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ABSTRACT 
In this paper we report on a study in which genetic algorithms are 
applied to the analysis of noisy time-series signals, which is 
related to the problem of analyzing the motion characteristics of 
moving bodies (distance, bearing, course, velocity, etc.) by 
covertly sampling the sound of moving objects with submarine 
monitoring systems that track moving objects travelling on or 
through the water. In particular, we propose improving the 
system’s ability to search through noisy data by grafting viruses 
onto the chromosomes used in genetic algorithms. Specifically, 
we propose a search method that can cope robustly with noise 
through the cooperative action of a wide-area search implemented 
by host chromosomes and a local search implemented by viruses 
grafted onto these chromosomes. To improve the infection rate, 
we also impose limits on the types of host entity that can be 
infected by viruses. By conducting evaluation tests in computer 
simulations, we show that the proposed technique can achieve a 
better rate of convergence and is capable of searching for a 
solution with fewer entities.   

Categories and Subject Descriptors 
J.0 [Computer Applications]: General 

General Terms 
Design, Experimentation, Performance, Verification. 

Keywords 
Genetic Algorithms, Virus Infection, Virus Evolution, Tropism, 
Time-series Problem, Noisy Optimization, Inverse Problem. 

1.   INTRODUCTION 
Genetic algorithms (GA) can be used to solve various classes of 
problems in game software and software designed to solve real-
world problems. For example, they have been applied to multi-
purpose optimization [1–3], time-series prediction [4, 5], the 
optimal analysis of noisy data [6–9], and the analysis of implicit 
functions [10]. As an example of an application that involves 
addressing each of these classes of problem simultaneously, we 
have been researching an underwater tracking device that tracks 
an unidentified object moving on or below the ocean surface. A 
device of this sort works by measuring the sound produced by the 
moving object (which we will refer to as “sound”, although it may 
also include noise from other sources such as turbulence), and 
analyzes this audio signal to obtain information such as the 
location of the moving object, its motion vector, and its acoustic 
fingerprint (obtained by processing the audio spectrum to 
eliminate Doppler effects). 
We have already published the results of several studies on the 
feasibility of using GA to implement such a device [11–14]. In 
practical situations, when an underwater observer has detected an 
unknown object moving in or on the water, it must be able to 
efficiently analyze the moving object’s motion and home in on an 
advantageous position with regard to the object without revealing 
its own presence to the object. This means the observer has to 
perform passive motion analysis by measuring the time-series 
variation of the arrival angle (bearing) of the moving object’s 
sound with a directional listening instrument, since the use of 
active methods would involve emitting acoustic or radio waves 
from the observer. If the object’s bearing can be measured 
accurately, then its motion can be precisely analyzed and a 
solution can be obtained in a short time. 
However, this approach has three drawbacks. First, a directional 
listening instrument large enough to make bearing measurements 
with sufficient accuracy for motion analysis would have to be 
quite cumbersome. Second, to reduce the adverse effects of 
bearing measurement errors on the accuracy of motion analysis, 
the observer would have to perform circuitous movements to 
increase the temporal variation of the object’s bearing. And third, 
in optimization analysis methods that are based on ordinary 
multiple simultaneous equations, the observer has to incorporate 
linear motion at non-constant velocity into the analysis period in 
order to obtain a solution. The second and third drawbacks make 
efficient approximation difficult to achieve. It is thus difficult to 
derive a realistic solution by analytical methods, so it is hoped 
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that stochastic search methods such as GA will be more suited to 
the task. 
On a related issue, we have already shown that it is possible to 
analyze the position of an audio source by applying GA to the 
analysis of noisy continuous time signals [13]. In this paper we 
report on the results obtained when attempting to improve the 
search capabilities with respect to noisy data by grafting viruses 
on to part of the chromosomes used for GA. 
In section 2 we formulate the problem to be solved and present an 
overview of the GA techniques used in our previous report [13]. 
In section 3 we propose a GA technique that involves viral 
infection and a technique for using tropism to improve the 
infection rate. In section 4 we describe the simulations we 
performed to evaluate this technique, and in the final sections we 
discuss our results and finish with a conclusion. 

2.   ANALYSIS OF TIME-SERIES SIGNALS 
WITH GENETIC ALGORITHM 
2.1  Formulations of Time Series Signals 
 

 

 

 

 

 

 

 

 

 

 

 

 

During the mover navigates in constant velocity, sound source 
frequency radiated by propulsion system is periodic and constant 
frequency. However observed frequency at hydrophone on the 
observer has Doppler effects. Figure 1 shows a sound path from 
the mover to the observer. Equation in Fig. 1 shows relationship 
between sound source frequency and observed frequency. This 
equation is based on Doppler Effect Theory. fs of the equation is 
sound source frequency. fp0(ti) is observed frequency at 
hydrophone H0. Vm(ti) is mover’s approaching velocity along 
sound path at time ti, Vo(ti) is observer’s approaching velocity 
along sound path. They have positive polarity while approaching, 
negative while receding. Vs is propagation velocity of sound in 
sea.  

Figure 2 shows an example of the audio signal S(t) observed by 
hydrophone H0. When the period of this signal is T and angle 
velocity is ω0 , the result of Fourier Series Development is 
expressed in Equation (1). 
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Equation (1) contains integral equations, and is not suitable for 
computer processing. Consequently, it is necessary to transform 
Equation (1) into Equation (2) expressed in quantum. 
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S(t) can be transformed into S(nΔt)  after transformation by 
Euler’s formula on the condition of n ≥ N . Here, A0 in (2) is the 
bias (direct current) component. A1, A2, A3, …, Ak, … are 
amplitudes of harmonic frequencies, and ak, bk, ϕk express the k-th 
harmonic frequency components. fp is the fundamental frequency. 
Accordingly, time series signal S(nΔt)  is defined in term of 
components in Equation (2). The problem addressed in this paper 
can be formulated as an inverse problem involving complex 
implicit function. Here is necessary to find the components of a 
time series periodic signal by counting backward from noisy time 
series sampled data of its S(nΔt)  obtained with measurement 
equipment. 
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Figure 1. A sound path from the mover to the observer. 
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Figure 2. Quantum expression of S(nΔt) for observed 
sound signal S(t) . 
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2.2  Method of Applying Genetic Algorithms 
2.2.1  Definition of Chromosomes 
Figure 3 shows the constitution of a chromosome of the analysis 
GA. In analysis for characteristics of signals, low-pass filter 
eliminates higher frequency of signals, thereby higher frequencies 
are not as useful as lower frequencies and sometimes harmful for 
the analysis. Therefore, this research set 6 as maximum of k in 
Equation (2). Thereby components to analyze are frequency and 
Fourier coefficient up to 6 since A0 is dependent upon fp as shown 
in Equation (2). Consequently one chromosome consists of 13 
sub- chromosomes fp, a1, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, b6.  

 
 

2.2.2  Fitness Function 
In cases where the fitness function is highly sensitive to 
differences between a genetic entity’s own solution and the 
correct solution, the search range of the correct solution is narrow, 
and in cases where the sensitivity is low, the search range is 
wider. In the former, the range in which the extreme values of the 
solution can exist is limited, which is effective in cases where 
there are few deceptive solutions [15], while the latter is effective 
in cases where there are many deceptive solutions and it is easy to 
escape from a deceptive solution. A fitness function for acoustic 
analysis GA is shown in Equation (3).  
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This fitness function produces a higher value when the absolute 
difference between the sampled engine noise signal amplitude 
oS(n∆t) and the amplitude esS(n∆t) of the audio signal estimated 
by the chromosome has a small average value. Since there are 
many deceptive solutions, the search range is broadened by 
reducing the sensitivity. C is a constant and J is the number of 
samples. 

2.2.3  Genetic Manipulation 
In generation shifts, elite individuals E first carry forward to next 
generation, the individuals which are selected in descending order 
of fitness from all individuals P. Next, parent individuals are 
selected from P by roulette selection. Genetic manipulation then 
generates child individuals from one pair of parent individuals. 
These child individuals make up the rest of individuals P – E in 
next generation. In genetic operations, we employ one-point 
crossover as crossover, and mutation based on the rate set 

beforehand. On mutation rate, sub chromosome fp starts to 
converge earlier than the other sub chromosomes, we reduce 
mutation rate for fp from ones for the other sub chromosomes 
accordingly. All sub chromosomes start to converge around 10 
generation, we reduce mutation rate for all sub chromosomes 
accordingly. Crossover and mutation are performed on each 13 
sub-chromosome independently. 

3.   VIRAL INFECTION WITH TROPISM 
3.1  Basic Concepts 
We have already shown that it is possible to analyze the position 
of an audio source by applying GA to the analysis of noisy time-
series data. On the other hand, when standard GA is applied to the 
analysis of noisy time-series data, we found that it requires more 
generations and entities to search for a solution than in the noise-
free case. This is because local searching is not so easy when the 
data is assumed to be noisy. Specifically, the results tend to 
reflect the characteristic weakness of GA in local searches 
coupled with strength in wide-area searches. To tackle this 
problem, we propose here a technique that involves grafting 
viruses onto part of the chromosomes used in GA as a means of 
improving the local search capabilities of GA. This operation of 
virus infection is inspired by virus evolutionary theory [16]. 
Figure 4 shows the basic concept of genetic algorithms involving 
virus infection. Our aim is to implement a search technique that is 
robust against noise by encouraging cooperative interaction 
between a wide-area search based on host entities and a local 
search based on viruses grafted onto the chromosomes of these 
host entities. 

 
 
 

3.2  Virus Infection Operation and Virus 
Evolution 
Here, we define the virus infection operation and the virus 
evolution mechanism. First, we will define the virus entities and 
the virus infection operation. The chromosomes of the virus 
entities are defined as partial genetic information (schema) of a 
host chromosome. As mechanisms for the infection of hosts with 
viruses, we will consider reverse transcription operations and 
incorporation operations [17]. As shown in Figure 5, in a reverse 
transcription operation, the partial genetic information of the virus 
is copied into the host entity, and an incorporation operation, the 
virus is copied to part of the chromosome (partial genetic 
information) of the host entity. In an incorporation operation, part 
of the chromosome information held by the virus may be lost. 

Figure 3. The constitution of chromosome of the GA. 
This chromosome consists of 13 sub-chromosomes.  

Figure 4. The basic concept of genetic algorithms 
involving virus infection.  
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Next we will consider the virus evolution. As an evaluation index 
for virus evolution, we define the evaluation value, infectiousness 
and vitality of the virus [17]. A virus’s evaluation value fitvalue is 
defined as the improvement of the host due to reverse 
transcription. If S is a group of entities infected with virus i, 
fithostj is the evaluation value of host j before reverse 
transcription, and fithostj is the value after reverse transcription, 
then fitvirusi is defined as shown in Equation (4) below: 
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The infectiousness of a virus is defined so that the infectiousness 
increases as a virus becomes more successful at reverse 
transcription, as expressed by Equation (5) below: 

( )

( ) )5(
inf1

0
inf1

inf
,

,

1,

⎪
⎪
⎩

⎪
⎪
⎨

⎧

×−
>

×+

=+

otherwise
rate

fitvirusif
rate

rate
ti

i

ti

ti α

α

 

The vitality of a virus is defined by Equation (6) below. As 
viruses become more successful at reverse transcription, they 
retain more vitality. 

)6(,1, ititi fitvirusliferlife +×=+  

In equation (6), the variable r (0≤r≤1) is a real number. When 
the vitality of a virus reaches zero, a new virus entity is created in 
its place. 

3.3  Proposal of Increased Infection Efficiency 
Using Tropism  
In the abovementioned virus infection, all the entities used to 
perform GA are host candidates, and infection is performed 
stochastically on all the entities. Although the evaluation value, 
infectiousness and vitality of a virus may evolve to higher values, 
this does not mean that the evaluation value of a host entity 
infected by a virus with high infectiousness or the like will also 
increase in a similar manner. A highly infectious virus may 
sometimes have an adverse effect on its host, causing the host 
entity to become extinct. In this paper, we propose addressing this 
issue by employing tropism to improve the infection efficiency. In 
biology, the term tropism describes how viruses are only able to 
propagate to and infect a limited range of host species, or a 
limited range of tissues or organs at the individual level [18]. This 
behavior arises because host entities are liable to be destroyed and 
become extinct when chaotic viral propagation and infection 
occurs repeatedly, which is also disadvantageous for the viruses 
themselves. 
One way in which tropism occurs in the natural world is through 
the existence of proteins called ligands around the outside of 
viruses, which can only infect cells that have receptors that fit 
these ligands. Using this natural mechanism as a model, we 
introduced a tropism mechanism into the genetic algorithm 
associated with viral infection by treating the partial genetic 
information of a host entity as a receptor and providing the 
viruses with identical information as a ligand. 
Figure 6 shows an example of how the possibility of viral 
infection is controlled by tropism. In this figure, the values a 
through g of the gene locus of the host’s chromosomes are 
assumed to be real numbers. Asterisks represent “don’t care” 
states where any real value can be accepted. In the chromosomes 
of a virus entity, the information of the gene locus surrounded by 
a thick border indicates the ligand. The difference between b and 
b′ in the gene locus values is assumed to be smaller than a preset 
threshold value, while the difference between g and G is assumed 
to be larger than the threshold value. In the example shown here, 
infection can take place when the difference between the ligand 
and host entity receptor is less than the preset threshold (e.g., b 
and b′), but is not allowed when the difference is larger than the 
threshold (e.g., g and G). A tropism mechanism is implemented 
by limiting viral infection to chromosomes used in GA based on 
threshold value information and on ligand information defined on 
the chromosomes of the virus entity. Infection is performed 
stochastically on host candidate entities that satisfy the infection 
conditions. 

4.  EVALUATION TESTS 
4.1  Evaluation Method 
Figure 7 shows an overview of the evaluation system, which 
consists of an observed value generator unit and a GA 
computation analysis unit. In the observed value generator unit, 
theoretical values of the time-series data are first generated for the 

Figure 5. Virus infection operation. 

a d e gHost

* b’ * * * f *Ligand 
of virus

* * * * * GLigand 
of virus

Infection is permitted .

Infection isn ’ t permitted.

c

cb f

Figure 6. An example of how the possibility of 
infection is controlled by tropism.  
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13 types of variables shown in section 2, and then the values 
obtained by adding normally-distributed errors to these theoretical 
values are stored in a database (DB) as observed values. In the 
GA computation analysis unit, the initial values of the estimated 
values are first randomly generated, and the estimated values are 
updated by repeatedly performing genetic operations while 
calculating the goodness-of-fit based on these estimated values 
and the observed values stored in the DB. We used this evaluation 
system to perform three evaluation experiments. First we 
conducted a comparative evaluation of the search capabilities of 
GA associated with the GA with viral grafting compared with 
standard GA as used in previous reports. We then investigated the 
robustness of the system with different numbers of host entities 
(either 1000 or 2000), with the other conditions left the same as in 
the first test. And in the final experiment, we investigated in 
greater detail how the search performance varied with different 
numbers of host entities (varied in increments of 100). 

The parameters used in these evaluation tests are shown in Tables 
1 and 2. Table 1 shows the observer parameters. The observer 
speed is assumed to be low because the engine noise generated by 
the observer must not be detectable by the moving object, and 
must not have an adverse effect on the sampling of the moving 
object’s sound. We set 500Hz as fundamental frequency of the 
sound signal to be analyzed. The sampling frequency was set 
based on a Nyquist frequency, which is the frequency required for 
reconstruction of the audio signal (satisfying the sampling 
theory). Table 2 shows the GA analysis parameters. Infection rate 
means the rate that virus performs reverse transcription, then copy 
rate and cut rate means the rate that virus performs incorporation. 
If fitvirus > 0, virus incorporates partial codeword of a host 
individual on copy rate. While virus loses its codeword on cut 
rate, if fitvirus ≤ 0. Incorporation rate means the rate that each 
sub chromosome gets or lose codeword at incorporation or 
generating virus individuals.  

Table 1. The parameters of observation 

Fundamental Frequency of 
Sound (contain Doppler Effect) 

500Hz 

0.1 %Max Observation Error, Noise 
Sampling Frequency 6.0 kHz 

 
Table 2. The GA analysis parameters 

Population size 3000 
Maximum generation 100 
Crossover rate 0.8 
Mutation rate for fp 0.0001 
    generation  ≥ 7 0.00005 
Mutation rate for ak, bk 0.0005 
    generation  ≥ 7 0.0001 

Population size * 0.01 Virus population size 
Initial infection rate 0.01 
Maximum infection rate 0.1 
Copy rate 0.2 
Cut rate 0.15 
Incorporation rate 0.1 

 
 

4.2  Evaluation Results 
4.2.1  Performance comparison of GA with viral 
grafting and standard GA 
On the theme of analyzing the characteristics of noisy time-series 
signals, Fig. 8 shows the relationship between the number of GA 
generations and the analysis errors. This figure compares the 
performance of three techniques: standard GA, GA with a viral 
infection function, and GA with a viral infection function that 
includes tropism. The results shown here were obtained by 
performing 100 tests under the same conditions with each method. 
Here, the analysis errors are the mean error of 12 of the 
parameters shown in section 2 (with the exclusion of frequency). 
In Fig. 8, it can be seen that no particular differences in search 
capabilities were observed in any technique up to the 20th 
generation. However, the search capabilities of standard GA 
tailed off after 20 generations, while there was no change in the 
search capabilities of GA with a viral infection function. The error 
at the 100th generation was about 10 times smaller in GA with a 
viral infection function compared with standard GA. 

4.2.2  Survey of robustness when the number of host 
entities is changed 
Figure 9 compares the results obtained from standard GA 
performed with 3000 entities and from GA with viral infection 
performed with 2000 or 1000 entities. This figure shows the 
results obtained from 100 trials in each case. The standard GA in 
this figure is the same as the standard GA in Fig. 8 when set with 
3000 entities. From Fig. 9, it can be seen that when the number of 
hosts in GA with viral grafting is set to 1000, its search 
capabilities are higher than those of standard GA. When 
population size is 2000, tropism does not impact searching ability, 
as Figure 9. On the other hand, when population size is 1000, 
tropism increases the searching ability and reduces effect of 
population size on the searching ability. 

4.2.3  Relationship between changes in the number of 
host entities and tropism effects 
Figure 10 and 11shows the details of the relationship between the 
number of GA generations and the error magnitude when the 
number of host entities is varied in standard GA and GA with 
viral infection including tropism. In this figure, the number of 
host entities is varied from 500 to 2000 in increments of 100, and 
the results in each case indicate the performance in 100 trials. 

Figure 7. Overview of the evaluation system. 
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Table 3. The number of infection and lifetime of viruses 

 Sizep #i         #s         %s Lifev 

Virus GA 1000 9518 3236 34 0.9 
 2000 39249 13143 33 0.9 

1000 4872 1901 39 1.2 Virus with 
tropism  GA 2000 20748 8372 40 1.2 

 

 
 

 

 

 

 
 

 

 

 

 

5. DISCUSSIONS 
Figure 8 indicates that it is possible to implement a search 
technique that is robust against noise by using the cooperative 
action of a wide area search using GA and a local search using 
viruses grafted onto the chromosomes of the host entities. In this 
figure, there was no difference between standard GA and GA with 
viral grafting up to 20 generations, but a large difference in error 
values occurred after approximately 20 generations. This is 
thought to be because the wide area search function of GA works 
effectively at the initial stages of searching, so no particular 
difference is observed between the two techniques, while after the 
search has progressed to a certain level, the effects of noise 

Standard GA
Tropism virus GA

0 10 20 30 40 50 60 70 80 90 100Generations

500

1000

1500
2000

Population

0.0001

0.001

0.01

0.1

1

Error(%)

Best

Figure 10. Error of the best individual when the number 
of host entities is varied in standard GA and GA with 
viral infection including tropism. 

Figure 11. The deviation for error of the best individual 
when the number of host entities is varied in standard 
GA and GA with viral infection including tropism.  

Figure 9. Comparison of search capabilities with 
different numbers of host entities.  

Figure 8. The relationship between the number of 
GA generation and the analysis errors.  
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increase the importance of local search capabilities, so that the 
local search effects of parasitic viruses begin to become apparent. 

From Fig. 9 it can be seen that GA with the simple addition of a 
parasitic virus function has more search capabilities with just 
1000 entities as standard GA with 3000 entities. Specifically, in 
the case of problems where there is a need for local search 
capabilities that take noise into consideration, it can be thought 
that GA with viral grafting is an effective way of reducing the 
number of entities needed to search for a solution. When a 
tropism function is introduced, it can be seen that even when the 
number of host entities is reduced to 1000, it is possible to 
achieve similar search capabilities to the case of GA with viral 
grafting with 2000 entities. The addition of a tropism function 
thus allows further reductions to be made in the number of entities 
needed to search for a solution. 

According to Fig. 10, which presents a detailed comparison of the 
effects of different numbers of entities, it can be seen that the 
overall trend of standard GA and virus infection GA with tropism 
is for errors to decrease as the number of entities increases and as 
the number of generation increases. It can also be seen that a viral 
infection GA with tropism has clearly more search capability than 
standard GA. Z-axis in Figure 11 means the deviation for error of 
the best individual at each execution. As shown in Figure 11, 
standard GA increases deviation, going up to down sharply. 
While GA infected virus with tropism increases it smoothly. 

Table 3 shows the results of additional experiments performed to 
investigate the origins of the effects of tropism in viral infection. 
This table shows the results of investigating the number of 
infections and lifetime of viruses for each number of host entities 
when using viruses both with and without tropism functions. In 
this table, Sizep is the population size, #i is the total number of 
infections, #s represents the number of successful infections (the 
evaluation value of a host increases due to infection by viruses), 
%s represents the success rate of infections, and Lifev represents 
the average lifetime of a virus expressed as a number of 
generations. As these results show, a virus that exhibits tropism 
tends to have a higher infection success rate, and consequently its 
average lifetime is about 30% longer than that of a virus with no 
tropism. In the both the virus entity and the host entity, tropism 
appears to reduce the incidence of disadvantageous infections and 
increases the survival rate of viruses, thereby allowing solutions 
to be searched for with fewer host entities. 

The idea of incorporating viral evolution into GA has already 
been the subject of several studies [17, 19]. A fundamental 
difference between our proposed technique and the conventional 
approach is that the latter is chiefly aimed at performing a wide-
area search efficiently with both GA and viruses, whereas our 
technique establishes a clear division of roles between GA, which 
is used for wide-area searching, and viral evolution, which is used 
for local searching. We achieve this by introducing tropism into 
the virus infection mechanism so as to avoid the local search of 
the virus impeding the wide-area search of GA. Further studies 
are needed with regard to the definition of viral infection for 
improving local search capabilities and the method used to 
implement tropism in order to improve the infection rate. In the 
future it will also be necessary to compare the proposed approach 
and GA with conventional local search methods. 

6. CONCLUSION 
We have proposed a technique for implementing genetic 
algorithms where viruses are grafted onto part of the 
chromosomes in order to improve the local search capabilities 
when genetic algorithms are applied to the analysis of noisy time-
series signals. Specifically, we have proposed a search technique 
that is robust against noise by causing cooperative action between 
a wide area search using host chromosomes and a local search 
using viruses grafted onto these chromosomes. We have also 
improved the infection rate by providing the viruses with a 
tropism function. By conducting simulated evaluation 
experiments, we have shown that this technique is effective at 
improving the convergence rate of solution searches in genetic 
algorithms with parasitic viruses, and that by conferring a tropism 
function to the viruses it is possible to increase the virus survival 
rate, resulting in robust characteristics with respect to reductions 
in the number of host entities. 
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