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ABSTRACT
This paper investigates the ability of a tournament selection
based genetic algorithm to find mutationally robust solu-
tions to a simple combinatorial optimization problem. Two
distinct algorithms (a stochastic hill climber and a tourna-
ment selection based GA) were used to search for optimal
walks in several variants of the self avoiding walk problem.
The robustness of the solutions obtained by the algorithms
were compared, both with each other and with solutions ob-
tained by a random sampling of the optimal solution space.
The solutions found by the GA were, for most of the prob-
lem variants, significantly more robust than those found by
either the hill climbing algorithm or random sampling. The
solutions found by the hill climbing algorithm were often sig-
nificantly less robust than those obtained through random
sampling.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms

Keywords
Genetic Algorithms, Robustness, Self Avoiding Walk, Tour-
nament Selection

1. INTRODUCTION

Definition 1.1. Robust - 1. Strong and healthy; hardy;
vigorous

Robustness is a valuable property, both in biological or-
ganisms and man made systems. A robust genetic code
allows an organism to reproduce in a world rich with mu-
tagenic agents and changing environmental conditions. A
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robust design allows buildings to weather earthquakes and
hurricanes. A robust immune system helps people survive
infection and other illness.

The study of robustness in nature is a fast growing area
of both molecular biology and population genetics [13, 14].
From the triplet nature of the genetic code to the hardiness
of bacterial metabolic networks [5] it can be seen again and
again that naturally evolved systems are robust.

Robustness, as a product of evolution, is not limited to
just naturally evolved systems. Computer simulations of
simplified protein folding using a 2-dimensional lattice model
have shown that in a very specific environment “optimal”
proteins found by an evolutionary algorithm are more ro-
bust to mutation than those found by a random walk [10].
In [15] the very complex case of evolved computer code is
studied and it is found that high mutation rates force an
evolutionary system into broad, flat optima as opposed to
high, narrow optima.

Genetic algorithms have been used to solve a number of
challenging engineering problems. Genetic algorithms have
been used successfully to design circuit diagrams [6], baffle
placement in stoves [11], and stable systems controllers [7].

This study builds on work by Schonfeld and Ashlock [8,
9] to explore the mechanism for the location of robust op-
timal solutions by genetic algorithms. If the mechanism by
which genetic algorithms develop robust solutions can be
successfully isolated then it can be exploited to develop ro-
bust solutions to real world optimization problems.

In this paper only a specific type of robustness is consid-
ered, the mutational robustness of optimal solutions. In-
formally, the mutational robustness of an optimal solution
is the probability that a single point mutation will render
the solution non-optimal. That is, the probability that the
mutation will reduce the fitness of the optimal solution to
below the maximum fitness. The terms optimal solution and
robustness are defined more formally in the context of the
Self Avoiding Walk (SAW) problem in Section 2.

It should be noted that the concept of mutational robust-
ness is not new to this work or the previous work by Schon-
feld et. al. In [12] E.Nimwegen et. al. proposed a general
model for a population evolving on a neutral network, that
is, for a population evolving on a set of solutions with equiv-
alent fitness which are connected by single point mutation.
The success of the genetic algorithm at finding robust opti-
mal solutions is predicted by their analysis of their model.
The topic of mutational robustness has also been examined
in the context of evolutionary computing by Bullock in [3].
Bullock explored the manner in which a genetic algorithms
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tendency to select mutationally robust solutions affects how
it explores neutral networks. Unfortunately the author did
not become aware of these preceding works until late in the
final revision process of this paper and was unable to mod-
ify this paper to adequately reflect the contributions of these
works. The reader is referred to both of them for an excel-
lent treatment of similar material.

In Schonfeld et. al., 2004, [8] an evolutionary algorithm
using tournament selection was compared to the great del-
uge algorithm[1], a stochastic hill-climber, and a random
walk. For several functional optimization problems the tour-
nament selection algorithm was found to produce optimal
solutions which were significantly more robust to point mu-
tation than those of the other algorithms, except the great
deluge. The great deluge was often, but not always beaten
by the tournament selection algorithm. Its performance
sometimes failed to be significantly different from that of
the tournament selection algorithm because of a very high
variance in the robustness of the structures located by the
great deluge algorithm,

A second study by Schonfeld et. al., 2005,[9] investigated
a slightly different question: given an evolutionary optimiza-
tion problem with many possible genotypes for each pheno-
type are the evolved genes for a given phenotype more robust
to point mutation than randomly sampled genes for the same
phenotype. They answered the question using a cellular rep-
resentation for polyominos in the plane. The evolutionary
computation system optimized for shapes which packed well
onto the surface of a torus when dropped at random. For
the majority of the evolved phenotypes the evolved genes
for a given shape proved to be significantly more robust to
point mutation than those sampled at random for that same
shape. A few evolved genotypes, however, were not signif-
icantly more robust than those sampled at random and in
some cases were less robust.

Building on the conclusions of these previous studies, that
evolutionary algorithms do indeed evolve more robust solu-
tions in several different model systems, this study investi-
gates the character of that behavior more fully. For that
purpose the Self Avoiding Walk problem, where the ability
of a walk to completely cover a 2D grid is optimized, was
chosen. This problem has several advantages over both of
the previous optimization problems: it is more transparent
than the polyomino tiling problem, it is more challenging
than the function optimization problem, it can be tuned to
provide increasing levels of difficulty, and the optimal solu-
tions can be easily enumerated and their exact robustnesses
calculated.

The remainder of this paper is divided into four sections:
Section 2 describes the SAW problem and the experimen-
tal design, Section 3 gives the results of the experiments,
Section 4 contains the conclusions, and Section 5 the future
directions.

2. THE SAW PROBLEM AND EXPERIMEN-
TAL DESIGN

2.1 The SAW Problem

2.1.1 Definition of the SAW Problem
A self avoiding walk is a walk on a grid which visits every

grid square without visiting the same square more than once.
The SAW problem is defined as follows:

R R

An Optimal Walk A Non−Optimal Walk

L L D R

* *

RDLLD R

R R D R

Gene for the Optimal Walk

Gene for the Non−Optimal Walk

Figure 1: Examples of both optimal and non-
optimal solutions to the 3x3 Self Avoiding Walk
problem with a representation length of 8. In each
example the walk starts in the upper left corner and
grows according to the directions in the gene.

Given: A grid of size M x N , a fixed starting position,
and enough instructions to permit visiting all of the grid
squares.

Find: A set of instructions which generates a path that
visits every grid square.

If the number of instructions allowed is equal to MN-1
then each optimal solution is a self avoiding walk. If a walk
with more instructions visits every grid square then it still
solves the problem optimally, but it is not necessarily self
avoiding.

Each walk is represented as a string over the alphabet
{U, R, D, L}. Each character corresponds to one of the four
directions available on a 2D grid: up, right, down, and left.
The length of the string is referred to hereafter as the rep-
resentation length, and the string itself is referred to as the
gene. A gene is evaluated by growing the walk from a fixed
starting point, in the upper left corner of the grid, according
to the directions in the gene read from left to right. Instruc-
tions which would grow the walk beyond the limits of the
grid are ignored. Examples of both optimal and non-optimal
walks are given in Figure 1.

The fitness of the self avoiding walk (SAW) is scored by
counting the number of grid squares visited by the walk.
The minimum possible fitness for a walk is one, and the
maximum possible fitness is MN .

In the context of the SAW problem the terms optimal
solution and robustness are defined as follows.

Definition 2.1. Optimal Solution A walk which visits
every square in the grid.

Definition 2.2. Robustness The robustness of a struc-
ture is the probability a mutation will not change it’s fitness.
Since the mutation operator allows the possibility of a null
mutation at a rate of 1

4
, 0.25 ≤ robustness ≤ 1.
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2.1.2 Properties of the SAW Problem
One of the advantages of using the SAW problem as a

model system is the ability to quickly (for small grid sizes)
and easily enumerate each of the optimal solutions and all
of their mutants. This allows one to estimate both the dif-
ficulty of the particular SAW problem being solved as well
as the potential in the solution space for robustness.

Several basic properties of the SAW problem variants used
in the following experiments are displayed in Table 1. Two
trends are immediately apparent from reading the table:
first, the fraction of the solution space occupied by optimal
solutions increases with the length of the representation and
second, the range of the robustness values of the optimal so-
lutions also increases with the length of the representation.

The first trend is easily explainable by considering how the
optimal solution space and search space grow as the length of
the representation is increased. The size of the search space
is given by l4 where, l is the length of the representation.
Therefore, each additional instruction increases the search
space by exactly a factor of four. For any given optimal
solution four new optimal solutions can be generated simply
by adding an extra instruction to the end of the solution. An
additional 2M + 2N − 2 optimal solutions can be generated
by inserting the extra instruction so it directs the walk to
try to build into a wall. This means that for each increase
in instruction length the number of optimal solutions grows
by at least a factor of 2 + 2(M + N).

The second trend can be explained in light of the first.
The robustness is scored as a ratio of the number of 1-mutant
optimal solutions divided by the number total number of
1-mutants. Adding an instruction to an optimal solution
increases the number of 1-mutant optimal solutions by 2 +
2(M + N) while only increasing the number of mutants by
4.

2.2 Search Algorithms
This study compares two distinct search algorithms: a

stochastic hill climber, and a tournament selection based
genetic algorithm. The algorithms are compared both with
each other and against a baseline average determined by
selecting from the pool of optimal solutions uniformly at
random.

Each algorithm was implemented so that it had the same
number of fitness evaluations. Both the hill climber and
the genetic algorithm used the same mutation operator: (1)
m instructions were chosen without replacement from the
representation, and (2) each of the chosen instructions was
replaced with a new direction chosen from the allowable four
uniformly at random. There is, therefore, a one in four
chance that the new instruction will be the same as the old
instruction.

The average robustness score for a single run of an algo-
rithm was calculated as follows:

Pnopt
i=1 found(i)·rob(i)

Pnopt
i=1 found(i)

,

where nopt is the number of optimal solutions, found(i)
is the number of times the algorithm located the optimal
solution i, and rob(i) is the mutational robustness of the
optimal solution i.

The default common parameters for each algorithm are
given in Table 2. Several different values were tried for both

Parameter Symbol Value
No. Trials t 100
No. Generations g 200
Population Size p 100
No. Mutations m 1
Grid Width x 3
Grid Height y 3
Representation Length l 10

Table 2: Default parameter values shared by both
algorithms.

the number of generations and the population size. The
choice of population size did not have a significant impact
and the number of generations was chosen so as to allow
sufficient time for robustness to develop.

For the more difficult problem variants (4x4 grid with rep-
resentation lengths of 16 or 17) both algorithms occasionally
failed to find any optimal solutions in the allotted number
of generations. These trials were not counted towards the
100 trials run for each experiment.

2.2.1 Stochastic Hill Climber

01. Initialize Array of Solutions
02. Do g Times
03. Mutate Each Solution in the Array
04. If the New Solution has a Fitness ≥ the Old

Solution Save it
05. Record the Fitness for Each Solution

Stochastic Hill Climbing Algorithm

The stochastic hill climber (HC) algorithm was imple-
mented as an array of p stochastic hill climbers. Each indi-
vidual hill climber was initialized with a distinct randomly
determined set of instructions. Mutation was accomplished
by randomly picking m instructions, without replacement,
and replacing each one with a new directional instruction
chosen uniformly at random from the four possibilities.

2.2.2 Tournament Selection EA

01. Initialize Population of Solutions
02. Do g Times
03. Divide the Population Randomly into

Tournaments of Size 4
04. Copy the 2 Most Fit from Each Family into

the 2 least fit, creating 2 Children
05. Perform 1pt Crossover on the Children
06. Mutate Each Child
07. Record the Fitness for Each Solution

Tournament Selection Algorithm

The tournament selection (TS) algorithm used a tourna-
ment size of 4 and 1 point crossover. For each tournament
the children of the best two individuals replaced the worst
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Grid Size Representation No. Optimal Fraction of the Minimum Robustness Maximum Robustness
Length Solutions Solution Space Value Value

3x3 8 8 1.22e-4 0.25 0.25
3x3 9 136 5.19e-4 0.25 0.416667
3x3 10 1524 1.45e-3 0.25 0.525
3x3 11 13272 3.16e-3 0.25 0.613636
4x4 15 52 4.84e-8 0.25 0.25
4x4 16 1346 3.13e-7 0.25 0.359375
4x4 17 22130 1.29e-6 0.25 0.441176
4x4 18 272792 3.97e-6 0.25 0.5

Table 1: Basic properties for each of the variations of the SAW problem used in the experiments. These
properties are: (1) the number of optimal solutions, (2) the fraction of the solution space occupied by the
optimal solutions, (3) the minimum robustness value of any optimal solution, and (4) the maximum robustness
value of any optimal solution.

two individuals every generation. The children underwent
1pt crossover with a probability of 0.8 and were always mu-
tated. The mutation operator was implemented the same
as in the HC algorithm. m instructions were replaced with
new directions chosen from the four possibilities uniformly
at random.

The two earlier studies demonstrated that the robustness
effect occurred using the same tournament selection method,
but without the crossover operator. The crossover operator
was included in this study in order to test whether or not the
results would hold up with a more “typical” implementation
of a tournament selection based genetic algorithm.

2.3 Experimental Design
Three different sets of experiments were run and analyzed.

Each set of experiments was designed to probe a different
aspect of the algorithms and the SAW optimization prob-
lem in the hopes of illuminating the mechanism by which
tournament selection finds significantly more robust opti-
mal solutions. Significance was determined by comparing
the means of the average robustness scores for each pair of
algorithms using the Z test statistic.

2.3.1 Robustness Effect
The first set of experiments was designed to determine

which of the two algorithms generated more robust opti-
mal solutions: the stochastic hill climber or the tournament
selection based genetic algorithm. The results for both al-
gorithms were also compared with the baseline, determined
through random sampling of the optimal solutions previ-
ously enumerated.

Both algorithms were run on six different variations of the
SAW problem. The first three variants all used a 3x3 grid,
but varied in their representation length. Since there was
no variation in robustness for the set of minimally optimal
walks only representation lengths greater than 8 were used;
specifically: 9, 10, and 11.

The second set of three variants of the SAW problem all
used a 4x4 grid. Again three different representation lengths
were examined: 16, 17, and 18. The upper bounds of 11 and
18 on representation length as well as 4x4 on grid size were
chosen to keep the number of optimal solutions manageable.
To test larger parameter settings would require changing
from a complete enumeration of optimal solutions and their
mutants to a less exact sampling method to determine ro-
bustness.

2.3.2 Mutational Effect
In the two previous studies the mutation operator used

in the search algorithms was limited to a single point mu-
tation. In this set of experiments the effect that increasing
the number of point mutations has on the robustness of the
solutions obtained is examined. Five different values of m
were tested: 1, 2, 3, 4, and 5.

As a coda to the experiments with the mutation opera-
tor two versions of the tournament selection algorithm were
compared. The default implementation used the crossover
operator with a probability of 0.8, while the other imple-
mentation did not use the crossover operator at all.

2.3.3 Evolutionary Time
The final set of experiments explored the robustness of the

discovered optimal solutions as a function of the number of
generations the algorithms were allowed to run. The search
problem posed by the 3x3 grid with a representation length
of 10 is simple. As shown in Table 1 optimal solutions make
up 1.45 · 10−3 of the total search space. This means that
given a population size of 100 and 100 trials an optimal
solution will appear in the initial population 14.3% of the
time.

What remains unclear, however, is how soon after an op-
timal solution is located the algorithms begin finding robust
solutions. Both algorithms were run for seven different gen-
eration times: 10, 25, 50, 100, 200, 400, and 800. The aver-
age robustness of the optimal solutions found was reported.
For a single sample run the average robustness of the opti-
mal solutions in the current population was calculated and
reported for each of 500 generations.

The discovery of the first optimal solution is used as a
milestone instead of convergence primarily due to the diffi-
culty defining convergence in the context of the hill climber
which does not have a pooled population.

3. RESULTS

3.1 Experiment 1: The Robustness Effect
The results for the three SAW variants run on a 3x3 grid

are given in Figure 2. The figure shows that the optimal
solutions located by the GA were significantly more robust
than those obtained by either the random selection of optima
or the hill climber. In fact, the optimal solutions obtained
by the hill climber were significantly less robust than those
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Figure 2: A plot of the average robustness of the
solutions found by each algorithm with 95% confi-
dence intervals as the algorithms are run for three
distinct walk lengths(9, 10, and 11) on a 3x3 grid.

sampled at random from among the optimal solutions. This
suggests that upon finding the edge of the optimal solution
space the hill climbing algorithm did not stray very far from
it.

As the length of the representation was increased the gap
between the methods also increased. One possible reason for
this could be that the range in robustness available is also
increasing. This effect is explored further in the conclusions.
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Figure 3: A plot of the average robustness of the
solutions found by each algorithm with 95% confi-
dence intervals as the algorithms are run for three
distinct walk lengths(16, 17, and 18) on a 4x4 grid.

The SAW optimization problem posed by the 4x4 grid
is much more difficult, and the results reflected this. As
can be seen in Figure 3 the ability of the genetic algorithm
to find robust optimal solutions is highly dependent on the
representation length. Only with a representation of length
18 did the genetic algorithm locate optimal solutions which
were significantly more robust than those chosen uniformly
at random. The hill climber, on the other hand, located
optimal solutions which were significantly less robust than
those located at random for representation lengths of both

17 and 18.

3.2 Experiment 2: The Mutational Effect
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Figure 4: A plot of the average robustness of the
solutions found by each algorithm with 95% confi-
dence intervals as the algorithms are run for five
different mutation settings: 1,2,3,4, and 5.
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Figure 5: A plot showing the effect of the crossover
operator on the average robustness of the solutions
found by the tournament selection algorithm with
95% confidence intervals.

Increasing the number of point mutations applied each
generation had quite a pronounced effect on both of the algo-
rithms. As can be seen in Figure 4 increasing the frequency
with which the mutation operator was applied had a signif-
icantly disruptive effect on the robustness of the solutions
obtained by the GA. At the same time, the HC algorithm
benefited greatly from increasing m. For values of 4 and 5
the HC algorithm no longer found optimal solutions which
were significantly less robust than those chosen at random.
This suggests that a higher mutation rate helps drive the
HC algorithm into randomly exploring the optimal solution
space. In spite of the effects of increasing the frequency of
mutation the genetic algorithm still found optimal solutions
which were significantly more robust than those found by
the other methods.
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The crossover operator, on the other hand, not only helped
the algorithm find solutions more quickly, but in one case
even helped find significantly more robust solutions. This
behavior is shown clearly in Figure 5. For representation
lengths of 9 and 10 the solutions obtained by the implemen-
tation of the algorithm with crossover were not significantly
more or less robust than those obtained by the implemen-
tation without crossover. For a representation length of 11,
however, the implementation with crossover actually found
slightly more robust solutions. The implementation with
crossover found an optimal solution, on average, by genera-
tion 3. The implementation without crossover found optimal
solutions, on average, by generation 4.

3.3 Experiment 3: Emergence of Robustness
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Figure 6: A plot of the average robustness of the
optimal solutions found by each algorithm with 95%
confidence intervals as the algorithms are run for a
successively larger number of generations.
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Figure 7: A plot of the average robustness of the
optimal solutions in the current population versus
time for both algorithms and a random sampling of
the optimal solutions.

The effect of allowing the algorithms to run for longer and
longer numbers of generations is shown in Figure 6. At a
generation time of 10, shortly after an optimal solution was

found by both algorithms the average robustnesses of the
populations was not significantly different. After only 15
additional generations, however, the population of optimal
solutions found by the tournament selection algorithm was
significantly more robust. The gap between the two popu-
lations only grew as the generation time increased.

A typical sample run for each algorithm showing how the
robustness changed over time is given in Figure 7. At each
generation the average robustness of the current group of
optimal solutions was reported. If there were no optimal
solutions then the point was not plotted. On average the
hill climber found the an optimal solution by generation
5 and the tournament selection algorithm by generation 3.
Both algorithms reached an equilibrium state around gen-
eration 100. The tournament selection algorithm stabilized
well above the randomly sampled optimal solutions. The
hill climber, however, stabilized just below the random so-
lutions.

4. CONCLUSIONS
The results of the first experiment suggest that while the

tournament selection algorithm tends to find significantly
more robust solutions than either chance or the hill climber,
it does not always do so. In order to further investigate
the histograms of the robustness values of all optimal so-
lutions for each of the SAW variants were examined. The
histograms for the 3x3 variants are given in Figure 8 and for
the 4x4 variants in Figure 9.

As can be seen in the table the robustness values for the
3x3 variants form a symmetric bell curve, while the 4x4 vari-
ants form a highly skewed distribution. In work not shown
here it was verified that as the grid size increases from 2x2
to 5x5, the distribution of the variances becomes more and
more skewed. The correlation between the skew and com-
pleteness of the distributions of the robustness values and
the ability of the genetic algorithm to find robust solutions
suggests that the effectiveness of genetic algorithms at find-
ing robust solutions is highly dependent on the nature of the
optimal solution space.

The second experiment showed that the crossover oper-
ator, for the SAW problem at least, was neither a major
cause nor a preventer of robustness. While the 1pt crossover
used here did tend to have a slightly beneficial effect on the
development of robustness this effect did not appear to be
the major reason why the GA was so successful at locating
mutationally robust optimal solutions. Although it is not
explicitly shown in Figure 5 the average robustness scores of
the GA run without crossover were still significantly higher
than those obtained from either the stochastic hill climber
or random sampling. This suggests that the only thing sep-
arating the hill climber from the tournament selection algo-
rithm is the selection method and the interconnected nature
of the population in the GA. This result also implies that
the development of robustness is primarily a function of the
mutation operator, although the results for representation
length 11 suggest that the crossover also plays a role.

This leads us to suggest that in the GA robust solutions
act as weak attractors. A robust solution, by definition,
is more likely to have optimally fit children than a non ro-
bust solution. Therefore, the children of robust solutions are
more likely to survive and have children of their own. The
second set of experiments also demonstrates that too much
mutation is inhibitive to the development of robustness.
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Figure 8: Histograms of the mutational robustness for every optimal solution to each of the three 3x3 grid
variants. Beginning in the upper left and proceeding clockwise the variants have representation lengths of 9,
10, and 11 respectively.

One potential explanation for the lack of robustness in the
low representation length 4x4 grid variant is simply that you
need a certain level of available robustness before the robust
solutions can act as effective attractors.

The third grouping of experiments is perhaps the most
interesting. The TS algorithm starts to find robust solu-
tions quite quickly. This suggests that it may be relatively
cheap in computational cost to let a simulation run beyond
the location of a satisfactory solution in order to generate a
higher robustness within that population.

5. FUTURE DIRECTIONS
This study suggest two main avenues of research. The first

is in the area of real world applications. As was stated in
the introduction genetic algorithms have been used to find
solutions for a number of different engineering problems. It
would be incredibly useful to the engineering community if it
could be demonstrated that genetic algorithms consistently
find more robust solutions simply by running for a small
number of additional generations past the point at which a
sufficiently optimal solution is found. Although the ability
of genetic algorithms to find more robust solutions has now
been demonstrated for several different problems a compre-
hensive study of real world engineering problems is needed
to determine the practical benefits of this effect.

The second main direction suggested by this research is a
further investigation of the theory behind the development
of robust solutions by GAs. A number of unanswered ques-

tions still remain: How much of a role does the selection
method play? Would a different GA, such as a fitness pro-
portionate GA, find equally robust solutions?

It seems fairly clear from this research that the method of
selection used plays an important role in the development
of robustness. Studying graph-based genetic algorithms [2,
4], alternative means of selection, or other methods which
control the interaction between members of the population
pool could provide additional insight.

6. ACKNOWLEDGMENTS
The author would like to acknowledge Dr. Daniel Ashlock

and Dr. Sushil Louis for many helpful discussions. This ma-
terial is based upon work supported by the National Science
Foundation under Grant No. 0447416.

7. REFERENCES
[1] T. Back, D. B. Fogel, and Z. Michalewicz. Handbook

of Evolutionary Computation. Institute of Physics
Publishing, 1997.

[2] K. M. Bryden, D. Ashlock, S. Corns, and S. Willson.
Graph based evolutionary algorithms. IEEE
Transactions on Evolutionary Computation, 2006.

[3] S. Bullock. Will selection for mutational robustness
significantly retard evolutionary innovation on neutral
networks? In Standish, Abbass, and Bedau, editors,
Artificial Life VIII, pages 192–201. MIT Press, 2002.

1410



Histogram of Avg. Robustness Values for 4x4x16
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