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ABSTRACT
We propose a protocol for a local search and a genetic algo-
rithm for the distributed traveling salesman problem (TSP).
In the distributed TSP, information regarding the cost func-
tion such as traveling costs between cities and cities to be
visited are separately possessed by distributed parties and
both are kept private each other. We propose a protocol that
securely solves the distributed TSP by means of a combina-
tion of genetic algorithms and a cryptographic technique,
called the secure multiparty computation. The computa-
tion time required for the privacy preserving optimization is
practical at some level even when the city-size is more than
a thousand.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Algorithms

Keywords
Privacy, TSP, GA, Privacy-Preserving Optimization

1. INTRODUCTION
The delivery route decision, the production scheduling

and the procurement planning are fundamental problems,
which are optimized in order to improve the correspondence
speed to the customer or to shorten the cycle time in the
supply chain management (SCM) [1]. When the SCM is de-
veloped between two or more enterprises, information that
relates to the stock, the production schedule, the demand
forecast is required to be shared between enterprises.

EDI (Electronic Data Interchange), the standardized data
exchange format over the network, is often used to support
the convenient ant prompt information sharing. Information
sharing enhances the availability of SCM largely. However,
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in exchange for the benefit, there also exists a risk of leaking
confidential information and the shared information must be
managed under prudent control[2]. In the process of the de-
livery route decision or the production schedule decision,
the combinatorial optimization plays a key role. In this pa-
per, we focus on the distributed combinatorial optimization
problem where information that relates to the cost function
to be optimized is private and distributed among two or
more parties. For intuitive understanding of the combinato-
rial optimization including private information, we show a
simple scenario of the Traveling Salesman Problem (TSP).

Scenario: Let there be two shipping companies EA, EB

and a client EC . EC tries to request the delivery of freights
to point F1, ..., Fn to one of the two shipping companies. In
order to choose a shipping company that offers a better solu-
tion, client EC tries to compare delivery costs for optimized
routes offered by EA and EB. However, EC cannot reveal
the delivery points to both EA and EB before contracting.
Delivery costs between any two cities are different in EA

and EB. Also, the costs are confidential each other and
they cannot be revealed to other party. How can EC make
decision without revealing their confidential information?

For the optimization of the TSP, delivery costs between
any two points and delivery points are required to be shared.
However, as shown in this scenario, if they are confidential,
this problem cannot be solved straightforwardly. To resolve
such a conflicted situation, technologies called Secure Multi-
party Computation (SMC) [3] are utilized. In SMC, parties
with private information mask them with some cryptogra-
phy or random values in the form that necessary compu-
tations can be processed. Then, masked information is ex-
changed and necessary computations are processed. Results
are shared by canceling masks after the computation.

A few studies have been made on Privacy-Preserving Op-
timization (PPO). A depth first search for distributed con-
straint optimization problems has been proposed in [4]. A
protocol for solving the generalized Vickley auction based on
dynamic programming has also been proposed in [5]. These
algorithms are designed based on deterministic algorithms
that guarantee to reach the optimum in polynomial time.

Although meta-heuristics such as the Local Search (LS)
or the Genetic Algorithm (GA) do not guarantee to be com-
pleted in polynomial time, they are considered to be appro-
priate for a general solver of PPO with respect to following
reasons. Primarily, meta-heuristics are generally designed
to be independent to problems, given some neighborhood
structure of the problem. PPO algorithms described pre-
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viously solve some specific problem efficiently, however, a
new protocol must be invented to solve other new problem.
Meta-heuristics can be applied to various optimization prob-
lems with some modification of the neighborhood operator
for the problem. Therefore, meta-heuristics are expected to
work as a general PPO engine.

Secondly, the information regarding objective functions
that meta-heuristics require is often limited to the rank.
For example, most of GAs generally choose individuals to be
survived based on the rank. The rank is computed from a
series of paired comparisons such as whether f(x1) > f(x2),
where x1, x2 are individuals and f(·) is an objective func-
tion. Therefore, even when cost values f(x1), f(x2) are not
provided, the optimization process thereof works properly.
This design simplicity is considered to be suitable for privacy
preservation.

Considering above, we propose a LS and a GA that se-
curely solves the distributed combinatorial optimization prob-
lem whose objective function is represented as the scalar
product. As shown later, the distributed combinatorial op-
timization problem with this representation includes many
of typical ones, such as the TSP, the Quadratic Assignment
Problem (QAP), the Knapsack Problem and so on.

The rest of this paper is organized as follows. Section 2
defines the distributed TSP and its privacy. Section 3 pro-
poses a novel protocol for comparing two scalar products
privately and the security proof of the protocol is shown. In
section 4, a protocol for solving distributed TSP is designed
based on a scalar product comparison protocol. Section 5
shows experimental results. Section 6 presents our conclud-
ing remarks.

2. PROBLEM DEFINITION

2.1 Scalar Product Representation for
Combinatorial Optimization

We show a few example of combinatorial optimization
whose objective functions are represented as the scalar prod-
uct.

TSP: Let G = (V, E) be an undirected graph and F be
the set of all Hamiltonian cycles (referred to as tours) in G.
Let the number of city be |V | = n. For each edge ei,j ∈ E, a
cost connecting node i and node j, yi,j , is prescribed. Then
the TSP is to find a tour such that the sum of the cost of
included edges is as small as possible. The permutation rep-
resentation or the edge representation are used to describe
tours in general. However, for the convenience of the proto-
col description, we introduce indicator variables.

Let x = (x1,2, ..., x1,n, x2,3, ..., x2,n, ..., xn−1,n) be a tour
vector where xi,j are indicator variables such that

xi,j =

(
1 ei,j is included in the tour,

0 otherwise.

The cost can be written as a vector y = (y1,2, ..., yn−1,n)
similarly. The number of elements of tour vector x and cost
vector y are d = n(n − 1)/2. For simplicity, we describe the
i-th element of x and y as xi and yi, respectively. With this
representation, the objective function of TSP is written in
the form of the scalar product f(x) =

Pd
i=1 xiyi = x · y.

Knapsack problem: The objective function and its con-
straint of the knapsack problem are also represented as the
scalar product. Let there be d items. For each item, a value

V = {1,3,4,5,7}
,
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1 2

3
4

5

67

Server

6263 8

5

3 6

58 3

333 3

97333 7

1 65432 7

1

6

5

4

3

2

7
Cost vector y

0000 0

0

0 0

00 1

011 0

01000 1

1 65432 7

1

6

5

4

3

2

7
Tour vector x

private each other

1 2

3
4

5

67

Figure 1: Distributed TSP

yi and a weight zi are prescribed. Then the knapsack prob-
lem is to find a combination of items such that the sum of
the value of chosen items is as large as possible while the
sum of the weight does not exceed the prescribed volume of
the knapsack, v. Let x = (x1, ..., xn) be a combination of
item where xi is an indicator variable such that

xi,j =

(
1 i-th item is included in the combination,

0 otherwise.

Then, the objective function is written as a scalar product
f(x) =

Pd
i=1 xiyi = x · y. The constraint is also written as

a scalar product,
Pd

i=1 xizi = x · z ≤ v.
The objective function of the QAP and the VRP are also

represented with the scalar product similarly. In latter sec-
tion, we focus only on the TSP, however, please notice that
following discussions are generally the case with problems
described with the scalar product representation.

2.2 Distributed TSP
The distributed TSP and its privacy are defined. When

V ′ ⊆ V is arbitrarily chosen such that V ′ includes n′ ≤ n
cities, a TSP that routes n′ cities is defined. If either y or
V ′ is not private, there exists no privacy concern because
conventional methods solve the problem by gathering y and
V ′ in one party. If both of y and V ′ are private, it cannot be
solved straightforwardly. We introduce a data partitioning
model which defines how y and V ′ are distributed.

The simplest distributed TSP, which is referred to as (1, 1)-
TSP, is described(figure 1). In (1, 1)-TSP, one party holds
a private V ′ (referred to as searcher) and the other party
holds a private y (referred to as server) separately. In this
problem, the searcher searches for a local optimal tour that
routes all cities in V ′ while the server works to help the com-
putation of the searcher without revealing y. The scenario
in introduction corresponds to (1, 1)-TSP where two com-
panies privately possess different cost vectors and the client
tries to compare the evaluated cost of optimal routes.

When y is partitioned among k parties like (y1, ..., yk),P
i yi = y, this model is referred to as (k, 1)-TSP. When V ′

is partitioned among k parties like (V ′
1 , ..., V ′

k), V ′ = ∪k
i=1V

′
i ),

this model is referred to as (1, k)-TSP. Apparently, (1, 1) −
TSP is a special case of them. Our protocol mainly focuses
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on (1, 1)−TSP to avoid complicated formulations. Although
it is generalized to (k, 1)-TSP with a simple extension, (1, k)-
TSP is not considered in this paper.

To define the privacy in the distributed TSP, we introduce
a Trusted Third Party (TTP). A TTP is an entity that
facilitates interactions between two parties who both trust
the TTP. If there exists a TTP, the searcher can send V ′

and the server can send y to the TTP. Then the TTP can
find a local optimum by some conventional method. With
a TTP, privacy preserving optimization of (1, 1) − TSP is
ideally stated as follows:

Statement 1. Let there be a server and a searcher. The
server holds a private cost vector y and the searcher holds
a private city set V ′ ⊆ V . In the end of the protocol, the
searcher learns a local optimal tour x∗ but nothing else. The
server learns nothing.

This idea works perfectly, however, building a TTP is often
quite difficult mainly in terms of cost. Needless to say, a
protocol that works only between a searcher and a server in
the standard network environment (e.g. TCP/IP network)
is preferred. Our target in this paper is to propose a protocol
for the PPO that works without using any TTP.

2.3 Basic Idea
Many of GAs choose individuals to be survived by the

rank of individual in fitness. If the objective function is
represented as the scalar product, the secure rank computa-
tion is equivalent to a problem called private Scalar Product
Comparison (SPC). Let x1, x2 be a solution and y be a cost
vector. Although the cost vector is normally real-valued, it
is can be treated as an integer vector without loss of general-
ity. Here, let the domain of cost vector be Zd

m(= [0, ..., m]d).
Let inequations x2 · y − x1 · y > 0 be I+ , x2 · y − x1 · y = 0
be I0 and x2 · y − x1 · y < 0 be I−. Then, the private SPC
is formally stated as follows:

Statement 2. (private SPC) Let there be two parties, a
searcher and a server. The searcher has two private vectors
x1, x2 and the server has a private vector y. In the end
of the protocol, Both share one of a correct inequation in
{I−, I0, I+} and learn nothing else.

Assuming there exists a protocol to solve the private SPC,
a LS and a GA that preserve searcher’s and server’s privacy
are designed. Let a neighborhood of a tour x be N(x). Then,
the algorithm of LS is described as follows:

[Local search]

1. (generation) x ∈r N(x0), N(x0)← N(x0) \ {x}
2. (selection) If x · y < x0 · y, then x0 ← x

3. (termination) If N(x0) = ∅ or satisfies some terminate con-
ditions, x∗ ← x0 and output x∗. Else, go to step 1.

where ∈r denotes an uniform random selection of an ele-
ment from a set. Suppose that the searcher posesses private
x, x0 and the searcher posesses private y. Nevertheless, step
1 and 3 can be executed solely by the searcher for any V ′ and
N(·). In other words, there is no privacy concern in these
steps. Step 2 requires a coordination between the server and
the searcher. Apparently, this step can be privately executed
if there exists a protocol to solve the private SPC.

Next, we discuss the privacy preservation in GAs in the
same distributed setting. GAs are conceptually described as
follows:

[Genetic algorithm]

1. (selection for reproduction) Select a pair of tour P as par-
ents from population X

2. (crossover) Generate a set of child C by crossover using P

3. (selection for survival) Update X using P ∪ C

4. (termination) If some terminate conditions satisfied, output
x∗. Else, go to step 1.

If selection for reproduction is random, the searcher can
solely execute step 1 and 4 as well as LS. Step 2 is exe-
cuted solely if the crossovers is designed independent on the
cost function such as uniform and one-point crossover. Ob-
viously, at step 3, the searcher needs coordination of the
server. Well-known methods of selection for survival, such
as Steady-State(replace the worst individual in the popu-
lation for a child), CHC(replace all individual for the best
Npop individual from the union of the population and the
children), Elitist Recombination(replace parents for the best
and the second best individuals in the union of the parents
and the children), CCM(replace a parent for the best in-
dividual in the union of the parents and the children) are
designed based on the rank of individuals1. So, the step 3,
selection for survival, is also privately executed if there exist
a protocol for the private SPC.

Considering above, we propose a protocol for solving the
private SPC to design a GA and a LS with privacy preser-
vation in next section.

3. SCALAR PRODUCT COMPARISON

3.1 Homomorphic Cryptosystem
To solve private SPC, we utilize a public-key cryptosystem

with homomorphic property. A public-key cryptosystem is
a triple (Gen, Enc, Dec) of probabilistic polynomial-time al-
gorithm for key-generation, encryption and decryption, re-
spectively. The key generation algorithm generates a valid
pair (sk, pk) of private and public keys. Please notice that
private key and public key are used only for decryption and
encryption. M denotes the plaintext space. The encryp-
tion of a plain text t ∈ M is denoted as Encpk(t; r), where
r is a random integer. The decryption of a cipher text is
denoted as t = Decsk (c). Given a valid key pair (pk, sk),
Decsk (Encpk (t; r)) = t for any t and r is required.

A public key cryptosystem with additive homomorphic
property satisfies the following identities:

Enc(t1; r1) · Enc(t2; r2) = Enc(t1 + t2; r1 + r2),

Enc(t1; r1)
t2 = Enc(t1t2; r1),

where t1, t2 ∈ M are plain texts and r1, r2 are random num-
bers. These properties enable the addition of any two en-
crypted integers and the multiplication of a encrypted inte-
ger by a integer. A public-key cryptosystem is semantically
secure when a probabilistic polynomial-time adversary can-
not distinguish between random encryptions of two elements
chosen by herself. Paillier cryptosystem is known as one of
semantically secure cryptosystems with homomorphic prop-
erty[7]. We use Paillier cryptosystem in experiments.

1See [12], [13] and [6] for the detail of these selection meth-
ods
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y =(y1,...,yd)
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and private key sk 

2. encrypt private vector

4. decrypt scalar product
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private vector
x =(x1,...,xd)

3. compute scalar product

private each other

Figure 2: Private Scalar Product

3.2 Private Scalar Product
Based on this homomorphic public-key cryptosystem,

Goethals et. al have proposed a protocol to compute scalar
products of two distributed private vectors without reveal-
ing them each other[8]. This protocol is used as a building
block of a protocol for the private SPC. For preserving the
generality of the protocol, parties are described as Alice and
Bob in this section. The private scalar product is stated as
follows:

Statement 3. (Private scalar product) Let there be two
parties, Alice and Bob. Alice has a private vector x ∈ Zd

µ

and Bob also has a private vector y ∈ Zd
µ. In the end of the

protocol, Both Alice and Bob learn the scalar product x · y
and nothing else.

Let Zp be the message space for some large p. Set μ =

�p
p/d�. Then, the protocol is described as follows:

[Private scalar product protocol]

• Private Input of Alice : y ∈ Zd
µ

• Private Input of Bob : x ∈ Zd
µ

• Output of Alice and Bob : x · y
1. Alice: Generate a public and private key pair (pk, sk).

2. Alice For i = 1, ..., d, compute ci = Encpk (yi) and send
them to Bob.

3. Bob: Compute w ← Qd
i=1 cxi

i and send w to Alice.

4. Alice: Compute Dec(w) = x · y and send x · y to Bob.

At step 2, Alice sends the ciphertext of her private vector
(c1, ..., cd) to Bob. Because Bob does not possess the private
key, he cannot learn Alice’s vector from c. However, at step
3, he can compute the encrypted scalar product based on
homomorphic property without knowing Alice’s x as follows:

w =
dY

i=1

cyi
i =

dY
i=1

Encpk (xi)
yi

= Encpk(x1y1) · · · Encpk (xdyd)

= Encpk(
dX

i=1

xiyi) = Encpk (x · y).

Then, at step 4, Alice correctly obtains x · y by decrypting
w using her private key. Assuming Alice and Bob behave
semi-honestly, it is proved that scalar product protocol is

Alice
private vector
y =(y1,...,yd)

1. generate public key pk

and private key sk public key pk

2. encrypt private vector

4. decrypt w and judge inequation  

Bob
private vector
x1 =(x1,1,...,x1,d)
x2 =(x2,1,...,x2,d)

3. compute w

private each other

or

or

Figure 3: Private Scalar Product Comparison

secure[8]. Semi-honest party is one who follows the pro-
tocol properly with the exception that it keeps a record
of all its intermediate values. From accumulated records,
semi-honest parties try to learn other party’s privacy[11].
In following sections, we assume all party behave as semi-
honestly.

3.3 Private Scalar Product Comparison
A protocol for the private SPC appears to be easily de-

signed using private scalar product protocol. Instead of com-
puting scalar product at step 3, the difference of two scalar
products x2 · y − x1 · y can be computed as follows:

dY
i=1

c
x2,i

i ·
dY

i=1

c
−x1,i

i = Encpk (x2 · y − x1 · y). (1)

By sending this to Alice, Alice learns x1 · y − x2 · y. Al-
though eq. 1 appears to successfully and privately compare
two scalar products, it is not secure based on the statement
2 because not only the comparison result but also the value
of x1 · y − x2 · y is known to Alice. In case of the TSP, tour
vectors are x1, x2 ∈ {0, 1}d. Therefore, so Bob’s x1 and x2

are easily enumerated from the value of x1 · y − x2 · y by
Alice. In order to block Alice’s enumeration, Bob can mul-
tiply some positive random value rB to the difference of two
scalar products,

dY
i=1

c
rBx2,i

i ·
dY

i=1

c
−rBx1,i

i = Encpk (rB(x2 · y − x1 · y)).

Unfortunately, this is not also secure. Because rB is one of a
divider of rB(x1 · y− x2 · y), rB is easily enumerated. Then,
Alice can also enumerate the candidate of Bob’s x1 and x2

for each rB in polynomial time.
As shown, multiplying a random number does not con-

tribute to hinder Alice’s guess. Instead of the evaluation of
x1 ·y−x2 ·y or rB(x1 ·y−x2 ·y), we propose a protocol that
evaluates rx2 · y − r′x1 · y + r′′ with three random integers
r, r′, r′′ as follows:

dY
i=1

c
rx2,i

i ·
dY

i=1

c
−r′x1,i

i · Encpk (r′′) = Encpk (rx2 · y − r′x1 · y + r′′).

The protocol is shown in figure 4. First, we explain why
this protocol can correctly compare two scalar products. For
simplicity, let v1 = x1 · y, v2 = x2 · y and M = dm2. Then
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[Private scalar product comparison]

• Private Input of Alice : y ∈ Zd
m

• Private Input of Bob : x1, x2 ∈ Zd
m

• Output of Alice and Bob : An inequation I ∈ {I−, I0, I+}
1. Alice: Generate a private and public key pair(pk, sk) and

send pk to Bob.

2. Alice: For i = 1, ..., d, Alice computes ci = Encpk (yi). Send
them to Bob.

3. Bob: Compute w ←Qd
i=1 c

rx2,i

i ·Qd
i=1 c

−r′x1,i

i ·Encpk(r′′)
and send w to Alice where r, r′ and r′′ are random integers
satisfying

M8 < r < r′ < (1 +
1

M
)r < ρ, 0 ≤ r′′ < M.

4. Alice: Compute Decsk (w) = rx2 · y − r′x1 · y + r′′. Then,

• send x2 · y − x1 · y > 0 if Decsk (w) > M7

• send x2 · y − x1 · y = 0 if −M8 < Decsk(w) < M

• send x2 · y − x1 · y < 0 if Decsk (w) < −M8

Figure 4: Private scalar product comparison

v1, v2 ∈ ZM because x1, x2, y ∈ Zd
m. Regarding rv2 − r′v1 +

r′′ learned by Alice at step 4, following properties are shown.

Lemma 1. Let v1, v2 be integers in ZM . Let r, r′, r′′ be inte-
gers satisfying LM < r, r < r′ < (1 + 1

M
)r, 0 ≤ r′′ < M and

S = v2r − v1r′ + r′′. (2)

Assume that L > M . Then, for all v1, v2 ∈ [0, ...,M ],

v2 − v1 > 0 ⇐⇒ S > L (3)

v2 − v1 = 0 ⇐⇒ −LM ≤ S < M (4)

v2 − v1 < 0 ⇐⇒ S < −LM. (5)

The Proof is shown in appendix. This lemma shows that
the sign of x2 · y − x1 · y is known from the value of S =
rv2 − r′v1 + r′′ when r, r′, r′′ satisfies conditions shown in
this lemma. Intuitively, the sign of v2 − v1 is learned from
S = rv2 − r′v1 + r′′ because r and r′ are very large, similar
but slight different positive integers. Please notice that r′ is
bounded by ρ = �p/2M� in the protocol such that S exists
in [�−p/2	, ..., �p/2�] . This bound is required not to change
the sign of S after the computation of modulo p used in the
encryption/decryption.

From the value S = v2r − v1r
′ + r′′ received from Bob,

Alice may imply the value of two scalar products. Next
lemma shows why Alice cannot imply anything.

Lemma 2. Assume that L > M7. Given S, there exists some
triple (r, r′, r′′) that satisfies LM < r, r < r′ < (1 + 1

M
)r, 0 ≤

r′′ < M and S = v2r − v1r′ + r′′ for any v1 and v2.

The proof is also shown in appendix. According to this
lemma, for any Alice’s guess about v1 and v2, there ex-
ist some triple (r, r′, r′′) that satisfies S = v2r − v1r

′ + r′′.
Therefore, Alice cannot guess any information from S. Us-
ing these two lemmas, a theorem is shown for this protocol.

Theorem 1. Assuming Alice and Bob behave semi-honestly,
private SPC protocol is secure in statement 2.

The sketch of proof is shown in appendix. Using this pro-
tocol for private SPC, we design a LS and a GA for solving
TSP with preserving privacy in next section.

[Privacy Preserving Local Search based on Neighbor-
hood N(x)]

• Private Input of Server : cost vector y ∈ Zd
m

• Private Input of Searcher : city subset V ′ ⊂ V

• Private Output of Searcher : local optimal tour x∗

1. Server: Generate a pair of a private and a public key
(pk, sk) and send pk to searcher.

2. Server: For i = 1, ..., d, compute ci = Encpk (yi) and send
them to searcher.

3. Searcher: Generate a random initial tour x0 using V ′

4. Searcher: x ∈r N(x0), N(x0)← N(x0) \ {x}
5. Searcher:

(a) Compute SPC(x0, x, c) with probability 0.5. Other-
wise, compute SPC(x, x0, c).

(b) If the output of private SPC corresponds to x ·y−x0 ·
y < 0, then x0 ← x

6. Searcher: If N(x0) = ∅ or satisfies some terminate condi-
tion, x∗ ← x0 and output x∗. Else, go to step 4.

Figure 5: Privacy Preserving Local Search

4. PRIVACY PRESERVING GENETIC
ALGORITHM FOR TSP

4.1 Privacy Preserving Local Search
Using the private SPC protocol, Privacy Preserving Local

Search (PPLS) is designed as shown in figure 5. Alice and
Bob in the private SPC protocol correspond to the server
and the searcher in PPLS, respectively.

Step 1 and 2 is the same with the private SPC protocol.
At Step 3, an initial tour is generated randomly. At Step 4,
a new tour is chosen as a candidate. Then at step 5, two cost
values are compared by the protocol. SPC(x1, x2, c) repre-
sents the execution of the private SPC protocol by taking
y as server’s input and x1, x2 as searcher’s input. The rea-
son why the order of the inputs of SPC(·, ·, c) is randomly
changed is explained in next section in detail. Please no-
tice that various neighborhood operators such as k-opt are
available here because the generation of neighborhood can
be executed independent to the server.

4.2 Privacy Preserving Genetic Algorithm
As discussed in section 2.3, a Privacy Preserving GA(PPGA)

can be designed. [14] has reported that GAs using Edge As-
sembly Crossover (EAX) perform extremely well as against
other solvers. [6] has reported that the combination of EAX
and CCM improves the performance. Although various com-
bination of crossovers and selection methods are available
in PPGAs, we focus on a GA that adopts EAX[10] as a
crossover and CCM as a selection method[6]. A GA using
CCM is described as follows:

[CCM]

1. Generate Npop solutions Xt = {x(1), ..., x(Npop)} randomly.
t = 0.

2. Shuffle the index of population Xt.

3. For each i = 1, ...,Npop, do

(a) Choose x(i) and x(i + 1) as parents. Then, generate
Nchild children Xc = {xc(1), ..., xc(Nchild)} by EAX

1376



[Privacy Preserving Genetic Algorithm (EAX/CCM)]
(The inputs, outputs, step 1 and 2 are omitted because they are
similar to PPLS)

3. Searcher: Generate Npop initial tours X =
{x(1), ..., x(Npop)} using V ′ randomly. t = 0.

4. Searcher: Shuffle the index of population Xt

5. Searcher: For i = 1, ...,Npop, do

(a) Choose x(i), x(i + 1) as parents. Then, generate Off-
spring Xc = {xc(1), ..., xc(Nchild)} by EAX where let
x(Npop) be x(1) .

i. For j = 1, ...,Nchild, do

A. Compute SPC(x(i), x(j)c, c) with
probability 0.5. Otherwise compute
SPC(x(j)c, x(i), c).

B. If output of private SPC corresponds to xc
j ·

y − xi · y > 0, xi ← xc
j

6. Searcher: If termination conditions are satisfied, output the
best tour x∗ in Xt. Else, t← t + 1 and jump to step 4.

Figure 6: Privacy Preserving Genetic Algorithm.

where let xNpop+1 be x0.

(b) Replace x(i) with the best tour in Xc ∪ {x(i)}.
4. If termination conditions are satisfied, output the best tour

x∗ in Xt. Else, t← t + 1 and jump to step 2.

Because our focus of this paper is not on a GA for TSPs
but on the privacy preservation technique for GAs, we do
not mention the detail of EAX. See [10] for detail. Based
on private SPC, a PPGA with EAX/CCM for TSP can be
instantly designed as shown in figure 6.

Because inputs, outputs, step 1 and 2 are the same with
PPLS, they are omitted here. At Step 3, the population is
initialized. Step 4 corresponds to step 2 in CCM.

In EAX (step 5(a)), sub tours are merged using a 2-opt-
like operator such that the cost of the generated individual
is as small as possible. The private SPC protocol is used
to perform this operation in privacy preserving manner in
EAX (not shown in figure 6). Private SPC protocol is also
iteratively utilized at step 5(a) i to find the best tour in
Xc

i ∪ {xi}, which corresponds to step 3 in CCM.

4.3 Security of PPLS/GA
We verify what is leaked from the execution of the proto-

col. From the execution of the protocol, the searcher learns
a sequence of comparison results such as x2 · y > x1 · y
and x2 · y < x1 · y. Although the value of cost vector y is
not leaked from this, partial orders of each cost between two
cities may be implied by the searcher. Therefore, the privacy
of the server is not perfectly protected with this protocol and
additional information is leaked.

Next, we explain what the server learns. Please recall
that the server cannot guess anything from the value of w
received as shown in lemma 2. Assume that outputs of pri-
vate SPC protocol are only I− or I+. Then, the server learns
only a random sequence of these two inequations because the
order of inputs of private SPC is shuffled randomly at step
5(a)-i-A. If inequation I0 is included in outputs of private
SPC, the server learns it because I0 is invariant to the order
of the input. Therefore, when I0 occurs, the server learns

the frequency that the two tours with the same tour lengths
are generated. This information is trivial and does not spoil
the security of the protocol much.

As shown, the server and the searcher learns more from
the execution of the protocol than described in statement
1. However, it is also shown that the server never learns
searcher’s private input V ′ and the searcher never learns
server’s private input y except for the order of each element.

4.4 Computational Analysis
Communication complexity: Communication between

the server and the searcher occurs at step 1, 2 and 5(a)-i. In
the distributed TSP, we can assume that the cost vector y
is not changed. Therefore, the communication at step 1 and
2 occurs only once. The communication complexity of step
5(a)-i(private SPC) is O(1). So, the communication com-
plexity is not time consuming in this protocol very much.

Computational complexity: The bottleneck is in the
exponentiation computed by the searcher (step 3 of private
SPC) and this is repeated every time a new tour is gener-
ated. With naive implementation, step 3 of private SPC
costs O(d)(= O(n2)). To reduce this computation, we ex-
ploit the fact that the number of changed edges by EAX is
much smaller than d. In most cases, EAX drops at most 50
edges and adds new 50 edges. Let x be a child generated by
EAX and xi and xi+1 be their parents. If 2k is the number
of changed edges, in vector rx−r′xi, k elements are changed
from r to 0, the other k elements are changed from 0 to −r′

and the rest of elements are all 0. Because the number of
changing edge are 2k, the time complexity is saved as O(k)
by computing only in changing edges2.

The computational complexity of the merge operation in
EAX is also O(n2) with the naive implementation. This is
saved as O(n) if the searcher learns a list of k-nearest cities
for each city. We can assume that these lists are given to
the searcher because these lists are included in what the
searcher learns as shown in the previous section.

5. EXPERIMENTS

5.1 Setting
The scalability of the PPLS/PPGA is studied by com-

putational experiments. Five problem instances are chosen
from TSPLIB where city size ranges from 195 to 1173. In
the distributed TSP, the searcher can arbitrarily choose a
subset of cities V ′ as the input. In our experiments, V ′ is
set to V for all problems because the computation time be-
comes the largest when V = V ′. PPLS is terminated when
x0 reaches to a local optimum. PPGA is terminated when
the best cost in the population is not improved for twenty
successive generations.

As a homomorphic cryptosystem, Paillier cryptosystem[7]
with 512-bit and 1024-bit key is used . The server and
the searcher program are implemented by J2SE ver. 1.4.1.
Both programs are separately ran on Xeon2.8GHz(CPU),
1GB(RAM) Windows PCs on 100Mbps Ethernet.

In experiments, PPLS using 2-opt neighborhood and PPGA
using EAX/CCM are compared. PPLS is repeated for 50,
100, 300 times with changing initial tours (depicted as 50-
itr, 100-itr and 300-itr). In PPGA, the population size is set

2In 2-opt neighborhood, k is always two and the time com-
plexity is constant.
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Figure 7: Computation time of PPLS/PPGA, left : Time required for generation and comparison (512-bit
and 1024-bit key), center : Estimated time required for the completion of optimization (512-bit key), right :
Estimated time required for the completion of optimization (1024-bit key)

to Npop = 100 (each tour is optimized by PPLS using 2-opt)
and number of child is set to Nchild = 30.

Because both step 1 and 2 of PPLS/GA can be executed
preliminary before choosing city subset V ′, we measured
the execution time form step 3 to the termination of the
protocol in both PPLS and PPGA. In addition, to verify
the computation time per iteration, we measured searcher’s
computation time spent for the comparison of the cost of
two different tours (corresponds to step 5(a)-i in PPLS/GS,
step 3 and 4 in private SPC).

5.2 Results
Figure 7 (left) shows the computation time required for

comparison per one iteration. As shown, the computation
time of 2-opt is kept constant because the number of changed
edge is always four. In EAX, the time increases because the
number of changed edges slightly increases with respect to
the number of cities. Figure 7 (center and right) shows the
estimated time required for the optimization. With 512-bit
key, PPLS(1-itr) spent 95 (sec) and 139 (sec) to search for
local optimum of rat195 and rat575. EAX spent 9.8 (hour)
and 52 (hour) for rat195 and rat575. With 1024-bit key,
PPLS (1-itr) spent 42 (min) and 60 (min) and EAX spent
656 (hour) and 1837 (hour) for same problems.

Table 1 shows the error (=100× obtained best tour length
/ known best tour length) of PPLS/PPGA (average of 20
trials). Please notice that privacy preservation does not af-
fect the quality of the obtained solution at all because the
protocol does not change the behavior of LS/GA if the same
random seed is used. Apparently, the quality of obtained so-
lutions by PPGA is much better than those of PPLS.

If 10 % error is satisfactory, PPLS with 2-opt (1-itr) is rea-
sonable because the computation ends within a few minutes
for 512-bit key and a few hour for 1024-bit key. PPGA finds
extremely good tours, however, the computation time for
convergence is more than a day or a month, that is, parallel
computation is essential in this setting. Please recall that we
set V ′ = V for all problems. Even when the number of city
|V | is very large, the computation time is kept small if the
number of chosen city |V ′| is small because the computation
time is dependent on the number of chosen cities.

Although the computation time is not yet sufficiently small
in large-scale problem, it is confirmed that the protocol com-

PPLS(2-opt) PPGA(EAX)
1-itr. 50-itr. 100-itr. 300-itr.

rat195 13.3 9.16 8.73 8.65 0.0710
pcb442 16.4 8.88 8.88 8.88 0.0127
rat575 11.6 9.96 9.96 9.90 0.0391
rat783 12.2 10.8 10.8 10.3 0.0340
pcb1173 15.4 12.9 12.9 12.3 0.0280

Table 1: The error of tours obtained by PPLS (2-
opt) and PPGA (EAX/CCM).

pletes in practical time in privacy preserving setting when
number of cities are not very large. Nevertheless, the PPGA
protocol should be improved to be much more efficient.

6. CONCLUSION
We propose a protocol for the privacy preserving dis-

tributed combinatorial optimization using a LS and a GA
where the objective function is represented as the scalar
product. As an example of distributed combinatorial op-
timization problems, we focus on the distributed TSP and
design a privacy preserving LS that adopts 2-opt as neigh-
borhood and a privacy preserving GA that adopts EAX as
crossover and CCM as selection method based on a protocol
that solves private scalar product comparison. The future
work is to apply the PPGA to the distributed combinato-
rial optimization other than distributed TSP, such as the
distributed QAP, VRP and Knapsack problem.
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APPENDIX
A. PROOF OF LEMMA 1

Proof 1. We start from the sufficient condition of eq. 3.
S − r′′ = v2r − v1r′ > v2r − v1(1 +

1

M
)r

= (v2 − v1)r − r

M
v1.

From v2 − v1 > 0, S − r′′ is minimum for any r when v2 =
M, v1 = M−1 , hence S−r′′ > r

M
> L. It follows that v2−v1 >

0 =⇒ S > L. The necessary condition is obvious because L > M .

Next, we prove eq. 4. Because r′−r
r

< 1
M

, we obtain 0 <

r′ − r < r
M

< L. Then, from v1 = v2, v1 
= 0,

S − r′′ = v1(r − r′) ⇐⇒ v1(r − r′) ≤ S < v1(r − r′) + M

⇐⇒ −LM ≤ S < M.

At last, we prove eq.5. For any v1 and v2, S is maximum when
r′ = r + 1. So from v2 − v1 < 0,

S − r′′ = v2r − v1r′ < v2r − v1(r + 1)

= −(v1 − v2)r − v1 ≤ −r − 1 < −LM.

Next, we prove necessary condition. From S < −LM and
r′′ > 0,

S − r′′ = v2r − v1r′ < −LM

⇐⇒ r(v2 − v1) < −LM + v1 < 0⇐⇒ v2 − v1 < 0

Then eq. 5 is proved.

B. PROOF OF LEMMA 2
Proof 2. First, we prove the case of S > L. From lemma 1, we

obtain 1 ≤ v1 < v2. For all v1, v2, there exists some triple (r, r′r′′)
satisfying the linear Diophantine equation S = v2r − v1r′ + r′′
if and only if S − r′′ is divisible by gcd(v1, v2). Because 1 ≤
v1 < v2 ≤ M and 0 ≤ r′′ < M , there exists some positive
integer β such that S − r′′ = βS′ by choosing an appropriate
r′′. Because v1 and v2 is written as v2 = βX2, v1 = βX1, the
Diophantine equation is equivalent to S′ = X2r − X1r′, where
1 ≤ X1 < X2 < M , S′ > L/M .

Let one solution of Diophantine equation 1 = X2r −X1r′ be
r = r0, r′ = r′0. From them, solutions of S′ = X2r −X1r′ are

r = S′r0 + X1t, r′ = S′r′0 + X2t, (t = 0,±1,±2...)

From r′ < r < (1 + 1
M

)r, we obtain r′−r
r

< 1
M

. We determine

the condition of L that satisfies r′−r
r

< 1
M

. f(t) = r′−r
r

and

f ′(t) = df(t)
dt

is represented as a function of t as follows.

f(t) =
S′(r′0 − r0) + (X2 −X1)t

S′r0 + X1t
(6)

f ′(t) =
S′{(X2 −X1)r0 − (r′0 − r0)X1}

(S′r0 + X1t)2
(7)

When t0 = −(X2−X1)
S′(r′

0−r0)
, then f(t0) = 0. With this t0, we deter-

mine the condition that a positive integer t exists that satisfies
r′−r

r
< 1

M
.

By the nature of the linear fractional function, the form of
function f(t) is classifiable into two cases: (X2 −X1)r0 − (r′0 −
r0)X1 > 0 or (X2 −X1)r0 − (r′0 − r0)X1 < 0.

We start from the case of (X2 − X1)r0 − (r′0 − r0)X1 > 0.
In this case, f(t) is monotonically increasing and convex upward

around t = t0. Consequently, if f ′(t0) < 1
M

, there exists at least

one integer t that satisfies f(t) < 1
M

within the range [t0, t0 +1).
By substituting t0 into eq. 7 and rearranging it, we obtain

f ′(t0) =
(X2 −X1)2

S′{(X2 −X1)r0 − (r′0 − r0)X1}
<

M2

L/M
=

M3

L
.

Then, it is proved that there exists an integer t satisfying
r′−r

r
< 1

M
if L > M4.

Next we prove the second case, (X2 −X1)r0 − (r′0 − r0)X1 <
0. This function is monotonically decreasing and convex upward
around t = t0. Consequently, there exists at least one integer t
within the range of (t0 − 1, t0] if f ′(t0) > − 1

M
.

By substituting t0 =
−(X2−X1)
S′(r′

0−r0)
into eq. 7 and rearranging it

similarly, we obtain

f ′(t0) =
(X2 −X1)2

S′{(X2 −X1)r0 − (r′0 − r0)X1}
> − M2

L/M
= −M

L

Therefore, it is also proved that there exists at least one integer

t satisfying r′−r
r

< 1
M

if L > M4.
The explanation above shows that this lemma is proved when

S > L. Proofs with the case S < −LM are shown similarly;
the proof shows that there exists at least one integer t satisfying
r′−r

r
< 1

M
if L > M7. When −LM ≤ S < M , the proof is

readily apparent.

C. PROOF OF THEOREM 1
The proof is based on a formal definition on secure multiparty

computation[11]. Here, we show a brief sketch of the proof of
Theorem 1.

A computation is secure if the view (all received information) of
each party during the execution of the protocol can be simulated
by some polynomial machine only from the input and the output
of the party.

In private SPC protocol, server’s private input is the the secret
key sk and the output is the sign of v2 − v1. Server’s view is w
received at step 3 and decsk (w) = rv2 − r′v1 + r′′. The simu-
lator for server generates some ṽ1, ṽ2 with satisfying the sign of
v2 − v1 and generates r̃, r̃′, r̃′′ with satisfying conditions shown
in lemma 2 randomly. Then the server computes the simulated
view decsk (w̃) = r̃ṽ2 − r̃′ṽ1 + r̃′′.

The distinguisher checks whether there exists some (r, r′, r′′)
that satisfies decsk (w̃) = rv2 − r′v1 + r′′. If it does not ex-
ist, the distinguisher knows the difference between decsk (w) and
decsk (w̃). However, lemma 2 shows that there exists some triple
(r, r′, r′′) that satisfies eq. 2 for any v1, v2. Therefore, the dis-
tinguisher cannot distinguish the difference between server’s view
from protocol execution and the simulation view.

Simulation for a node is omitted here because server’s privacy is
apparently preserved because of the cryptosystem is semantically
secure. Thereby, the theorem is proved.
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