indicates the percentage of solved trials.
Avg indicates the average number of function evaluations required and column S indicates whether ExGA II
requires significantly more (-) or less (+) function evaluations than ExGA I. The last two columns account
for the cost of repair: The first column gives the success rate and the second column indicates the average
number of function evaluations required.

1362



ExGA II Differences
Instance Solved FunEvals Average SGA HGA EGA 2-MGA Rep2

hp2 100% 6104 3186 - - ±0% ±0 ±0%
pb6 100% 2724 776 - - ±0% +45.8 ±0%
pb7 100% 5892 1035 - - +0.4 +2 ±0%
pet3 100% 1063 4015 +17% ±0% ±0% - ±0%
pet4 100% 1690 6120 +67% +6% ±0% - ±0%
pet5 100% 2905 12400 +67% ±0% ±0% - ±0%
pet6 100% 7012 10618 +96% +40% +1% - +69%
pet7 100% 9603 16537 +99% +54% ±0% +50.4 +26%
sent01 100% 8033 7772 +95% +25% ±0% +2.2 +8%
sent02 100% 11465 8722 +98% +61% +31% +1.6 +75%
weing7 83% 15466 1095435.1 +83% +43% −17% +708.1 +83%
weing8 95% 12092 624158 +89% +66% +22% +530.2 +93%
weish12 100% 5678 6339 - - ±0% ±0 ±0%
weish17 100% 6477 8633 - - ±0% ±0 ±0%
weish21 100% 7916 9074 - - ±0% ±0 ±0%
weish22 100% 8501 8947 - - ±0% ±0 +31%
weish25 100% 10449 9939 - - ±0% ±0 +3%
weish29 100% 9362 9410 - - ±0% +206.8 +5%

Instances worse 0 0 1 0 0
Instances equal 0 2 13 6 9
Instances better 9 7 4 8 9

Table 2: Comparing ExGA II to other evolutionary approaches in the literature: All approaches are compared
in terms of how frequently an instance was solved across all trials. The only exception is the comparison to
the 2-market GA where the average fitness of the best individual in the final generation is used to compare
performance. A positive number indicates by how much ExGA II performed better than the approach named
on top of the column. A negative number indicates an inferior performance of EXGA II.

Instance Opt % Avg

Limit at 200,000 FE
WEING7 1095445 100 16142.58
WEING8 624319 97 13149.57
Limit at 500,000 FE
WEING8 624319 98 15130.20
Restart at 20,000 FE
WEING8 624319 100 12668.02

Table 3: Increasing the imposed limit on the num-
ber of function evaluations (FE) allows to solve the
remaining two instances, Weing7 and Weing8, to
100%.

than the remaining segments. This may be explained by the
fact that the removal phase starts from the left, removing
all items within a segment. As the exclusion phase has a
direct impact on the inclusion phase, it is vital that items
not being part of the global optimum are removed to make
space for additional items. Furthermore, the positioning of
items towards the far left make an inclusion during the sec-
ond phase of repair highly unlikely. In some cases, there
is a very slight increase in items per segment towards the
right. However, as the inclusion phase may consider all seg-
ments (depending on the control sequence), an item is not
necessarily required to be positioned towards the right to be
included, although such trend would increase the item’s like-
lihood of inclusion. The adaptation of the control sequences,
which have a direct impact upon the repair process, should

reflect these characteristics of distribution. This, alongside
additional analysis of the distribution of items across seg-
ments, especially over time, and the impact of the mutation
operator will be carried out in the near future.

8. CONCLUSION
Our previously presented algorithm, ExGA I [10], inspired

by the modular composition of genes, has been improved by
auxiliary inspirations drawn from the field of molecular ge-
netics. The resulting algorithm, ExGA II, implements ad-
ditional features that improve the algorithm’s success rate
and efficiency on a large benchmark set of multiple knapsack
problems. These additions include the use of adaptive con-
trol sequences regulating the repair procedure and a biased
mutation operator. The algorithm’s overall performance in-
dicates good scaling properties, although further testing on
larger problem sets is required to fully validate this claim.
The cost of using a repair function has been addressed and it
has been shown that the gain of using such function exceeds
its computational cost. The success rates are identical in all
but two out of 55 cases when the additional computational
cost of repair is taken into account.

Future work should address whether this algorithm may
be applied successfully to other constraint optimisation prob-
lems such as the maximum clique or the degree-constrained
minimum spanning tree problem. The mixture of determin-
istic and stochastic ordering seems a promising approach
generating a diverse set of high quality solutions to con-
strained optimisation problems. Furthermore, it should be
possible to abstract additional phenomena from molecular
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Figure 4: A comparison of the average number of function evaluations required by ExGA I and ExGA II
to reach the global optimum: ExGA I performs slightly better on the smaller instances while ExGA II
outperforms ExGA I as n increases. The is no significant difference between the two algorithms for the
majority of medium sized instances.

genetics taking further advantage of the algorithm’s encod-
ing. For example, it should be possible to design a more
sophisticated crossover operator and to introduce further
mechanisms for maintaining diversity throughout the algo-
rithm’s run. The results presented here are promising and
should encourage further exploration of molecular processes
as inspiration to the design of evolutionary algorithms.
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