
A Genetic Algorithm with Exon Shuffling Crossover for
Hard Bin Packing Problems

Philipp Rohlfshagen
School of Computer Science

University of Birmingham
Birmingham B15 2TT, United Kingdom

P.Rohlfshagen@cs.bham.ac.uk

John A. Bullinaria
School of Computer Science

University of Birmingham
Birmingham B15 2TT, United Kingdom

J.A.Bullinaria@cs.bham.ac.uk

ABSTRACT
A novel evolutionary approach for the bin packing prob-
lem (BPP) is presented. A simple steady-state genetic al-
gorithm is developed that produces results comparable to
other approaches in the literature, without the need for any
additional heuristics. The algorithm’s design makes maxi-
mum use of the principle of natural selection to evolve valid
solutions without the explicit need to verify constraint vi-
olations. Our algorithm is based upon a biologically in-
spired group encoding which allows for a modularisation of
the search space in which individual sub-solutions may be
assigned independent cost values. These values are subse-
quently utilised in a crossover event modelled on the theory
of exon shuffling to produce a single offspring that inherits
the most promising segments from its parents. The algo-
rithm is tested on a set of hard benchmark problems and
the results indicate that the method has a very high degree
of accuracy and reliability compared to other approaches in
the literature.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statis-
tics – Probabilistic Algorithms

General Terms
Algorithms, Experimentation, Performance

Keywords
Genetic algorithms, bin packing problem, exon shuffling

1. INTRODUCTION
Genetic algorithms (GAs; see [7], [11]) have become a pop-

ular choice of algorithm for numerous difficult optimisation
problems where conventional methods tend to fail. GAs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

maintain a population of potential solutions to the problem
of interest and loosely follow the principles of Darwinian evo-
lution to evolve solutions of increasing quality. Individuals
from the population are selected according to their fitness
to produce offspring by means of crossover and mutation.
The offspring are subsequently evaluated and, if successful,
placed back into the population. GAs have traditionally
been modelled on the field of population genetics (see [3]):
Individuals in the algorithm’s population represent “chro-
mosomes with many loci and few alleles per locus” (see [7],
p 71). While GAs were never meant to be accurate mod-
els of biological systems, we believe it may be beneficial to
consider possible inconsistencies or shortcomings from a bi-
ological point of view, in order to yield improvements over
the algorithm’s traditional design. It may be helpful, for ex-
ample, to view individuals in the population as (eukaryotic)
genes rather than (prokaryotic) genomes. Often these dis-
tinctions are irrelevant from a computational point of view,
but they may encourage exploration of additional biological
processes in an overall more plausible framework. The de-
sign of the algorithm presented here is an example of such
undertaking. It is inspired by processes of molecular genetics
that have been suitably abstracted to fit our problem of in-
terest, the bin packing problem (BPP). The results indicate
how a nature inspired approach may produce a comparable
performance to other approaches in the literature, without
the need for additional problem specific heuristics.

The objective of the BPP is to fit a fixed number of n
items, each of weight wi, into the fewest possible number
of bins, each of which has capacity c. In other words, the
number of bins has to be minimised while none of the bins’
capacities may be exceeded. This BPP has many industrial
applications and is found frequently in widely occurring real
world scenarios such as vehicle loading. Since this problem
is NP-hard [2], and well studied in the literature, it is an
excellent choice of problem on which to explore novel com-
putational ideas. Furthermore, the structure of the problem
is highly suitable for abstractions from molecular genetics,
as will be discussed in section 4.

The remainder of this paper is structured as follows: A
brief summary of previous work on the BPP is given is sec-
tion 2. This is followed by a discussion of molecular pro-
cesses that have inspired the design of the new algorithm
introduced in this paper. Section 4 outlines how these bio-
logical processes have been suitably abstracted to be usefully
employed in an algorithmic framework. The experimental
setup is described in section 5, followed by an analysis and
discussion of the results in section 6. Some conclusions are

1365

presented in section 7, along with a brief discussion of pos-
sible future work in this area.

2. PREVIOUS WORK
There are numerous evolutionary approaches for the BPP

in the literature. Interestingly, the majority of these ap-
proaches are hybrid, combining GAs with problem specific
heuristics. It is now well established that evolutionary ap-
proaches work very well in combination with problem spe-
cific heuristics and the review of relevant literature confirms
this. This section will therefore briefly overview a range of
relevant heuristics, before outlining the use of GAs for the
BPP. It should be noted that due to the vast number of
publications addressing the BPP, this review is necessarily
restricted to the key relevant ideas.

The most classic heuristics are the first fit decreasing (FFD)
and the best fit decreasing (BFD) algorithms. Both of these
approaches consider all items in decreasing order of their
weights, and then place them systematically into the bins.
The worst case result for FFD and BFD is (11/9)opt + 4,
where opt represent the optimal number of bins [2]. As
pointed out by Gupta et al. [6], the performance of both
heuristics deteriorates when the optimal solution requires
the majority of bins to be filled to (near) the maximum
degree possible. Gupta et al. therefore suggested a new
heuristic, called minimum bin slack (MBS), to overcome
this deficiency. MBS is naturally bin-focused: Any given
bin is filled to the maximum degree before the next bin is
considered. Backtracking may be used to escape from local
optima. Fleszar et al. have suggested several variations of
MBS [5]: One of these heuristics is MBS’, which is identical
to MBS except that it uses an initialisation procedure that
speeds up the algorithm. In their study, the authors found
that amongst several suggested approaches, a combination
of heuristics gave the overall best performance when tested
on a large set of benchmark problems: The application of
MBS’ followed by a variable neighbourhood search (VNS)
proved an effective combination. Alvim et al. [1] also sug-
gested the use of a hybrid heuristic that incorporates many
different techniques. Their approach is probably the most
complex one, but also produces the best results of all re-
viewed approaches, including our work (see table 2). How-
ever, their algorithm is rather difficult to implement and
relies crucially upon numerous parameters that need to be
decided upon prior to execution. This brief review repre-
sents only a fraction of different approaches studied, but,
interestingly, hybrid approaches seem the most promising:
The results of one heuristic are used as starting point for
another. The same holds true for evolutionary algorithms
where the use of heuristics in addition to the GA seems
commonplace. These approaches are reviewed next.

GAs maintain a population of potential solutions upon
which selection, crossover and mutation may act. In order
to represent solutions to the problem, an appropriate en-
coding needs to be defined. The most intuitive encoding
for the BPP is a simple permutation of integers. The solu-
tion may subsequently be constructed from the encoding by
scanning the permutation from one end to another, fitting
items into each bin while possible before starting a new bin.
This ensures that all the solutions are legal, and also allows
the use of well established crossover and mutation operators
that work for any permutation based encoding (such as the
travelling salesman problem). However, as was pointed out

by Falkenauer [4], this approach has a very high level of re-
dundancy. In fact, it is clear that any permutation of the
set of items in one bin will encode an identical solution. For
example, if a combination of 5 items fit into one bin, there
are 5!=120 different ways to encode the same solution, and
multiplying such numbers across all the bins quickly leads
to enormous redundancies. Falkenauer consequently sug-
gested the idea of group encoding, whereby only the group
membership of an item matters and not its order within the
group [4]. This will overcome the aforementioned redun-
dancy. However, a complicated crossover operation needs to
be used to ensure that the offspring are complete and do not
contain any duplicate items: Duplicates need to be deleted
and missing items have to be re-inserted using a problem
specific heuristic. The algorithm suggested by Falkenauer
further implemented a concept based on the dominance cri-
terion due to Silvano and Paolo [14].

The group based encoding approach has also been used by
Lima and Yakawa [10], who suggested a different approach
to crossover that makes use of MBS’ and a first-fit heuristic.
The crossover operator transmits some of the parental seg-
ments in their entirety to the offspring with the remaining
items being added to the offspring using the aforementioned
heuristics. Explicit care is taken to ensure that no grouping
exceeds the bin’s capacity. The authors compare their GA to
two non-evolutionary methods and conclude that their GA
has superior performance in terms of the solution’s accuracy.
Another hybrid GA, due to Kao and Lin [8], uses a sim-
ulated annealing procedure to enhance the performance of
the underlying GA. The design of this algorithm is driven by
the stochastic nature of both GAs and simulated annealing
which is thought to overcome the shortcomings of determin-
istic approaches such as FFD or BFD. There are numerous
further evolutionary approaches that have not been consid-
ered here as they are either tailored to specific instances
of the BPP, or designed for variants of the one-dimensonal
BPP.

3. BIOLOGICAL BACKGROUND
Various approaches to the BPP, such as the group en-

coding due to Falkenauer, have demonstrated how the BPP
may be solved in a modular fashion. A bin focused view
of the problem allows solutions to be composed of individ-
ual groups, each of which may be considered an independent
unit. The following review of some selected aspects of molec-
ular genetics will show how such modularity is apparent in
natural systems, and how such systems may provide fruitful
inspiration for the design of evolutionary algorithms for the
BPP.

The information processing architecture of cells proceeds
by transcribing regions of double-stranded DNA, known as
genes, to single-stranded RNA. The RNA is then translated
into a chain of amino acids using a mapping known as the
genetic code. However, unlike prokaryotic genes, most eu-
karyotic genes are composed of numerous segments: Some
of these segments (exons) contribute towards a gene’s pro-
tein product, while other segments (introns) do not. The
intermediate step of splicing introns is known as RNA pro-
cessing. The expression of exons and introns is regulated
by several factors (e.g., cell type) and post-transcriptional
processes such as alternative splicing may alter the path-
way of expression. In some cases, non-coding sections may
also contain regulatory sequences that directly affect sur-

1366

rounding segments or serve as buffers for crossover to occur.
There are many different processes that make use of the
modular structure of genes to produce a number of proteins
far exceeding the number of genes in higher organisms (e.g.,
alternative splicing and RNA editing). Recent advances in
molecular genetics have made it clear that the modular or-
ganisation of genes is highly important for the evolution of
complexity. In fact, most of a gene’s exons are associated
with independent protein domains allowing natural systems
to generate complexity in a piecewise fashion. One of the
processes allowing the evolution of genes of increasing com-
plexity is exon shuffling (see [9]), which will be described
next.

Exon shuffling refers to the mechanism of exons being re-
combined by means of crossover to yield novel protein prod-
ucts, possibly of advanced functionality. If individual ex-
ons are independent units, then there is an increased like-
lihood that a combination of such units will yield a func-
tional or near functional protein product. Introns may serve
as buffers between exons: Introns occupy far larger regions
of a gene, thus minimising the probability of crossover di-
viding an exon. Processes such as alternative splicing may
be utilised to overcome temporary negative selection pres-
sure [12]: Exons that are being integrated into an already
functional gene may be expressed alternatively. The gene’s
original functionality is preserved while a small number of
transcripts express the newly acquired exon. Non-functional
transcripts are eventually discarded by processes such as
non-mediated decay. This relief of negative selection pres-
sure allows the accumulation of neutral mutations and the
increased rate of change may eventually yield a fully func-
tional gene. It follows that not genes but their constituents,
exons and introns, are the “building blocks” of higher or-
ganisms.

4. AN EXON SHUFFLING APPROACH
The success of the algorithm presented in this paper is due

mainly to its crossover operator, the algorithm’s computa-
tionally most costly operation. This crossover makes use
of the group encoding whereby individuals are composed of
numerous segments. Each segment corresponds to a single
bin and may contain any number of items without restric-
tion. This modularisation of the search space allows the
assignment of a cost value to each segment by calculating
the associated remaining space. If the combined weight of
all the items within a bin exceeds that bin’s capacity (i.e.
there is a constraint violation), the excess is multiplied by an
appropriate penalty value and added to the cost. We found
empirically that a penalty value of 10 was suitable for the
test cases we considered, but other values may work better
for different sets of benchmark problems.

During crossover, all segments from both participating
parents are evaluated and sorted by their cost (waste of
space): Bins with the least cost (including bins violating
the capacity constraint) are listed first. A single offspring is
then created from a two phase crossover event that considers
all segments in order of their increasing cost. Segments of
equal cost are chosen at random. The first phase of crossover
adds all segments to the offspring that are mutually exclu-
sive from one another. In other words, only segments exclu-
sively containing items not yet represented by the offspring
are added. The second phase considers all remaining seg-
ments in the increasing order of their cost, and adds any

segment that contains at least one new item. All other items
within that segment already present in the offspring are re-
placed by the most similar items not yet in the offspring.
The similarity of items is measured according to their dif-
ference in weight. If there are no more items missing from
the offspring, the remaining duplicates are simply deleted
and the crossover event terminates. A simple scenario of
the crossover event, using a bin size of 100, is depicted in
figure 1: (a) Two parents are chosen from the population.
(b) Their combined segments are sorted in increasing order
of their cost. Phase 1: All mutually exclusive segments are
added to the offspring. (c) Phase 2: All segments contain-
ing at least one new item are added to the offspring. All
duplicates are replaced with the closest possible item that
is still missing.

The crossover operator ensures that not only does the off-
spring inherit the most tightly packed bins from both par-
ents, but also that the bins with the least amount of free
space are preserved the most. Although the segments are
considered as independent units, there is an interrelationship
between the segments because any individual must contain
all variables of the problem’s instance exactly once. This
is guaranteed by the replacement procedure, which is also
loosely inspired by known properties of the genetic code.
Natural systems evolved such that similar amino acids, the
building blocks of proteins, are encoded by similar segments
of RNA (codons). Mutations to a segment of RNA are there-
fore likely to result in a similar amino acid, minimising the
resulting phenotypic change. We therefore replace an item
with the most similar available one and thus guarantee that
even modified segments retain their original composition to
the maximum degree possible. The penalty term applied to
infeasible bin arrangements ensures that those bins are less
likely to be considered first during crossover. This will tend
to purge all infeasible bins over time if the penalty term is
chosen appropriately. The need for an explicit repair pro-
cedure is thus avoided. The fitness of the offspring follows
directly from the crossover event and is simply the combined
amount of free space over all the bins.

The crossover operator we are proposing here is clearly
greedy in the sense that it always considers the seemingly
best (most tightly packed) bins first. This approach will con-
sequently be susceptible to entrapment in local optima, par-
ticularly in cases where the optimal solutions contain bins
with moderate amounts of free space. In order to counteract
this, noise can be added to the cost of each bin such that
the ordering of segments is only approximate. The amount
of noise is measured as a percentage of the bin’s capacity
and is made part of the individual’s encoding: A binary se-
quence is used whose integer value determines the percent-
age of noise added to the segment’s true cost. The control
sequence is limited to 4 bits, allowing a range of 0-15% to
be expressed, which is subsequently shifted to encode noise
values in the range [5, 20]. Experiments with a fixed level of
noise indicated this to be the best range, while attempts to
evolve noise in the full range [0,100] failed to produce any
noteworthy improvements.

5. EXPERIMENTAL SETUP
The new algorithm proposed here was tested on a suite of

benchmark problems due to A. Scholl and R. Klein which is

1367

20 15 2 8 32

33 64

99

20 20 60

87 11

10 10 15 17 31

23 44

23

3

1

0

2

17

33

20 32 10

33 64

99

20 11 60

87

10 15 17

23 44 20

1

9

3

13

38

58

13

2 8 15 3144

Parent 1 Parent 2

Total space: 79

Total space: 179

sp
ac

e

items items

sp
ac

e

(a)

2 8 10 10 11 15 15 17 20 23 31 32 33 44 64 87 99

20 15 2 8 32

33 64

99

20 20 60

87 11

10 10 15 17 31

23 44

23

3

1

0

2

17

33

20 32 10

33 64

99

20 11 60

87

10 15 17

23 44 20

1

9

3

13

38

58

13

2 8 15 3144

2 8 10 10 11 15 15 17 20 23 31 32 33 44 64 87

2 8 10 10 11 15 15 17 20 23 31 32 33 44 64 87

2 8 10 10 15 15 17 20 23 31 32 33 44 64

2 8 10 10 15 15 17 20 23 31 32 44

2 8 10 10 15 15 17 20 23 31 32 44

2 8 10 10 15 15 17 20 23 31 32 44

2 8 10 10 15 15 17 20 23 31 32 44

2 8 10 10 15 15 17 31 32

2 8 15 32

2 8 15 32

2 8 15 32

2 8 15 32

2 8 15 32

Crossover phase 1:
Mutually exclusive exons

Remaining items not in offspring

ad
d

ad
ap

tiv
e

no
is

e

2 8 15 32

(b)

20 15 2 8 32

33 64

23

3

99

20 11 60

87

1

9

13

2 8 15 32

Crossover phase 2:
Remaining items

2 8 15 32

2 8 15 32

2 8 15 32

2 8 15 32

15 2 8 32

Offspring:

99

20 20 60

87 11

10 10 15 17 31

43

1

0

2

17

33 64

23 44 20

3

13

15 2 8 32

Remainder

Total space: 79

delete duplicate (20)

(c)

Figure 1: Two-phase exon-shuffling crossover: (a)
parent selection, (b) sorting, (c) combination. Refer
to main text for details.

available online1. This suite is made up of three sets of prob-
lem instances, with the third set being the most difficult. It
contains 10 instances, each of which consists of 200 items
with weights in the range [20000, 35000] and bins of capac-
ity 100,000. We will focus exclusively here on this set as it
is deemed the most challenging. Our algorithm is executed
50 times on each instance, with a maximum limit of 50,000
function evaluations. We record the number of times each
instance has been solved optimally and how many function
evaluations on average are required to do so. As a measure
of accuracy, the average number of bins is given alongside an
indication of how many bins, on average, are overfilled. As it
is presently implemented, the algorithm may return invalid
solutions which contain overfilled bins. A trivial extension
to the algorithm may be used to repair such encodings by
removing items from overfilled bins and placing them into
new ones using a first fit or similar heuristic. However, in
order to demonstrate the algorithm’s ability to purge infea-
sible sub-solutions, we do not add such a repair procedure
at this stage.

The GA used for all the experiments is a standard steady-
state GA with a population of size 150. Parents are selected
at random and the offspring is placed into the population
depending on a binary tournament with a randomly cho-
sen individual. The previously discussed crossover opera-
tor is applied with a probability of 0.8. In the event that
crossover is not applied, a randomly chosen parent is repro-
duced asexually (i.e. cloned). With equal probability, the
mutation operator either swaps two items which are in dif-
ferent bins or places one item from one bin into another. The
mutation operator’s overall probability is set to 1/m where
m is the current number of segments in an individual. The
control sequence is mutated by flipping a bit with probabil-
ity 1/p where p is the length of the control sequence (4 bits
in this case). These parameters have been established sys-
tematically, although by no means exhaustively, by a series
of experiments.

6. RESULTS AND ANALYSIS
The results from all the experiments are summarized in

table 1. It shows that the algorithm has successfully found
the global optimum in 8 of the 10 problem instances. In 5
cases the optimum was found in all trials, while in 3 cases
the optimum was found in over 90% of trials. There are
two cases, hard2 and hard3, where the global optimum has
not been found at all. However, all the final solutions for
these two cases are exactly a single bin away from the glob-
ally optimal solution. The same holds true for the other
instances which have not been solved with 100% reliability
– the unsuccessful trials were all at most one bin away from
the global optimum. Interestingly, there is only a single
trial in which an invalid solution was returned (for hard5),
highlighting the algorithm’s ability to purge infeasible sub-
solutions.

The algorithm’s overall behaviour is further examined by
looking at its convergence over time. This is done by fo-
cussing on the population’s best individual at each gener-
ation. There are three factors to consider: Fitness (bin
slack), number of bins, and number of constraint violations.
We select three representative instances for this analysis,
one of which has been solved 100% (hard0), one which has

1http://www.wiwi.uni-jena.de/Entscheidung/binpp/.

1368

Instance Opt % Avg FE Min FE Max FE Accuracy Avg over

hard0 56 100 7177.38 2488 17186 56 0
hard1 57 100 5826.58 2384 15996 57 0
hard2 56 0 - - - 57 0
hard3 55 0 - - - 56 0
hard4 57 98 13474.10 6362 35809 57.02 0
hard5 56 92 15361.15 6316 44610 56.06 0.04
hard6 57 100 5501.98 1924 10143 57 0
hard7 55 100 7899.92 2275 22461 55 0
hard8 57 100 5265.58 1830 21475 57 0
hard9 56 98 13931.55 5079 30045 56.02 0

Table 1: Summary of the experimental results: Each instance is listed by its name and optimal solution
(Opt). The third column (%) indicates the percentage of solved trials, complemented by the average number
of function evaluations required (Avg FE). In addition, the minimum and maximum number of function
evaluations required are shown (Min FE, Max FE). The last two columns show the overall accuracy of the
algorithm (Accuracy), and the average number of overfilled bins in the final solution (Avg over).

never been solved (hard2), and one that has been solved
but not all the time (hard5). The graphs are presented
in figure 2. They indicate that the algorithm quickly con-
verges towards the right number of bins, although several
of them are initially overfilled. In fact, the number of over-
filled bins roughly peaks when the optimal number of bins
is first found. The best individual’s fitness also seems to
stagnate around that point. The subsequent change is then
very gradual, reducing the number of overfilled bins with-
out affecting the actual number of bins. The overall change
in fitness is fractional compared to the initial change and
hardly visible in the graphs. Although there is a penalty
factor of 10 being applied to infeasible bin arrangements,
the penalty only applies at the level of the bin and hence
may not make a significant contribution to the overall fitness
of an individual.

Naturally, any new algorithm, however good, needs to be
compared against existing algorithms. A comparison of dif-
ferent approaches for this particular set of benchmark prob-
lems is shown in table 2. It shows that our new biologically
inspired exon shuffling GA ranks highly in terms of suc-
cess rate. In fact, only the approach due to Alvim et al.
[1] performs better. However, this comparison simply com-
pares the number of instances successfully solved without
any regard to running time or computational complexity.
It is therefore impossible to conclude on the performance
of the algorithm presented here in regard to the previous
approaches from the literature. However, the table clearly
highlights the difficulty of solving the chosen set of bench-
mark problems and more than half of the approaches con-
sidered fail to solve any of the instances at all. The notable
exception is HI BP, which is superior to our exon shuffling
GA in terms of success rate. A proper comparison of the
run-time properties will need to be established in the near
future to reach a conclusive verdict on the competitiveness
of these two approaches. Nevertheless, HI BP requires sev-
eral pre-processing steps and undergoes multiple phases ex-
ploiting several mathematical properties of the BPP. The
algorithm presented here, on the other hand, is very sim-
ple to implement and could be applicable to other problems
that exhibit similar structural properties.

Approach Reference Solved

MBS [6] in [5] 0
MBS’ [5] 0
Perturbation MBS’ [5] 0
Sampling MBS’ [5] 0
FFD [13] in [5] 0
BFD [13] in [5] 0
WFD [13] in [5] 0
B2F [13] in [5] 0
FFD-B2F [13] in [5] 0
Relaxed MBS’ [5] 2
VNS [5] 2
Perturbation MBS’ & VNS [5] 2
Genetic Algorithm [10] 3
BISON [13] in [10] 3
Dual Tabu [13] in [5] 3
Exon Shuffling GA This paper 8
HI BP [1] 10

Table 2: A comparison of several approaches in
terms of reliability on the same set of 10 bench-
mark instances: For each approach, the number of
instances solved is shown.

7. CONCLUSION
The genetic algorithm (GA) presented in this paper has

been applied successfully to a benchmark suite of hard bin
packing problems (BPPs). This GA uses a biologically in-
spired group based encoding to achieve an appropriate mod-
ularisation of the search space. This allows the assignment
of cost values to individual sub-solutions. The crossover
event is based loosely upon the theory of exon shuffling, and
combines parental segments in a greedy fashion to produce
a single offspring. A control sequence is used to introduce
noise during the crossover event to prevent stagnation at lo-
cal optima and to increase the population’s diversity. The
resulting algorithm exhibits a very high success rate at find-
ing optimal solutions, solving 8 out of 10 problem instances.
Even for the two unsolved instances solutions to within a
single bin of the optimal solution are found. This success
rate is superior to most other approaches in the literature.

1369

0 20 40 60 80 100 120 140 160 180

200000

300000

400000

500000

600000

0 20 40 60 80 100 120 140 160 180

56

57

58

59

60

0 20 40 60 80 100 120 140 160 180

0

1

2

3

4

5

(a) (b) (c)

0 100 200 300 400 500

200000

300000

400000

500000

600000

0 100 200 300 400 500

57

58

59

60

61

0 100 200 300 400 500

0

1

2

3

4

(d) (e) (f)

0 100 200 300 400 500
100000

200000

300000

400000

500000

600000

0 100 200 300 400 500

56

57

58

59

60

61

0 100 200 300 400 500

0

1

2

3

4

5

(g) (h) (i)

Figure 2: Graphs showing the algorithm’s convergence for three selected problems: hard0 (a,b,c), hard2
(d,e,f) and hard5 (g,h,i). The first graph in each row depicts the best fitness over time as measured by the
space available across all bins. The second graph shows the number of bins of the population’s best solution
over time. The third graph shows the number of overfilled bins in the best solution over time.

Moreover, unlike previous evolutionary approaches, the sug-
gested algorithm does not use any additional heuristics and
is therefore very simple to implement. Also, the number of
variables to be considered prior the algorithm’s execution is
relatively small compared to other approaches in the litera-
ture.

The results presented in this paper are encouraging, but
further testing is required to fully identify the algorithm’s
strengths and weaknesses. Further testing will address the
remaining two benchmark suites due to A. Scholl and R.
Klein containing 720 and 480 instances respectively. In ad-
dition, the algorithm’s behaviour needs to be analysed more
carefully to determine why it fails to find the global opti-
mum in some cases but not in others. A control sequence
is used to add noise during the greedy crossover event, but
further (adaptive) elements may be required to achieve a
greater success rate across a wider selection of bin packing
problems. These, and further potential refinements, form

the basis of ongoing investigations, upon which we hope to
report in the future.

8. ACKNOWLEDGMENTS
This work was supported by a Paul and Yuanbi Ramsay

Scholarship.

9. REFERENCES
[1] A. C. F. Alvim, C. C. Ribeiro, F. Glover, and D. J.

Aloise. A hybrid improvment heuristic for the
one-dimensional bin packing problem. Journal of
Heuristics, 10:205–229, 2004.

[2] E. G. Coffman, M. R. Garey, and D. S. Johnson. An
application of bin-packing to multimachine scheduling.
Journal of Computing, 7:1–17, 1978.

1370

[3] J. M. Daida, S. P. Yalcin, P. M. Litvak, G. A.
Eickhoff, and J. A. Polit. Of metaphors and
darwinism: Deconstructing genetic programming’s
chimera. In P. J. Angeline, Z. Michalewicz,
M. Schoenauer, X. Yao, and A. Zalzala, editors,
Proceedings of the Congress on Evolutionary
Computation, volume 1, pages 453–462, 1999.

[4] E. Falkenauer. A hybrid grouping genetic algorithm
for bin packing. Journal of Heuristics, 2:5–30, 1996.

[5] K. Fleszar and K. S. Hindi. New heuristics for
one-dimensional bin-packing. Computers & operations
research, 29:821–839, 2002.

[6] J. N. D. Gupta and J. C. Ho. A new heuristic
algorithms of the one-dimensional bin-packing
problem. Production planning & control,
10(6):598–603, 1999.

[7] J. H. Holland. Adaptation in Natural and Artifical
Systems. University of Michigan Press, Ann Arbor,
MI, 1975.

[8] C.-Y. Kao and F.-T. Lin. A stochastic approach for
the one-dimensional bin-packing problems. In
Systems, Man and Cybernetics, 1992, volume 2, pages
1545–1551, 1992.

[9] J. A. Kolkman and W. P. C. Stemmer. Directed
evolution of proteins by exon shuffling. Nature
Biotechnology, 19:423–428, 2001.

[10] H. Lima and T. Yakawa. A new design of genetic
algorithm for bin packing. In Evolutionary
Computation, 2003. CEC ’03. The 2003 Congress on
Evolutionary Computation, volume 2, pages
1044–1049, 2003.

[11] M. Mitchell. An Introduction to Genetic Algorithms.
MIT Press, 1996.

[12] B. Modrek and C. J. Lee. Alternative splicing in the
human, mouse and rat genomes is associated with an
increased frequency of exon creation and/or loss.
Nature Genetics, 34(2):177–180, 2003.

[13] A. Scholl, R. Klein, and C. Juergens. Bison: A fast
hybrid procedure for exactly solving the
one-dimensional bin packing problem. Computers &
Operations Research, 24(7):627–645, 1997.

[14] M. Silvano and T. Paolo. Knapsack Problems,
Algorithms and Computer Implementations, chapter
Bin-packing problem, pages 221–245. John Wiley and
Sons Ltd., England, 1990.

1371

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

