
Let’s Get Ready to Rumble Redux: Crossover Versus
Mutation Head to Head on Exponentially Scaled Problems

Kumara Sastry
Illinois Genetic Algorithms Laboratory (IlliGAL)
Industrial and Enterprise Systems Engineering

Materials Computation Center
University of Illinois at Urbana-Champaign

Urbana IL 61801

ksastry@uiuc.edu

David E. Goldberg
Illinois Genetic Algorithms Laboratory (IlliGAL)
Industrial and Enterprise Systems Engineering

University of Illinois at Urbana-Champaign
Urbana IL 61801

deg@uiuc.edu

ABSTRACT
This paper analyzes the relative advantages between
crossover and mutation on a class of deterministic and
stochastic additively separable problems with substructures
of non-uniform salience. This study assumes that the re-
combination and mutation operators have the knowledge of
the building blocks (BBs) and effectively exchange or search
among competing BBs. Facetwise models of convergence
time and population sizing have been used to determine the
scalability of each algorithm. The analysis shows that for de-
terministic exponentially-scaled additively separable, prob-
lems, the BB-wise mutation is more efficient than crossover
yielding a speedup of o(� log �), where � is the problem size.
For the noisy exponentially-scaled problems, the outcome
depends on whether scaling on noise is dominant. When
scaling dominates, mutation is more efficient than crossover
yielding a speedup of o(� log �). On the other hand, when
noise dominates, crossover is more efficient than mutation
yielding a speedup of o(�).

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; I.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Genetic algorithms, scaling, exponential scaling, salience,
crossover, mutation, population sizing, convergence time,
scalability analysis, domino convergence, drift time, build-
ing blocks, noisy fitness functions, efficiency enhancement,
speedup

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

1. INTRODUCTION
Great debate between crossover and mutation has con-

sumed much ink and many trees over the years. When mu-
tation works it is lightening quick and uses small or non-
extent populations. Crossover when it works, seems to be
able to tackle more complex problems, but getting the popu-
lation size and other parameters set is a challenge. Recently,
Sastry and Goldberg [33] presented an unbiased compari-
son between the scalability of crossover and mutation on a
class of uniformly-scaled additively-separable problems with
and without additive Gaussian noise. In this paper we ex-
tend the analysis to an important class of non-uniformly
scaled additively-separable problems with and without ad-
ditive Gaussian noise.

Assuming that both the recombination and mutation op-
erators possess linkage (or neighborhood) knowledge, we
pit them against each other for solving exponentially-scaled
boundedly-difficult additively-separable problems with and
without the presence of additive exogenous noise. We use
a recombination operator that exchanges building blocks
(BBs) without disrupting them and a mutation operator
that performs local search among competing building-block
neighborhood. The motivation for this study also comes
from recent local-search literature, where authors have high-
lighted the importance of using a good neighborhood oper-
ator [6, 16, 29, 41]. However, a systematic method of de-
signing a good neighborhood operator for a class of search
problems is still an open question. We investigate whether
using a neighborhood operator that searches among com-
peting BBs of a problem would be advantageous and if so
under what circumstances.

This paper is organized as follows. The next section gives
a brief review of related literature. We provide an outline of
the crossover-based and mutation-based genetic algorithms
(GAs) in Section 3. Facetwise models are developed to de-
termine the scalability of the crossover and the BB-wise
mutation-based GAs for deterministic fitness functions in
Section 4 and for noisy fitness functions in Section 5. Fi-
nally, we provide summary and conclusions.

2. LITERATURE REVIEW
Over the last few decades many researchers have empiri-

cally and theoretically studied where genetic algorithms ex-
cel. An exhaustive review is beyond the scope of this paper,
and therefore we present a brief review of related studies.

1380

Several authors have analyzed the scalability of a muta-
tion based hillclimber and compared it to scalability of dif-
ferent forms of genetic algorithms [2, 7, 9, 19, 20, 26, 27,
28, 38]. Goldberg [11] gave a facetwise analysis of decid-
ing between a single run with a large population GA and
multiple runs with several small population GAs, under the
constraint of fixed computational cost. He showed that for
uniformly-scaled problems a single run of large population
GA was advantageous, while for exponentially-scaled prob-
lems small population GAs with multiple restarts were bet-
ter. Srivastava and Goldberg [37, 36] empirically verified
and analytically enhanced the time-continuation theory put
forth by Goldberg [11]. Recently, Cantú-Paz and Goldberg
[5] investigated scenarios under which multiple runs of a GA
are better than a single GA run. For an exhaustive review
of studies on the advantages/disadvantages of multiple pop-
ulations both under serial and parallel GAs over a single
large-population GA, the reader is referred elsewhere [4, 36,
23, 8] and to the references therein.

While many of the related studies [11, 37, 5] assumed
fixed genetic operators, with no knowledge of building-block
structure, the authors [33] assumed that the recombina-
tion and mutation operators have linkage (or neighborhood)
knowledge. We showed that for uniformly-scaled, additively
separable search problems with deterministic fitness func-
tions, building-block-wise mutation provided a speed-up of
o(k log m))—where k is the building block size, and m is
the number of building blocks—over recombination. On the
other hand, for uniformly-scaled, additively separable search
problems with additive Gaussian noise, building-block-wise
recombination provided a speedup of o(m

√
k/ log m). Based

on this study methods for inducing neighborhoods for a scal-
able mutation operator have been proposed that demon-
strated polynomial (usually subquadratic) scalability on
uniformly-scaled additively separable problems [32, 22]. Re-
cently, Sastry et al. [35] considered fluctuating crosstalk or
non-linear interactions of building blocks [12] and showed
that cross talk behaved like exogenous noise and recombi-
nation provided speed-up over mutation until the strength
of the crosstalk far exceeds the underlying fitness variance.

In this study, we follow our earlier approach [33] of assum-
ing that both recombination and mutation operators have
knowledge of building blocks of the underlying search prob-
lem and extending the analysis to a class of non-uniformly-
scaled additively decomposable problems with and without
additive Gaussian noise.

3. PRELIMINARIES
The objective of this paper is to predict the relative

computational costs of a crossover and an ideal-mutation
based algorithm for exponentially-scaled additively sepa-
rable problems with and without additive Gaussian noise.
Before developing models for estimating the computational
costs, we briefly describe the algorithms and the assump-
tions used in the paper.

3.1 Selectorecombinative Genetic Algorithms
We consider a generationwise selectorecombinative GA

with non-overlapping populations of fixed size [18, 10]. We
apply crossover with a probability of 1.0 and do not use any
mutation. We assume binary strings of fixed length as the
chromosomes. To ease the analytical burden, the selection
mechanism assumed throughout the analysis is binary tour-

nament selection [14]. However, the results can be extended
to other tournament sizes and other selection methods in a
straightforward manner. The recombination method used in
the analysis is a uniform building-block-wise crossover [39].
In uniform BB-wise crossover, two parents are randomly se-
lected from the mating pool and their building blocks in each
partition are exchanged with a probability of 0.5. Therefore,
none of the building blocks are disrupted during a recom-
bination event. The offspring created through crossover en-
tirely replace the parental individuals.

3.2 Building-Block-Wise Mutation Algorithm
(BBMA)

In this paper we consider an enumerative BB-wise muta-
tion operator, in which we start with a random individual
and evaluate all possible schemas in a given partition. That
is, for a building-block of size k, we evaluate all 2k individu-
als. The best out of 2k individuals is chosen as a candidate
for mutating BBs of other partitions. In other words, the
BBs in different partitions are mutated in a sequential man-
ner. For a problem with m BBs of size k each, the BBMA
can be described as follows:

1. Start with a random individual and evaluate it.

2. Consider the first non-mutated BB. Here the BB order
is chosen arbitrarily from left-to-right, however, differ-
ent schemes can be—or may required to be—chosen to
decide the order of BBs.

3. Create 2k − 1 unique individuals with all possible
schemata in the chosen BB partition. Note that the
schemata in other partitions are the same as the orig-
inal individual (from step 2).

4. Evaluate all 2k − 1 individuals and retain the best for
mutation of BBs in other partitions.

5. Repeat steps 2–4 till BBs of all the partitions have
been mutated.

We use an enumerative BB-wise mutation for simplifying the
analysis and a greedy BB-wise method can improve the per-
formance of the mutation-based algorithm. A straightfor-
ward Markov process analysis—along the lines of [27, 28]—
of a greedy BB-wise mutation algorithm indeed shows that
the greedy method is on an average better than the enu-
merative one. However, the analysis also shows that differ-
ences between the greedy and enumerative BB-wise muta-
tion approaches are little, especially for moderate-to-large
problems. Moreover, the computational costs of an enu-
merative BB-wise mutation bounds the costs of a greedy
BB-wise mutation.

3.3 Test Problem
Our approach in testing cGA and other search methods

is to consider problems from a design envelope perspective
and to follow a Cartesian decomposition of different facets
of problem difficulty [12]. Here we consider two facets of
problem difficulty: scaling and noise. As a representative
of badly-scaled noisy problem, we consider the noisy BinInt
problem [30, 40], where the objective is to maximize an un-
signed binary-integer function with or without the presence

1381

of additive Gaussian noise of specified variance, σ2
N ,

f(x) =

�∑
j=1

2j−1xj + N (
0, σ2

N

)
, (1)

where � is the problem size.

4. CROSSOVER VS. MUTATION: DETER-
MINISTIC FITNESS FUNCTIONS

In this section we analyze the relative computational costs
of using a selectorecombinative GA or a BB-wise mutation
algorithm for successfully solving exponentially-scaled de-
terministic problems of bounded difficulty. The objective of
the analysis is to answer whether a population-based selec-
torecombinative GA is computationally advantageous over
a BB-wise-mutation based algorithm. If one algorithm is
better than the other, we are also interested in estimating
the savings in computational time. Note that unlike ear-
lier studies, we assume that the building-block structure is
known to both the crossover and mutation operators.

We begin our analysis with the scalability of selectorecom-
binative genetic algorithms followed by the scalability of the
BB-wise mutation algorithm.

4.1 Scalability of Selectorecombinative GA
Two key factors for predicting the scalability and estimat-

ing the computational costs of a genetic algorithm are the
convergence time and population sizing. Therefore, in the
following subsections we present facetwise models of conver-
gence time and population sizing.

4.1.1 Convergence-Time Model
When dealing with non-uniformly scaled problems, GAs

pay attention to the most salient building block first, a con-
dition sometimes called domino convergence [30]. Thierens,
Goldberg, & Pereira [40] used the domino-convergence pa-
rameterization and proposed a convergence time model for
selectorecombinative GAs for the BinInt problem:

tc = cc · �, (2)

where, cc =
√

3 log 2/I , and I is the selection intensity [3].
For binary tournament selection, I = 1/

√
π.

4.1.2 Population-Sizing Model
Goldberg, Deb, & Clark [13] proposed population-sizing

models for correctly deciding between competing BBs. They
incorporated noise arising from other partitions into their
model. However, they assumed that if wrong BBs were
chosen in the first generation, the GAs would be unable
to recover from the error. Harik, Cantú-Paz, Goldberg, and
Miller [17] refined the above model by incorporating cumu-
lative effects of decision making over time rather than in
first generation only. Harik et al. [17] modeled the decision
making between competing BBs as a gambler’s ruin prob-
lem which showed that the population sizing for ensuring
correct decision making and building-block supply scales as
o(σBB

d
2k√m log m).

However, for exponentially-scaled problems genetic drift
plays a critical, and often dominating, role in the perfor-
mance of selectorecombinative GAs and the population size
has to be sized to circumvent drift [40, 12]. From the genetic
drift models [21, 15, 1], we know that the relation between

10 20 50 100 200 400 800
10

1

10
2

10
3

Problem size, l

P
op

ul
at

io
n

si
ze

, n

Experiment
Theory: Θ(l ln(l))

Figure 1: Empirical verification of the population-
sizing required by selectorecombinative GA for the
BinInt problem. The results follow the theoretical
predictions of Equation 4. The empirical results
are averaged over 30 independent bisection runs.
The results show that the population size scales as
o(� log �).

drift time—defined as the number of generations required to
converge to a solution purely due to drift—as,

td = cd · n (3)

where td is the drift time, cd is a constant which is usually
equal to 1.4, and n is the population size. Since we want
to avoid the genetic drift and would would like to have a
probabilistic safety factor of correctly converging on at least
�−1 out of � BBs. Therefore, we should size the population
such that td > tc log �:

n =
cc

cd
� log �. (4)

Therefore, for exponentially-scaled problems the population
size scales as o(� log �). The above population-sizing model
is empirically verified in Figure 1. The minimum population
size was determined by a bisection method [31] where the so-
lution quality for each bisection iteration was averaged over
50 independent GA runs and the population size reported
is average of 30 such bisection runs. The results show that
the experiments follow theoretical prediction.

Using equations 4 and 2, we can now predict the scal-
ability, or the number of function evaluations required for
successful convergence, of GAs as follows:

nfe,GA = n · tc = cfe�
2 log �, (5)

where cfe = c2
c/cd. The above theoretical model for the scal-

ability of the selectorecombinative GA is empirically verified
in Figure 2. The results are averaged over 900 independent
runs and follow theoretical prediction.

4.2 Scalability of BB-wise Mutation
Algorithm

Since the initial point is evaluated once and after that for
each of the m BBs, 2k−1 individuals are evaluated, the total

1382

10 20 50 100 200 400 800
10

2

10
3

10
4

10
5

10
6

Problem size, l

N
o.

 o
f f

un
ct

io
n

ev
al

ua
tio

ns
, n

fe

Experiment

Theory: Θ(l2 ln(l))

Figure 2: Empirical verification of the scalability of
the selectorecombinative GA for the BinInt prob-
lem. The results follow the theoretical predictions of
Equation 5. The empirical results are averaged over
1500 independent runs. The results show that the
number of function evaluations scales as o(�2 log �).

number of function evaluations required for the BBMA is

nfe,BBMA =
(
2k − 1

)
m + 1. (6)

For the BinInt problem, k = 1 and m = �.
The results from the above subsections (Equations 5 and

6) indicate that while the scalability of a selectorecombina-
tive GA is o

(
�2 log �

)
, the scalability of the BBMA is o (�).

By searching among building-block neighborhoods, the se-
lectomutative algorithm scales-up significantly better than a
mutation operator with no linkage information and provides
a savings of o(� log �) evaluations over a selectorecombinative
GA. This savings is expected and has been observed by ear-
lier studies [11, 37, 36] comes because the exponential scal-
ing induces sequential processing of the building blocks as
opposed to parallel processing in uniformly-scaled problems.

The speed-up—which is defined as the ratio of number of
function evaluations required by a GA to that required by
BBMA—obtained by using a BB-wise mutation algorithm
over a selectorecombinative GA is given by

η =
nfe,GA

nfe,BBMA
= cfe� log � = o (� log �) . (7)

The speed-up predicted by Equation 7 is verified with
empirical results in Figure 3. The results are averaged over
1500 independent GA runs. The results show that there is a
good agreement between the predicted and observed speed-
up. The results show that for deterministic additively sep-
arable problems with exponentially-scaled BBs, a BB-wise
mutation algorithm is about o(� log �) faster than a selec-
torecombinative GA.

5. CROSSOVER VS. MUTATION: NOISY
FITNESS FUNCTIONS

In the previous section, we observed that BB-wise muta-
tion scales-up better than a crossover on deterministic addi-
tively separable problems with exponentially-scaled building

10 20 50 100 200 400 800
10

1

10
2

10
3

10
4

Problem size, l

S
pe

ed
up

, Ψ
B

in
In

t

Experiment
Theory: Θ(l ln(l))

Figure 3: Empirical verification of the speed-up pre-
dicted for using BB-wise mutation over a selectore-
combinative GA by Equation 7 on the deterministic
exponentially-scaled problem. The empirical results
are averaged over 1500 independent runs. The re-
sults show that the speed-up obtained by BB-wise
mutation algorithm over a GA is o(� log �).

blocks. In this section we introduce another dimension of
problem difficulty in extra-BB noise [12] and analyze if the
BB-wise mutation maintains its edge over crossover. That
is, we analyze whether a selectorecombinative or a selecto-
mutative GA works better on additively separable problems
with exponentially-scaled building blocks and with additive
external Gaussian noise.

We follow the same approach outlined in the previous sec-
tion and consider the scalability of crossover and mutation.

5.1 Scalability of Selectorecombinative GAs
Again we use the convergence-time and population-sizing

models to determine the scalability of GAs under the pres-
ence of unbiased Gaussian noise for exponentially-scaled
problems. Here we set the exogenous noise variance in re-
lation to the initial deterministic fitness variance. That is
σ2

N = ρxσ2
f,max, where σ2

f,max ≈ 2�−1/
√

12 is the determin-
istic fitness variance of the initial population [40]. Therefore
σ2

N ≈ ρx2�−1/
√

12. In the presence of exogenous noise, there
are two regimes: (1) scaling-dominated regime, σ2

N � σ2
f ,

and (2) noise-dominated regime, σ2
N � σ2

f , and we present
models for both in the following paragraphs.

5.1.1 Convergence-Time Model
The convergence time for the scaling-dominated regime is

given by Equation 2. For the noise-dominated regime, we
use an approximate form of convergence-time model pro-
posed by Miller and Goldberg [25]:

tc = c′cσ
2
f + σ2

N ≈ c′cρx2�, (8)

where c′c = π/2I . A detailed derivation of the above equa-
tion and other approximations are given elsewhere [12, 31].

Therefore, the convergence time of selectorecombinative

1383

10 15 20 25 30
10

1

10
2

10
3

10
4

Problem size, l

C
on

ve
rg

en
ce

 ti
m

e,
 t c

Experiment
BinInt dominated
Noise dominated

Figure 4: Empirical verification of the convergence-
time models for the selectorecombinative GA for the
noisy BinInt problem with ρx = 10−5. The results fol-
low the theoretical predictions of Equation 9. The
empirical results are averaged over 1500 indepen-
dent runs.

GA for a noisy BinInt problem is given by

tc =

{
cc� σ2

N � σ2
f

c′cρx2� σ2
N � σ2

f
. (9)

The empirical validation of the above model is shown in
Figure 4 for ρx = 10−5. We have tried other values of ρx and
the results are qualitatively similar and are shown elsewhere
[34]. The results follow theoretical predictions and show that
regions where noise-dominated and scale-dominated model
apply.

5.1.2 Population-Sizing Model
The population size for the scaling-dominated regime is

given by Equation 4. For the noise-dominated regime, the
population size is given by the gambler’s ruin model [17]. An
approximate form of the gambler’s ruin population-sizing
model for noisy environments is given by

n = cn

σ2
f,max + σ2

N

dmin
, (10)

where cn =
√

pi, dmin is the minimum signal difference be-
tween the competing BBs [24, 12]. For the BinInt problem,
dmin = 1.

Therefore, the population sizing for the selectorecombina-
tive GA for a noisy BinInt problem is given by

n =

{ cc
cd

� log � σ2
N � σ2

f

cnρx2� σ2
N � σ2

f

. (11)

Figure 5 depicts the empirical validation of the above
population-sizing model for ρx = 10−5. The results for other
values of ρx are given elsewhere [34]. The results follow
theoretical predictions and show that regions where noise-
dominated and scale-dominated model apply.

Using equations 4 and 2, we can now predict the scalabil-
ity, or the number of function evaluations required for suc-
cessful convergence, of GAs for both noise-dominated and

10 15 20 25 30
25

50

100

200

400

800

1600

3200

6400

Problem size, l

P
op

ul
at

io
n

si
ze

, n

Experiment
BinInt dominated
Noise dominated

Figure 5: Empirical verification of the population-
sizing required by selectorecombinative GA for the
noisy BinInt problem with ρx = 10−5. The results fol-
low the theoretical predictions of Equation 11. The
empirical results are averaged over 30 independent
bisection runs.

scaling-dominated regimes, as follows:

nfe,GA =

{
cfe�

2 log � σ2
N � σ2

f

c′feρ
2
x22� σ2

N � σ2
f

. (12)

The empirical validation of the above model is shown in
Figure 6 for ρx = 10−5. We have tried other values of ρx

and the results are shown elsewhere [34]. The results follow
theoretical predictions and show that regions where noise-
dominated and scale-dominated model apply.

5.2 Scalability of BB-wise Mutation
Algorithm

Unlike the deterministic case where a BB was perturbed
and evaluated once, in the noise-dominated regime we can-
not rely on only a single evaluation. In other words, in the
presence of noise, an average of multiple samples of the fit-
ness should be used in deciding between competing building
blocks. The number of samples required for evaluating the
average fitness is given by [33]:

ns = 2cσ2
N , (13)

where ns is the number of independent fitness samples, and
c is the square of the ordinate of a one-sided standard Gaus-
sian deviate at a specified error probability α. Here we use
α = 1/m.

Since the initial point is evaluated ns times and after that
for each of the m BBs, 2k − 1 individuals are evaluated ns

times, the total number of function evaluations required for
the BBMA for noisy fitness functions is given by

nfe,BBMA = ns

[(
2k − 1

)
m + 1

]
,

= cfe,mρ2
x22��. (14)

where cfe,m = 2c/
√

12 is a constant.
The scalability of selectorecombinative GA is compared

to that of selectomutative GA for the noisy BinInt problem

1384

10 15 20 25 30
10

2

10
3

10
4

10
5

10
6

10
7

10
8

Problem size, l

fu

nc
tio

n
ev

al
ua

tio
ns

, n
fe

Experiment
BinInt dominated
Noise dominated

Figure 6: Empirical verification of the scalability of
the selectorecombinative GA for the noisy BinInt
problem with ρx = 10−5. The results follow the the-
oretical predictions of Equation 12. The empirical
results are averaged over 1500 independent runs.

with ρx = 10−5 in Figure 7. Comparisons for other val-
ues of ρx is shown elsewhere [34]. The figures show that
the empirical results follow theoretical predictions. The re-
sults from the above subsections (Equations 12 and 14) in-
dicate that under the presence of exogenous noise, a se-
lectorecombinative GA scales as o

(
�2 log �

)
in the scale-

dominated regime and o
(
ρ2

x22�
)

in the noise-dominated
regime. On the other hand, the BB-wise mutation scales
as o(�) in the scale-dominated regime and o

(
ρ2

x22��
)

in the
noise-dominated regime. Therefore, in the scale-dominated
regime, the BB-wise mutation is o(� log �) and in the noise-
dominated regime, a selectorecombinative GA is o(�) times
faster than the BB-wise mutation. By implicitly averaging
out the exogenous noise, crossover is able to overcome the
extra effort needed for the convergence and decision-making.
On the other hand the explicit averaging via multiple fitness
samples by the BB-wise mutation leads to an order of mag-
nitude increase in the number of function evaluations.

The speed-up—which is defined as the ratio of number of
function evaluations required by mutation to that required
by crossover—obtained by using a selectorecombinative over
selectomutative GA for the noisy BinInt problem is given by

ηNoise =
nfe,BBMA

nfe,GA
=

{ 1
cfe� log �

σ2
N � σ2

f

cfe,m�

c′
fe

σ2
N � σ2

f
. (15)

The speed-up predicted by Equation 15 is verified with em-
pirical results in Figure 8 for ρx = 10−5. The results for
other values of ρx are shown elsewhere [34]. The results
are averaged over 1500 independent runs. The results show
that there is a good agreement between the predicted and
observed speed-up. The results show that for stochastic,
exponentially-scaled additively-separable problems, the effi-
ciency of recombination and mutation depends on the dom-
inating regime. In scale-dominated regime, BB-wise mu-
tation algorithm is more efficient than crossover yielding a
speedup of o(� log �). On the other hand, in noise-dominated

10 15 20 25 30
10

1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

Problem size, l

fu

nc
tio

n
ev

al
ua

tio
ns

, n
fe

Crossover
Mutation

Figure 7: Comparison of scalability of selectorecom-
binative GA and selectomutative GA for the noisy
BinInt problem with ρx = 10−5. The results follow
theoretical predictions of Equations 12 and 14. The
empirical results are averaged over 1500 indepen-
dent runs.

regime, crossover is more efficient than mutation, yielding a
speedup of o(�).

6. SUMMARY & CONCLUSIONS
In this paper, we pitted crossover and mutation on a

class of non-uniformly scaled, additively decomposable prob-
lems with and without additive Gaussian noise. In this
study we assumed that both crossover and mutation have
the knowledge of the important building blocks required to
solve the problem. We considered ideal recombination and
mutation operators, where the recombination operators ex-
changes building blocks without disruption and the muta-
tion operators searches for the best building block in the
building-block neighborhood.

We compared the computational costs BB-wise mutation
algorithm with a selectorecombinative genetic algorithm for
both deterministic and stochastic additively separable prob-
lems. Our results show that the BB-wise mutation pro-
vides significant advantage over crossover for determinis-
tic problems with exponentially scaled problems yielding
a speedup of o(� log �), where � is the problem size. For
noisy, exponentially-scaled problems, the outcome is mixed
depending on whether noise is dominating or the scale. For
scale-dominated problems, mutation is more efficient than
crossover yielding a speedup of o(� log �). However, for the
noise-dominated region, crossover is more efficient than mu-
tation yielding a speedup of o(�).

This study advances earlier studies that considered the
relative advantages of crossover and mutation on uniformly-
scaled problems and problems with non-linear interactions
between building blocks and forms another building block in
developing a theory of time continuation. The models and
the results presented in this study can lead us to develop
adaptive time continuation operators that can automatically
identify the problem regime and choose the more efficient
combination of operators.

1385

10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Problem size, l

S
pe

ed
up

, Ψ
N

oi
sy

 B
in

In
t

Experiment
BinInt dominated
Noise dominated

Figure 8: Empirical verification of the speed-up pre-
dicted for using BB-wise mutation over a selectore-
combinative GA by Equation 15 for the BinInt prob-
lem with exogenous noise with ρx = 10−5. The em-
pirical results are averaged over 1500 independent
runs.

Acknowledgments
This work was also sponsored by the Air Force Office of
Scientific Research, Air Force Materiel Command, USAF,
under grant FA9550-06-1-0096, the National Science Foun-
dation under ITR grant DMR-03-25939 at the Materials
Computation Center. The U.S. Government is authorized to
reproduce and distribute reprints for government purposes
notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of
the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either ex-
pressed or implied, of the Air Force Office of Scientific Re-
search, the National Science Foundation, or the U.S. Gov-
ernment.

7. REFERENCES
[1] H. Asoh and H. Mühlenbein. On the mean

convergence time of evolutionary algorithms without
selection and mutation. Parallel Problem Solving from
Nature, 3:98–107, 1994.

[2] E. B. Baum, D. Boneh, and C. Garrett. Where genetic
algorithms excel? Evolutionary Computation,
9(1):93–124, 2001.

[3] M. G. Bulmer. The Mathematical Theory of
Quantitative Genetics. Oxford University Press,
Oxford, 1985.

[4] E. Cantú-Paz. Efficient and accurate parallel genetic
algorithms. Kluwer Academic Pub, Boston, MA, 2000.

[5] E. Cantú-Paz and D. E. Goldberg. Are multiple runs
of genetic algorithms better than one? Proceedings of
the Genetic and Evolutionary Computation
Conference, pages 801–812, 2003.

[6] B. W. Colletti and J. W. Barnes. Using group theory
to construct and characterize metaheuristic search
neighborhoods. In C. Rego and B. Alidaee, editors,

Adaptive Memory and Evolution: Tabu Search and
Scatter Search, pages 303–329. Kluwer Academic
Publishers, Boston, MA, 2004.

[7] S. Droste, T. Jansen, and I. Wegener. On the analysis
of the (1+1) evolutionary algorithm. Theoretical
Computer Science, 276:51–81, 2002.

[8] M. Fuchs. Large populations are not always the best
choice in genetic programming. Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 1033–1038, 1999.

[9] J. Garnier, L. Kallel, and M. Schoenauer. Rigorous
hitting times for binary mutations. Evolutionary
Computation, 7(2):173–203, 1999.

[10] D. E. Goldberg. Genetic algorithms in search
optimization and machine learning. Addison-Wesley,
Reading, MA, 1989.

[11] D. E. Goldberg. Using time efficiently:
Genetic-evolutionary algorithms and the continuation
problem. Proceedings of the 1999 Genetic and
Evolutionary Computation Conference, pages 212–219,
1999. (Also IlliGAL Report No. 99002).

[12] D. E. Goldberg. Design of innovation: Lessons from
and for competent genetic algorithms. Kluwer
Academic Publishers, Boston, MA, 2002.

[13] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic
algorithms, noise, and the sizing of populations.
Complex Systems, 6:333–362, 1992. (Also IlliGAL
Report No. 91010).

[14] D. E. Goldberg, B. Korb, and K. Deb. Messy genetic
algorithms: Motivation, analysis, and first results.
Complex Systems, 3(5):493–530, 1989. (Also IlliGAL
Report No. 89003).

[15] D. E. Goldberg and P. Segrest. Finite Markov chain
analysis of genetic algorithms. Proceedings of the
Second International Conference on Genetic
Algorithms, pages 1–8, 1987.

[16] P. Hansen, N. Mladenovic, and D. Perez-Britos.
Variable neighborhood decomposition search. Journal
of Heuristics, 7(4):335–350, 2001.

[17] G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L.
Miller. The gambler’s ruin problem, genetic
algorithms, and the sizing of populations.
Evolutionary Computation, 7(3):231–253, 1999. (Also
IlliGAL Report No. 96004).

[18] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
MI, 1975.

[19] T. Jansen and I. Wegener. On the analysis of
evolutionary algorithms - a proof that crossover really
can help. Algorithmica, 34(1):47–66, 2002.

[20] T. Jansen and I. Wegener. Real royal road functions -
where crossover provably is essential. Discrete Applied
Mathematics, pages 111–125, 2005.

[21] M. Kimura. Diffusion models in population genetics.
Journal of Applied Probability, 1:177–232, 1964.

[22] C. F. Lima, M. Pelikan, K. Sastry, M. V. Butz, D. E.
Goldberg, and F. Lobo. Substructural neighborhoods
for local search in the bayesian optimization
algorithm. Parallel Problem Solving from Nature
(PPSN IX), pages 232–241, 2006. (Also IlliGAL
Report No. 20060).

1386

[23] S. Luke. When short runs beat long runs. Proceedings
of the Genetic and Evolutionary Computation
Conference, pages 74–80, 2001.

[24] B. L. Miller. Noise, Sampling, and Efficient Genetic
Algorithms. PhD thesis, University of Illinois at
Urbana-Champaign, Urbana, IL, May 1997. (Also
IlliGAL Report No. 97001).

[25] B. L. Miller and D. E. Goldberg. Genetic algorithms,
tournament selection, and the effects of noise.
Complex Systems, 9(3):193–212, 1995. (Also IlliGAL
Report No. 95006).

[26] M. Mitchell, J. Holland, and S. Forrest. When will a
genetic algorithm outperform hill-climbing. Advances
in Nueral Information Processing Systems, 6:51–58,
1994.

[27] H. Mühlenbein. Evolution in time and space- the
parallel genetic algorithm. Foundations of Genetic
Algorithms, pages 316–337, 1991.

[28] H. Mühlenbein. How genetic algorithms really work:
Mutation and hillclimbing. Parallel Problem Solving
from Nature II, pages 15–26, 1992.

[29] Y. S. Ong, M. H. Lim, N. Zhu, and K. W. Wong.
Classification of adaptive memetic algorithms: A
comparative study. IEEE Transactions On Systems,
Man and Cybernetics - Part B, 36(1):141–152, 2006.

[30] W. M. Rudnick. Genetic algorithms and fitness
variances with an application to the automated design
of artificial neural networks. PhD thesis, Oregon
Graduate Institute of Science & Technology,
Beaverton, OR, 1992.

[31] K. Sastry. Evaluation-relaxation schemes for genetic
and evolutionary algorithms. Master’s thesis,
University of Illinois at Urbana-Champaign, Urbana,
IL, 2001. (Also IlliGAL Report No. 2002004).

[32] K. Sastry and D. E. Goldberg. Designing competent
mutation operators via probabilistic model building of
neighborhoods. Proceedings of the 2004 Genetic and
Evolutionary Computation Conference, 2:114–125,
2004. Also IlliGAL Report No. 2004006.

[33] K. Sastry and D. E. Goldberg. Let’s get ready to
rumble: Crossover versus mutation head to head.
Proceedings of the 2004 Genetic and Evolutionary
Computation Conference, 2:126–137, 2004. Also
IlliGAL Report No. 2004005.

[34] K. Sastry and D. E. Goldberg. Let’s get ready to
rumble redux: Crossover versus mutation head to
head on exponentially scaled problems. IlliGAL
Report No. 2007005, University of Illinois at
Urbana-Champaign, Urbana, IL, February 2007.

[35] K. Sastry, P. Winward, D. E. Goldberg, and C. F.
Lima. Fluctuating crosstalk as a source of
deterministic noise and its effects on ga scalability.
Applications of Evolutionary Computing
EvoWorkshops2006: EvoBIO, EvoCOMNET,
EvoHOT, EvoIASP, EvoInteraction, EvoMUSART,
EvoSTOCK, pages 740–751, 2006. (Also IlliGAL
Report No. 2005025).

[36] R. Srivastava. Time continutation in genetic
algorithms. Master’s thesis, University of Illinois at
Urbana-Champaign, Urbana, IL, 2002.

[37] R. Srivastava and D. E. Goldberg. Verification of the
theory of genetic and evolutionary continuation.
Proceedings of the 2001 Genetic and Evolutionary
Computation Conference, pages 551–558, 2001. (Also
IlliGAL Report No. 2001007).

[38] T. Storch and I. Wegener. Real royal road functions
for constant population size. Theoretical Computer
Science, 320:123–134, 2004.

[39] D. Thierens and D. E. Goldberg. Convergence models
of genetic algorithm selection schemes. Parallel
Problem Solving from Nature, 3:116–121, 1994.

[40] D. Thierens, D. E. Goldberg, and A. G. Pereira.
Domino convergence, drift, and the temporal-salience
structure of problems. Proceedings of the IEEE
International Conference on Evolutionary
Computation, pages 535–540, 1998.

[41] J.-P. Watson, A. Howe, and L. Whitley. An analysis of
iterated local search for job-shop scheduling.
Proceedings of the Fifth Metaheuristics International
Conference, pages 1101–1106, 2003.

1387

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

