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ABSTRACT
This paper analyzes the behavior of a selectorecombinative
genetic algorithm (GA) with an ideal crossover on a class of
random additively decomposable problems (rADPs). Specif-
ically, additively decomposable problems of order k whose
subsolution fitnesses are sampled from the standard uniform
distribution U [0, 1] are analyzed. The scalability of the se-
lectorecombinative GA is investigated for 10,000 rADP in-
stances. The validity of facetwise models in bounding the
population size, run duration, and the number of function
evaluations required to successfully solve the problems is
also verified. Finally, rADP instances that are easiest and
most difficult are also investigated.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization; I.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms
Algorithms, Experimentation, Performance

Keywords
Genetic algorithms, ideal crossover, test problems,
additively-decomposable problems, empirical analysis,
building blocks, population sizing, convergence time, scal-
ability analysis, problem difficulty

1. INTRODUCTION
In the last two decades, a class of competent genetic al-

gorithms (GAs)—GAs that solve boundedly difficult prob-
lems quickly, reliably, and accurately—have been developed
and their scalability has been tested on a class of prob-
lems that are adversarial in nature [13]. Facetwise mod-
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els have also been developed to bound the scalability of se-
lectorecombinative GAs, which show that GAs that accu-
rately identify and effectively exchange key substructures of
additively-decomposable problems, scale polynomially (usu-
ally sub-quadratically) with the problem size.

In this paper, we consider a broader class of additively
decomposable problems and analyze the behavior of selec-
torecombinative GAs. Specifically, we analyze a class of ad-
ditively decomposable problems, where the fitnesses of com-
peting subsolutions within a partition are sampled from the
standard uniform distribution. Moreover, in the spirit of
facetwise and dimensional thinking, we consider a selectore-
combinative GA with an ideal recombination operator [13].
The ideal crossover assumes that the substructures of the
underlying search problems are known and exchanges sub-
solutions without disrupting them. Additionally, the use of
the perfect crossover eliminates any effects of inaccuracies in
the identification of important substructures and permits us
to investigate the performance of selectorecombinative GAs
in what can be considered a best-case scenario. The results
confirm the validity and applicability of facetwise models in
bounding the population size, run duration, and the num-
ber of function evaluations required to successfully solve the
rADP instances.

This paper is organized as follows. We provide a brief
background on GA problem difficulty and test problem de-
sign in the section 2, followed by an outline of facetwise
models for bounding the scalability of selectorecombinative
GAs in section 3. We introduce the class of rADPs in sec-
tion 4 followed by their analysis in section 5. Finally, we
provide summary and key conclusions in section 6.

2. ADVERSARIAL APPROACH FOR TEST
PROBLEM DESIGN

A powerful and common approach used in designing com-
plex systems is to test them on the boundary of their design
envelope. For example, an airplane is designed to fly a range
of missions under a variety of externally imposed conditions.
The combination of missions and external conditions deter-
mines a performance envelope in which we expect the air-
craft to perform well. As long as we operate within the spec-
ified envelope, and as long as the aircraft has been properly
designed, we expect the aircraft to perform satisfactorily.

Elsewhere Goldberg [13] argues that taking a similar de-
sign envelope point of view benefits the design and analysis
of scalable genetic and evolutionary algorithms as well. By
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considering a design envelope point of view, he advocates de-
signing test problems characterized by various dimensions
of problem difficulty that thwart the search mechanism of
selectorecombinative GAs in the extreme [13]. That is, to
consider bounding adversarial problems that exploit one or
more dimensions of problem difficulty. One dimension of
problem difficulty is intra-building-block difficulty, where the
difficulty is generated from within a substructure [13], and
deceptive problems belong to this class of difficulty.

One such class of adversarial problems is the m-k decep-
tive trap problem, which consists of additively separable de-
ceptive functions [8, 1, 12, 20, 29, 10]. Deceptive functions
are designed to thwart the very mechanism of selectorecom-
binative search by punishing any localized hillclimbing and
requiring mixing of whole building blocks (BBs) at or above
the order of deception. Using such adversarially designed
functions is a stiff test—in some sense the stiffest test—of
algorithm performance. The idea is that if an algorithm can
beat an adversarially designed test function, it can solve
other problems that are equally hard or easier than the ad-
versarial problem. Here, we verify if this assertion holds for
a class of random additively decomposable problems.

3. SCALABILITY OF SELECTORECOM-
BINATIVE GENETIC ALGORITHMS

Two key factors for predicting the scalability of a selec-
torecombinative GA are the convergence time and popula-
tion sizing. Therefore, we present facetwise models of con-
vergence time and population sizing. More details and moti-
vation for using facetwise modeling and dimensional analysis
are given elsewhere [13].

3.1 Population-Sizing Model
Goldberg, Deb and Clark [14] proposed population-sizing

models for correctly deciding between competing BBs. They
incorporated noise arising from other partitions into their
model. Harik et al [17] refined the above model by incorpo-
rating cumulative effects of decision making over time rather
than in first generation only. Harik et al [17] modeled the
decision making between the best and second best BBs in a
partition as a gambler’s ruin problem [11]. Here we use an
approximate form of the population-sizing model proposed
by Harik et al [17]:

n =

√
π

2

σBB

d
2k√m log m, (1)

where k is the BB size, m is the number of BBs, d is the
signal between the competing BBs, and σBB is the fitness
variance of a building block. The above equation assumes a
failure probability, α = 1/m.

3.2 Convergence-Time Model
Mühlenbein and Schlierkamp-Voosen [22] derived a

convergence-time model for the breeder GA using the notion
of selection intensity from population genetics [9]. Selection-
intensity based models have since been developed for other
selection schemes and for noisy environments [28, 21, 3].
Even though the selection-intensity-based convergence-time
models are derived for the OneMax problem, they are gener-
ally applicable to additively decomposable problems as well:

tc =
ct

I

√
m, (2)

where I is the selection intensity, and ct = 4.72 is an
empirically-determined constant. For binary tournament se-
lection, I = 1/

√
π.

The above model yields good characterization of popula-
tion convergence when even from early on in the GA run,
only two subsolutions compete with each other. However,
when the best subsolution competes with more than one
subsolution, stochastic errors in finite population can accu-
mulate, resulting in significant fluctuations in the propor-
tions of competing subsolutions due to genetic drift [19, 16,
2]. The drift time required for convergence to the optimal
subsolution is given by [16],

td = 6p0(1 − p0)n. (3)

Assuming a worst-case scenario where all 2k − 1 subsolu-
tions compete with the optimal subsolution, that is setting
p0 = 1/2k , and substituting Equation 1 for n in the above
equation we get

td = 3
√

π · σBB

d
· √m log m. (4)

Using equations 1 and 2, we can now predict the scal-
ability, or the number of function evaluations required for
successful convergence, of GAs as follows:

nfe = n · tc = cf
σBB

d
· 2k · m log m, (5)

where cf = ct
√

π/2I .

4. RANDOM ADDITIVELY DECOMPOS-
ABLE PROBLEMS (RADPS)

In this section, we describe a class of random additively
decomposable problem. Here, we only consider problems
without overlap between substructures, which is considered
elsewhere [23]. We assume that the candidate solutions are
represented by binary strings of fixed length. Here, we re-
strict our analysis to boundedly-difficult problems of order
k.

An �-bit additively decomposable problem of order k con-
sists of m subproblems of k bits each. When there is no
overlap between the subproblems, each bit belongs to ex-
actly one of the subproblems. Therefore, the total number
of bits is � = m · k. The fitness function for an additively
decomposable problem can be written as

F(X1, X2, · · · , X�) =
m∑

i=1

gi(Si) (6)

where m is the number of subproblems, gi is the fitness of
the ith subproblem, and Si ⊂ X1, X2, · · ·X� is the subset of
variables of order k for the ith subproblem.

In order to ease the analysis, in this study we consider the
subproblems to be identical, that is, g1 = g2 = · · · = gm. We
note that this restriction can be relaxed and the behavior of
selectorecombinative GAs is qualitatively similar [23]. We
further assume that the subproblem is generated randomly
from the standard uniform distribution U [0, 1]. That is, the
fitness contributions of 2k subsolutions are sampled from
the standard uniform distribution U [0, 1]. The same fitness
contribution is used to compute the fitness of subsolutions
from all the partitions.

To estimate the population size and the drift time for
rADPs, we need to estimate the noise-to-signal ratio. To
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do so, we estimate the probability density function (p.d.f.)
of the signal difference d and the building-block variance
(noise) σBB .

The signal difference d is defined as the fitness difference
between the best and the second-best subsolution. Since the
subsolution fitness is sampled from a uniform distribution,
the kth order statistic follows a Beta distribution with pa-
rameters α = k and β = 2k−k+1 [5, 4, 7, 6, 18]. From order
statistics, we know that if X has a p.d.f. f(x) and a cumula-
tive density function F (x), then the probability distribution
of the rth order statistic, fUr:N is given by

fU
r:2k =

2k!

(r − 1)! (2k − r)!
·

[F (x)]r−1 [1 − F (x)]2
k−r f(x), (7)

for r = 1, 2, · · · , 2k, with r = 1 and r = 2k denoting the
index of the worst and best subsolutions, respectively. Sub-
stituting the p.d.f. and cumulative density function of the
standard uniform distribution, f(x) = 1, and F (x) = x,
respectively, in the above equation we get,

fU
r:2k =

2k!

(r − 1)! (2k − r)!
xr−1 (1 − x)2

k−r . (8)

Therefore, the p.d.f of the fitness of the best subsolution
fU2k :2k

is given by

fU2k:2k (x) =
2k!

(2k − 1)! 0!
x2k−1 (1 − x)0 ,

= 2kx2k−1. (9)

Similarly, the p.d.f of the fitness of the second-best subsolu-
tion fU2k−1:2k

(y) can be written as

fU2k−1:2k (y) =
2k!

(2k − 2)! 1!
x2k−2 (1 − x)1 ,

= 2k
(
2k − 1

)
· y2k−2 (1 − y) . (10)

To summarize, the p.d.fs of the fitness of the best subsolu-
tion fU2k :2k (x) and the 2nd-best subsolution fU2k−1:2k (y) is

given by

fU2k:2k (x) = Beta(2k, 1) = 2k · x2k−1, (11)

fU2k−1:2k
(y) = Beta(2k − 1, 2),

= 2k
(
2k − 1

)
· y2k−2 (1 − y) . (12)

To compute the signal, we first need to compute the joint
p.d.f of the best and the second best subsolutions. From
order statistics, we know that the joint p.d.f of ith and jth

order statistics is

gUi:N ,Uj:N (y, x) =
N !

(i − 1)! (j − i − 1)! (N − j)!
·

[F (y)]i−1 [F (x) − F (y)]j−i−1

[1 − F (x)]N−j f(x)f(y), (13)

where y < x, and i < j. Since both the fitness of best and
second-best subsolutions, X and Y , are sampled from the
standard uniform distribution, f(x) = 1, f(y) = 1, F (x) =
x, and F (y) = y. Additionally, i = 2k − 1, j = 2k, and
N = 2k. Substituting these values in the above equation we

can write the joint p.d.f of the fitnesses of best and 2nd-best
subsolutions as

gUi:N ,Uj:N (y, x) =
2k!

(2k − 2)! 0! 0!
· y2k−2(x − y)0(1 − x)0,

= 2k
(
2k − 1

)
y2k−2 (14)

Since, the signal difference d = x − y, the p.d.f. of d is
given by

fd(d) =

∫ 1

0

∫ 1−d

0

gUi:N ,Uj:N (y, x) dy · dx

= 2k (1 − d)2
k−1 . (15)

We know that for the standard uniform distribution, μ2 =
1/12 and μ4 = 1/80. Therefore, the mean and the variance

of the subsolution variance is given by (2k−1)

2k μ2 ≈ μ2 =
1/12, and

E
[(

σ2
BB − E[σ2

BB ]
)2

]
=

(κ − 1)

κ3

[
(κ − 1)μ4 − (κ − 3)μ2

2

]
,

≈ 0.0056

2k
, (16)

respectively, where κ = 2k. We can approximate the
p.d.f. of the variance of subsolution fitnesses as the nor-
mal distribution with parameters μ = σ2

U = 1/12, and
σ2 = 0.0056/2k :

fσ2
BB

(σ2
BB) ∼ N

(
1

12
,
0.075√

2k

)
. (17)

From the p.d.fs of d and σ2
BB , we can easily see that

E[1/d] = 2k and E[σ2
BB ] = 1/12. Using these values in

Equations 1, 4, and 5, we can bound the scalability of the
GA with ideal crossover for rADPs as discussed in the fol-
lowing section.

5. ANALYSIS OF RADPS
We generated 10,000 rADP instances for our analysis and

considered problems with m = 5 to m = 50 subproblems
of order k = 3, 4, and 5. For brevity, we only show re-
sults for k = 4 in this paper as the results are qualitatively
similar for k = 3 and 5. We considered a generationwise
selectorecombinative GA with non-overlapping populations
of fixed size. We use a binary tournament selection without
replacement [15, 25], and a uniform BB-wise crossover [26].
In uniform BB-wise crossover, two parents are randomly se-
lected from the mating pool and their subsolutions in each
partition are exchanged with a probability of 0.5. Therefore,
none of the subsolutions are disrupted during a recombina-
tion event. The GA run is terminated when all the individ-
uals in the population are identical. The average number
of BBs correctly converged are computed over 50 indepen-
dent runs. The minimum population size required such that
m − 1 BBs converge to the correct value is determined by
a bisection method [24]. The results of population-size is
averaged over 30 such bisection runs, while the results for tc

and nfe are averaged over 1,500 independent GA runs.
We begin our analysis by comparing the histogram of the

population size, run duration, and number of function eval-
uations for a given m in Figure 1. Specifically we plot the
relative frequency—where a particular frequency is divided
by the maximum frequency—of the rADPs that require a
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(a) Population size: m = 10
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(b) Convergence time: m = 10
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(c) Function evaluations: m = 10
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(d) Population size: m = 50
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(e) Convergence time: m = 50
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(f) Function evaluations: m = 50

Figure 1: Histogram of population size, convergence time in terms of number of generations, and the number
of function evaluations required to successfully solve at least m − 1 out of m building blocks correctly for
m = 10 and m = 50. To obtain the relative frequency, all frequencies have been divided by the maximum
frequency. The plots show the results for 10,000 rADPs and are averaged over 30 bisection runs with 50
independent GA runs for each bisection trial.

certain population, run-duration, and number of function
evaluations ranges to solve at least m − 1 out of m sub-
problems to optimality for m = 10, and 50. The results for
other problem sizes are qualitatively similar and are pro-
vided elsewhere [27]. The results show that the histograms
have log-normal behavior with the tail increasing with m,
which indicates the presence of drift in solving some rADPs.
From the histograms we find that 0.08–0.3%, 0.01–0.1%, and
0.15–0.59% of the rADP instances require n, tc, and nfe

greater than three standard deviations from the median, re-
spectively.

Next, we investigate easy and hard rADP instances ac-
cording to population-size, convergence-time, and function-
evaluation requirements as the function of number of sub-
solutions. Based on facetwise analysis we expect the hard
instances to have minimum signal-to-noise ratio and the easy
instances to have maximum signal-to-noise ratio. That is,
for hard instances we expect to have minimum signal and
maximum variance. Ideally, for hard instances, about half
the subsolutions to have low fitness values and the other half
to have high fitness values (see Figure 2). Thus, not only the
variance is maximized, but also the signal is close to zero.
For the easy instances, we expect to have maximum signal
and minimum variance. Therefore, as shown in Figure 2, we
expect the best sub-solution to have significantly higher fit-
ness than other subsolutions and the rest to have near-equal
fitness.

Sorted subsolution index

Su
bs

ol
ut

io
n 

fi
tn

es
s

Sorted subsolution index

Su
bs

ol
ut

io
n 

fi
tn

es
s

Hard instance

Easy instance

Figure 2: Ideal easy and hard problem instances
based on facetwise theory.
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(b) Hard w.r.t. tc
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(c) Hard w.r.t. nfe
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(d) Easy w.r.t. n
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(e) Easy w.r.t. tc
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(f) Easy w.r.t. nfe

Figure 3: The top five difficult and easy rADP instances with respect to the population size n, run duration
tc, and the number of function evaluations nfe. The subsolutions are sorted according to their fitness values.
The 10,000 rADPs are ranked in descending according to n, tc, and nfe values for a given m and they are
averaged over all m values (5–50), and the top 5 are depicted as the difficult instances and the bottom 5 are
depicted as the easy instances.

We show empirically observed easy and hard rADP in-
stances according to population-size, convergence-time, and
function-evaluation requirements for m = 5–50. Specifically,
for each m, we rank each rADP in descending order of the
population size required. Then for each rADP, we sum up
its ranks over all m values and consider this as the overall
rank of the rADP instance. We then select the top 5 and
bottom 5 rADP instances according to the overall rank. We
repeat the same procedure for tc and nfe and show the five
hardest—in terms of requiring maximum n, tc, or nfe over
all values of m—and five easiest—in terms of requiring min-
imum n, tc, or nfe over all values of m—rADP instances
in Figure 3. The results qualitatively validate our expecta-
tion and clearly show that for hard rADP instances, there
are more subsolutions competing with the best subsolution.
Moreover, the difference in the fitness of competing subsolu-
tions is very small, that is, hard problem instances have low
signal d. Additionally, since there are more than two com-
peting subsolutions in each partition, we can expect drift
to play a major role as the given collateral noise [14]. In
contrast, easy rADP instances all have two competing sub-
solutions with a large signal. These results agree with the
models of GA-design theory [13].

One of our primary interests is to investigate how the pop-
ulation size, convergence time, and the number of function
evaluations scale with the problem size. From the facetwise
models (Equations 1, 2, and 5), we expect n, tc, and nfe

to scale as Θ(mα1 log m), Θ(mα2), and Θ(mα3 log m), re-

spectively. We begin by plotting the histograms α1, α2,
and α3 in Figures 4(a)–(c). Specifically, we run each of
the 10,000 rADP instance with increasing number of build-
ing blocks and analyze the scalability of population size,
convergence time, and number of function evaluations as
a function of problem size. Then using a least-squares
method, we estimate the coefficient values of scalability for
each rADP instance. The histograms represent the differ-
ent values for α1, α2, and α3 estimated for different rADP
instances. The results show that the population size re-
quired to solve at least m − 1 subproblems to optimality
scales on an average as Θ(m0.35 log m) and in the worst
case scales as Θ(m0.5 log m) as predicted by the facetwise
model (Equation 1). Similarly, on an average tc and nfe

scale as Θ(m0.52) and Θ(m0.85 log m), and in the worst case
they scale Θ(m0.58) and Θ(m1.04 log m) respectively, agree-
ing with facetwise models (Equation 2, 3, and 5).

We also plot the median, minimum, and maximum n, tc,
and nfe required over the 10,000 rADP instances and com-
pare it to the facetwise models in Figures 4(d)–(f). The re-
sults show that the facetwise models clearly bound the scal-
ability of selectorecombinative GAs on rADPs. From Fig-
ure 4(e), we can see that while the convergence-time model
(Equation 2) bounds the empirically observed tc on an av-
erage, the drift-time model (Equation 3) yields an upper
bound on the run duration. More importantly, the results
clearly validate the assertion that testing and modeling se-
lectorecombinative GAs on adversarially-designed test prob-
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(a) n = Θ(mα1 log(m))
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(b) tc = Θ(mα2)

0.75 0.8 0.85 0.9 0.95 1 1.05
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Value of the slope, α
3

R
el

at
iv

e 
fr

eq
ue

nc
y

(c) nfe = Θ(mα3 log(m))
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Figure 4: Histogram of the scalability of population size, convergence time, and number of function evalua-
tions with problem size for 10,000 rADPs. From the facetwise models, we use n = Θ(mα1 log m), tc = Θ(mα2),
and nfe = Θ(mα3 log m). We also show the scalability of the median, minimum, and maximum values of n, tc,
and nfe with m.

lems bounds their performance on other problems that are
equally hard or easier than the adversarial function for the
case of rADPs.

Finally, we analyze the easy and hard rADP instances in
terms of scalability and the results are shown in Figure 5.
Unlike the problems shown in Figure 3, here we show five
rADP instances that are easy and hard in terms of scalabil-
ity of n, tc, and nfe. The results show that the problems
that are most difficult in terms of scalability of n are rADP
instances where there are two competing subsolutions with
near-equal fitness (very low signal d, or a very high noise-to-
signal ratio). It is interesting to note that the population-
sizing model was derived based on this very scenario of two
competing subsolutions. Similarly the most difficult in terms
of scalability of tc are rADP instances with more than two
competing subsolutions with near-equal fitness, where we
can expect drift to play a dominating role. Similar to the
results shown in Figure 3, the easy rADP instances in terms
of scalability also have two competing subsolutions with a
reasonably high signal (low noise-to-signal ratio).

6. SUMMARY AND CONCLUSIONS
We analyzed the behavior of a selectorecombinative

GA with an ideal crossover operator on a class of
boundedly-difficulty random additively decomposable prob-
lems (rADPs). Specifically we considered additively decom-
posable problems of order k, where the subsolutions fitnesses
are sampled from the standard uniform distribution U [0, 1].

We verified the validity of facetwise models developed based
on adversarial test functions on modeling the behavior of the
GA on rADPs. The results show that for each of the 10,000
rADP instances that were generated and tested, the selec-
torecombinative GA scales sub-quadratically as predicted by
the facetwise models. We also analyzed the easy and hard
rADP instances, which show that easy rADP instances have
two competing subsolutions with significant difference in fit-
ness, while hard rADP instances have two or more compet-
ing subsolutions with near-equal fitness.

This study verifies the validity and applicability of
facetwise GA scalability theory on a broad class of prob-
lems as opposed to a few specific adversarial problems. This
study also validates the adversarial approach towards de-
signing test problems that test the GA designs on the de-
sign envelope. Finally, the results provides empirical evi-
dence that testing GAs on adversarial problems of bounded
difficulty provides a useful bound for sub-class of difficult
decomposable problems whose difficulty is less than that of
the adversarial problem.
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Figure 5: The top five difficult and easy rADP instances with respect to the scalability of population size n,
run duration tc, and the number of function evaluations nfe.
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