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ABSTRACT
Adaptive Memetic Algorithms couple an evolutionary algo-
rithm with a number of local search heuristics for improving
the evolving solutions. They are part of a broad family of
meta-heuristics which maintain a set of local search opera-
tors applying them at different stages of the search. This
creates a need to make decisions about which operator to
use when. Several different schemes have been proposed,
but most of them assume there is a fixed set of predefined
operators. This makes them unsuitable for use within the
broader context of adaptive learning systems where the set
of available operators can change over time. Here we in-
vestigate a range of different schemes, and propose a novel
method for estimating an operator’s current utility, which
is shown to avoid some of the problems of noise inherent in
simpler schemes. Results on a range of combinatorial op-
timisation problems show that algorithms embodying this
mechanism locate the global optimum more reliably, with-
out a significant computational overhead compared to the
simpler schemes.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and SearchHeuristic Methods

General Terms
Algorithms,Performance,Reliability

Keywords
Memetic algorithms, co-evolution, local search, adaptivity

1. INTRODUCTION
One of the more successful recent trends in heuristic opti-

misation has been the increasing focus on what Ong et. al.
have termed Adaptive Memetic Algorithms [29]. These cou-
ple an evolutionary algorithm with a number of local search
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(LS) heuristics for improving the quality of the evolved so-
lutions. They are part of a broad family of meta-heuristics
which maintain a number of LS operators and use different
ones at different stages of the search. Other well-known
members of this class include Hyper-Heuristics [11], and
Variable Neighbourhood Search [14].

Common to all of these meta-heuristics is the need to
make decisions about which LS operator to use at any given
time. A number of different schemes have been proposed,
and the recent survey by Ong et. al. provides a taxonomy
for their classification along with some initial comparisons in
the field of continuous optimisation [29]. However many of
the proposed schemes assume the use of a fixed set of LS op-
erators - for example one method used in Hyper-Heuristics
increases the likelihood of using a LS method not only ac-
cording to its recent perceived utility, but also according to
the length of time since it was last used. This, and similar
methods are clearly not directly suitable for use within the
broader context of adaptive learning systems as exemplified
by a number of recent algorithms where the set of LS oper-
ators, and their definitions, can change over time e.g. [36,
40, 22].

This paper investigates a range of different strategies for
choosing and rewarding adaptive LS operators. It does so in
the co-evolutionary context of the Coevolution Of Memetic
Algorithms (COMA) framework [36, 37, 40], and so is able
to leverage a body of related research in collaborative co-
evolution. A novel method is proposed for obtaining more
reliable estimates of a LS operator’s utility at a given stage
of the search process, and it is demonstrated that this avoids
some of the problems of noise inherent in simpler schemes.
The resultant algorithms are shown to demonstrate improved
reliability of locating the global optimum, while not incur-
ring significant computational overheads compared to the
simpler schemes, or to “static” memetic algorithms, on a
range of test problems. The rest of this paper proceeds
as follows. Section 2 provides a rationale for this research
within the context of evolutionary algorithms. It then de-
scribes various meta-heuristics proposed within this frame-
work and places this work within the more general context
of studies into adaptation, development and learning. Sec-
tion 3 describes the specific model used to investigate differ-
ent credit assignment strategies, and briefly reviews relevant
results from previous papers. Section 4 describes the exper-
imental set-up and the choice of performance metrics for
comparison. Section 5 details and discusses the main exper-
imental results. Finally, Section 6 discusses the implications
of these results, draws conclusions and suggests future work.
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2. BACKGROUND

2.1 What is a Memetic Algorithm?
The performance benefits which can be achieved by hy-

bridising Evolutionary Algorithms (EAs) with Local Search
(LS) operators, so-called Memetic Algorithms (MAs), have
now been well documented across a wide range of prob-
lem domains such as optimisation of combinatorial, non-
stationary and multi-objective problems (see [26] for a re-
view,and [15] for a collection of recent algorithmic and the-
oretical work). Typically in these algorithms, a LS improve-
ment step is performed on each of the products of the gen-
erating (recombination and mutation) operators, prior to
selection for the next population. There are of course many
variants on this theme, but these can easily be fitted within
a general syntactic framework [26].

In recent years it has been increasingly recognised that
the particular choice of LS operator will have a major im-
pact on the efficacy of the hybridisation. Of particular im-
portance is the choice of move operator, which defines the
neighbourhood function, and so governs the way in which
new solutions are generated and tested. Points which are
locally optimal with respect to one neighbourhood struc-
ture will not in general be so with respect to another, unless
of course they are globally optimal. It therefore follows that
even if a population only contains local optima, then chang-
ing the LS move operator (neighbourhood) may provide a
means of progression in addition to recombination and mu-
tation. This observation has led a number of authors to
investigate and propose mechanisms for choosing between a
set of predefined LS operators which may be used during a
particular run of a meta-heuristic such as an EA.

2.2 MAs with Multiple LS Operators
There are several recent examples of the use of multiple

LS operators within evolutionary systems. Ong et al.[29]
present an excellent recent review of work in the field of what
they term “Adaptive Memetic Algorithms”. This encom-
passes Krasnogor’s “Multi-Memetic Algorithms” [20, 24, 25,
21], Smith’s COMA framework [36, 38, 39, 40], Ong and
Keane’s “Meta-Lamarkian MAs [28], and Hyper-Heuristics
[11, 9, 19, 8]. In another interesting related algorithm,
Krasnogor and Gustafson’s “Self-Generating MAs” use a
grammar to specify for instance when local search takes
place [22, 23]. Essentially all of these approaches maintain a
pool of LS operators available to be used by the algorithm,
and at each decision point make a choice of which to ap-
ply. There is a clear analogy between these algorithms and
Variable Neighbourhood Search [14], which uses a heuristic
to control the order of application of a set of predefined LS
operators to a single improving solution. The difference here
lies in the population based nature of MAs, so that not only
do we have multiple LS operators but also multiple candi-
date solutions, which makes the task of deciding which LS
operator to apply to any given one more complex.

The classification of Ong et al. uses the terminology de-
veloped elsewhere to describe adaptation of operators and
parameters in Evolutionary Algorithms [44, 16, 12]. They
categorise algorithms according to the way that these deci-
sions are made. One way is to use a fixed strategy, this is
termed “static”. Another is to use feedback of which op-
erators have provided the best improvement recently. This
is termed “Adaptive”, and is further subdivided into “ex-

ternal”, “local” (to a deme or region of search space), and
“global” (to the population) according to the nature of the
knowledge considered. Finally they note that LS operators
may be linked to candidate solutions (Self-Adaptive). In this
terminology, the COMA algorithm may be local-Adaptive or
Self-Adaptive. In this paper we will adopt this terminology,
and also make use of the general term “meme” to denote an
object specifying a particular local search strategy.

2.3 Self-Adaptation and Co-Evolution
As noted above, we are concerned with meta-heuristics

which maintain two sets of objects - one of genes and one
of memes. If we consider these to be adaptive, and use
evolutionary processes to manage what may now be termed
populations, then we can draw some immediate parallels to
other work.

If the populations are of the same size and selection of
the two is tightly coupled (to use the notation of [2]) then
this situation can be considered as a form of Self Adap-
tation. The use of the intrinsic evolutionary processes to
adapt mutation step sizes has long been used in Evolution
Strategies [35], and Evolutionary Programming [13]. Similar
approaches have been used to self-adapt mutation probabil-
ities [3, 43] and recombination operators[34, 42] in genetic
algorithms as well as more complex generating operators
which combined both mutation and recombination [41].

If selection is performed separately for the two popula-
tions then we have a co-operative co-evolutionary system,
where the fitness of the members of the meme population is
assigned as some function of the relative improvement they
cause in the “solution” population. Following initial work
by Husbands and Mill [17] the metaphor of co-operative
(or collaborative) co-evolution has gained increasing inter-
est. Paredis has examined the co-evolution of solutions and
their representations [30]. Potter and DeJong have also
used co-operative co-evolution of partial solutions in situ-
ations where an obvious problem decomposition was avail-
able [33]. Both reported good results. Bull [5] conducted a
series of more general studies on co-operative co-evolution
using Kauffman’s static NKC model. In [7] he examined the
evolution of linkage flags in co-evolving “symbiotic” systems
and showed that the strategies which emerge depend heav-
ily on the extent to which the two populations affect each
others fitness landscape. It was shown that linkage of the
two species chromosomes was preferred in highly interdepen-
dent situations. In the context we are using here, the idea
of linked population is equivalent to memes self-adapting
as part of the solutions’ genotypes. Bull also examined the
effect of various strategies for pairing members of different
populations for evaluation [6]. This showed mixed results,
although the NKC systems he investigated used fixed in-
teraction patterns. This work has recently been revisited
and extended by Wiegand et al. with very similar findings
[46]. Wiegand’s work also focused attention on the num-
ber of partners with which a member of either population
should be evaluated, which draws attention to the trade-off
between accurately estimating the value of an object (solu-
tion or meme), and using up evaluations doing so.

Parker and Blumenthal’s “Punctuated Anytime Learning
with samples” [32] is another recent approach to the pairing
problem by using periodic sampling to estimate fitness, but
this is more suited to approaches where the two populations
evolve at different rates.
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There has also been a large body of research into compet-
itive co-evolution (see [31] for an overview). Here the fit-
nesses assigned to the two populations are directly related
to how well individuals perform against the other popula-
tion - what has been termed “predator-prey” interactions.
Luke and Spector [27] have proposed a general framework
within which populations can be co-evolved under different
pressures of competition and co-operation. This uses speci-
ation both to aid the preservation of diversity and as a way
of tackling the credit assignment problem.

3. EVOLVING MEMES
This section describes the COMA framework chosen for

these investigations, which provides a broad general model
within which many different schemes can be implemented.
The framework maintains two populations: one of genes en-
coding for candidate solutions, and one of memes encoding
for LS operators to be used within the MA. Local Search is
considered to be specified by three components: the pivot
function (e.g. steepest or greedy ascent), the depth (num-
ber of iterations applied), and the choice of neighbourhood
generating function. This latter defines a set of candidate
solutions n(i) that can be reached by the application of some
move operator to the solution i. The memes are encoded as
tuples of the form <Depth, Pivot Rule, Pairing, Move>,
where the first three elementrs take natural integer repre-
sentations. The move operators are represented as condi-
tion:action pairs, specifying a pattern to be looked for in the
problem representation, and a different pattern it should be
changed to.

Most relevant is the element Pairing, which indicates how
the choice of which members of the two populations to com-
bine for evaluation is managed. This element allows the sys-
tem to be specified to follow the extremes of a fully unlinked
system, in which although still interacting the two popula-
tions co-evolve separately, and a fully linked, self-adapting
system. Here the memes are effectively extra genetic mate-
rial inherited and varied along with the problem represen-
tation. The full algorithm is described in pseudo-code in
Figure 1, and as is illustrated in the If..Else section the full
range of LS selection schemes can be achieved by encoding
the pairing as a value taken from the set {Linked, Random,
Fitness Based}.

This framework, along with a road-map for exploring vari-
ous issues and possibilities was initially proposed in [36] and
these have been explored in a series of papers [37, 38, 39,
40]. The reported results were significantly better than the
static MAs tested on a wide range of combinatorial optimi-
sation problems both in terms of efficiency and effectiveness.
However, to date investigation of the effects of different pair-
ing strategies was less conclusive, with the reported results
showing that the self-adaptive strategies usually, but not al-
ways, out-performed those using fitness-based linkage. This
provided an extra incentive for the use of the COMA frame-
work within this research.

4. EXPERIMENTAL SET-UP

4.1 Test Functions
A range of test functions were chosen to embody different

problem characteristics. The first three were based around

a 4-bit deceptive “Trap” function introduced by Deb [4]:

f(i) =

�
0.6 − 0.2 · u(i) : u(i) < 4

1 : u(i) = 4
(1)

where u(i) is the unitation of a substring i.
For the first test problem (4-Trap), instances of this were

concatenated to form a problem with variable lengths in the
range {20, 40, . . . , 200}. Early experiments [37] showed that
on this problem, the COMA system is able to first identify
rules of the form #### → 1111, and then exploit them
through repeated application. The use of this problem is
thus intended to test the ability of the different forms of
credit assignment to identify and then maintain such rules
in the meme population.

A second “distributed” version (Dist-Trap) was used in
which the subproblems were interleaved i.e. sub-problem i
was composed of the genes i, i+16, i+32, i+48. This sepa-
ration ensured that in a single application even the longest
rules allowed in these experiments would be unable to alter
more than one element in any of the sub-functions.

A third variant of this problem (Shifted-Trap) was de-
signed to be more “difficult” for the COMA algorithm in
a different way by making patterns which were optimal in
one sub-problem, sub-optimal in all others. Since unitation
is simply the Hamming distance from the all-zeroes string,
each sub-problem can be translated by replacing u(i) with
the Hamming distance from an arbitrary 4 bit string. There
were 16 sub-problems so the binary coding of each ones’ in-
dex was used as basis for its fitness calculation. Analysis
of previous results [37] suggests that to solve both of these
problems it is necessary to maintain a diverse rule-set in the
meme population - a different test for the credit assignment
mechanism.

The fourth test function was Watson’s highly epistatic H-
IFF function. At the bottom level, fitness is awarded to
matching pairs of adjacent bits in a solution s, i.e.

f1s =

l/2−1�
i=0

1 − XOR(s2i, s2i+1) (2)

and this process is applied recursively, so that a problem of
size l = 2k has k levels. In each ascending level the num-
ber of blocks is reduced by a factor of two, and the fitness
awarded for each matching pair is increased by the same fac-
tor. This problem has a number of Hamming sub-optima,
and two global optima corresponding to the u(i) ∈ {0, 1}.
Problem sizes l ∈ {8, 16, . . . , 512} were used, corresponding
to 3 to 9 levels. In this case both the rules # → 1 and # → 0
will yield improvements at the lower levels, and in order to
solve the problem the credit assignment mechanism must
filter out these lower level effects to permit the population
to “specialise” and approach one of the global optima.

The final test function was Max-SAT problem, a classic
from the field of combinatorial optimisation, which consists
of a number of Boolean variables and a set of clauses built
from those variables. A full description and many examples
can be found in [1]. For each length {50,100,250} the first
25 were taken from the sets of uniformly randomly created
satisfiable instances around the phase transition (in terms
of hardness) with approximately 4.3 clauses per variable.

4.2 Performance Metrics
On the Shifted-Trap and Dist-Trap each algorithm was
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COevolving Memetic Algorithm for Binary Coded Problems :
Begin

/* given starting populations of solutions (P) and memes (M) both of size µ */
initialise P with randomly selected binary genes;
initialise M with randomly selected memes;
set generations = 0;
set evaluations = 0;

Repeat Until ( run termination condition is satisfied )
Do

/* Create µ offspring in each population */
For child := 1 To child = µ Do

/* Create offspring by selection, recombination and mutation, storing the parents id’s */
set Parent1[child] = Select One Parent(P);
set Parent2[child] = Select One Parent(P);
set Offspring[child] = Recombine(Parent1[child],Parent2[child]);
Mutate(Offspring[child]);

/* Select parents of the new meme */
set Pairing = Get Pairing(M,child);
If (Pairing = Linked) Then
set MemeParent1[child] = Parent1[child];
set MemeParent2[child] = Parent2[child];

Fi
Else If (Pairing = Fitness Based) Then
set MemeParent1[child] = Select One Parent(M);
set MemeParent2[child] = Select One Parent(M);

Fi
Else
set MemeParent1[child] = RandInt(1,µ);
set MemeParent2[child] = RandInt(1,µ);

Esle

/* Create new meme from these parents using recombination and mutation */
set NewMemes[child] = Recombine(MemeParent1[child],MemeParent2[child]);
Mutate(NewMemes[child]);

/* Finally apply local search to Offspring Using Memes */
set original fitness = Get Fitness(Offspring[child]);
/* Applying the rule part of a meme to an offspring produces a set of neighbours */
set Neighbours = Apply Rule To Offspring(Offspring[child],NewMemes[child]);
Evaluate Fitness(Neighbours);
/* Pivot rule of meme determines choice of neighbour */
set Offspring[child] = Apply Pivot Rule To Neighbours(Neighbours,NewMemes[child]);
/* Finally update meme fitness according to increase in solution fitness */
set Δfitness = Get Fitness(Offspring[child]) - original fitness;
Update Meme Fitness(NewMemes[child], Δfitness);
set child = child +1;

Od

set evaluations = evaluations +1 + |Neighbours|;
set P = Offspring;
set M = NewMemes;

Od
End.

Figure 1: Pseudo-Code Definition of COMA algorithm

run 10 times. For the 4Trap and H-IFF functions this was
repeated for each length used. For the SAT problems, each
algorithm was run ten times on each instance, giving 250
runs for each combination of algorithm and length. Each run
was continued until the global optimum was reached, sub-
ject to a maximum of 500,00 evaluations. Two performance
metrics were considered. To measure effectiveness we used
the Success Rate (SR) which is the number of runs finding

the global optimum. To measure efficiency we used the Av-
erage Evaluations to Success (AES), which is the mean time
taken to locate the global optimum on successful runs. The
reason for the large cut-off value was to try and avoid skew-
ing results as can happen with an arbitrarily chosen lower
cut-off, rather than to be indicative of the amount of time
available for a “real world” problem. Note that since one
iteration of a LS may involve several evaluations, this allows
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more generations to the GA, i.e. algorithms are compared
strictly on the basis of the number solutions evaluated.

4.3 COMA set-up
A generational genetic algorithm, with deterministic bi-

nary tournament selection for parents and no elitism was
used. One Point Crossover (with probability 0.7) and bit-
flipping mutation (with a bitwise probability of 0.01) were
used on the problem representation. These choices were
taken as “standard” from the literature, and no attempt was
made to tune them to the particular problems at hand. Mu-
tation was applied to the rules with a probability of 0.0625
of selecting a new allele value in each locus (the inverse of
the maximum rule length allowed to the adaptive version).
Each meme used a greedy ascent pivot rule for one step of
hill-climbing.

The algorithms used, and the abbreviations which will be
used to refer to them hereafter, are as follows:

• A “vanilla” GA with no Local Search (GA).

• A simple MA using a neighbourhood of Hamming dis-
tance one, with one iteration of greedy ascent (SMA).

• COMA with “global-random” pairing (CR) achieved
by making a random choice of parents for the meme
created to use with each solution. Effectively this
scheme equates to having a uniform credit assignment
mechanism which removes selection pressure in the
meme population.

• COMA with “local-adaptive” pairing achieved by the
use of self-adaptation (CS). There is implicit credit
assignment via the association of good memes with
good solutions they help to create.

• COMA with “global-adaptive” pairing of memes and
solutions. In this case the credit assignment mecha-
nism sets the fitness of each meme to be the improve-
ment it causes when applied to a solution. Memes
are then selected to be parents using a simple binary
tournament, hence this scheme is denoted CT. Note
that in this case there is no “memory”, so even if a
meme perfectly encapsulates the problem structure it
can achieve zero fitness if it happens not to match or
change the solution it is paired with.

• COMA with a “memory” (CTD). Inspired by Paredis’
“Life Time Fitness Evaluation” (LTFE) [31] this uses
a time-decaying fitness function of the form:

meme fitness′ = meme fitness · decay factor

+improvement caused (3)

In the case that a meme is newly created, it takes the
average of its parent’s fitnesses, and a decay factor of
0.5 was used.

• Early results [37] indicated that the uses of greedy as-
cent could be a source of noise that confused the credit
assignment mechanism. This ties in with finding that
there is no single best way of choosing a partner for
evaluation in general co-evolutionary schemes (see e.g.
[5, 6, 46]). However there is also a computational over-
head every time a meme is applied to a solution. The

compromise scheme tested involves a minor modifica-
tion to the COMA algorithm so that two solution par-
ents contribute to create two offspring solutions via re-
combination, and similarly for the memes. Each meme
is then tested against both of the solutions and the
fitness assigned is either the mean (CT2M) or bet-
ter (CT2B) of the two improvements noted. In Wie-
gand’s terminology this is a collaboration poolsize of
two. Each solution takes the better of the two neigh-
bours found for it.

5. RESULTS

5.1 Reliability
Table 1 shows the Success Rates achieved with the differ-

ent algorithms on each function and problem length. The
results not just for the 3 Trap variants but also the H-IFF
show the clear advantage of Adaptive Memetic Algorithms
over both the static counterpart (SMA) and a simple Genetic
Algorithm (GA). The global-random scheme (CR) shows
lower Success Rates than the other COMA algorithms on
most problems. The local-adaptive scheme (CS) also has
lower success rates on the longer H-IFF problems and the
SAT problems that the global-adaptive variants.

Comparing the four different global-adaptive schemes, no
single clear pattern emerges:

• On the 4-trap functions, the simpler schemes based on
a single pairing (CT, CTD) find the optimum slightly
more often for the longer instances.

• On the Shifted-Trap and Dist-Trap functions the per-
formances are the same (100% Success), except that
the CT algorithm was only successful 9 times on Dist-
Trap.

• In contrast, on the H-IFF and SAT problems the schemes
that use credit-assignment based on a collaboration
poolsize of 2 are more successful, the averaging version
(CT2M) especially so. Notably the CTD scheme with
memory and a collaboration poolsize of 1 is markedly
less successful than the others on the SAT functions.

• Taking the results for all functions into account, the
CT2M algorithm has the highest success rate.

5.2 Efficiency
Figure 2 illustrates the change in the mean time to locate

the optimum for the Trap, H-IFF and SAT functions used
with different length instances. The results for the GA, SMA
and CR are omitted from the first two for the sake of clarity
as they are so poor. As can be seen, on the Trap functions
the results with collaboration poolsize 1 (CT, CTD, CS) are
obtained faster than with the poolsize of 2 (CT2M, CT2B).
This is a natural result of the overhead of testing each meme
against two solutions - since the solution just takes the better
of the two improvements to be the result of its Lamarkian
learning, the other evaluations are “wasted” from that point
of view. However on the H-IFF function the CT approach is
not only less successful than the CTD approach, but takes
more evaluations when it does find the optimum. This can
be explained by the fact that the algorithm needs to make a
decision between the all ’1’s solution and the all ’0’s solution,
and the use of a memory helps make this decision consistent
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Table 1: Success Rates of Algorithms on Different Functions
Function Len CR CS CT2B CT2M CTD CT GA SMA

4Trap 20 10 10 10 10 10 10 10 10
40 10 10 10 10 10 10 10 6
60 10 10 10 10 10 10 10 3
80 10 10 10 10 10 10 10 0
100 10 10 10 10 10 10 10 0
120 10 10 10 10 10 10 8 0
140 9 10 10 10 10 10 3 0
160 10 10 10 10 10 10 1 0
180 2 10 7 9 10 10 0 0
200 0 10 2 4 10 10 0 0
Total 81 100 89 93 100 100 62 19

Shifted Trap 64 10 10 10 10 10 10 10 3
Dist-Trap 64 0 10 10 10 10 9 0 0
H-IFF 16 10 10 10 10 10 10 10 10

32 10 10 10 10 10 10 5 10
64 2 9 9 10 10 8 4 8
128 0 3 5 8 6 7 0 0
256 0 0 6 4 4 3 0 0
Total 22 32 40 42 40 38 19 28

SAT 50 131 134 146 152 136 145 114 153
100 28 21 24 26 16 25 38 27
Total 159 155 170 178 152 170 152 180

Total 272 307 319 333 312 327 243 230

Table 2: Ranking of time to find solutions on differ-
ent functions. X < {Y,Z} indicates that X is faster
than Y which is in turn faster than Z, but that only
the first difference is significant with 95% confidence
according to Tamhane’s test

4Trap
{ GA, CTD, CT, SMA, CS, CR, CT2B, CT2M }

Shifted-Trap
{ GA, CTD, CS, CT, CR, CT2M, CT2B } < SMA

Dist-Trap
{ CTD, CS, CT, CT2B, CT2M }

H-IFF
{ GA,CR, CS} < { SMA, CTD, CT,CT2B, CT2M }

SAT
{ GA, SMA } < {CR,CS,CTD,CT} < {CT2MG,CT2BG}

between generations. On the SAT problems, where there is
no regular problem structure to be learnt and exploited, the
CT2M/B schemes again take longer.

For each function an ANOVA was performed followed by
post-hoc testing using Tamhane’s T2 test. This yielded
the rankings in Table 2. This table shows that of the four
more successful credit assignment mechanisms, the one with
memory - CTD is always the fastest, followed by CT as
expected from the discussion above. Hidden in the tables
is the fact that the difference between the results for CTD
and CT2M/CT2B is usually significant with 95% confidence,
but that the difference between the CT and those two ap-
proaches is not significant.

5.3 Discussion
These results clearly demonstrate that the use of a credit

assignment mechanism that does not rely solely on the im-

provement caused when a meme is applied to a single so-
lution has its advantages. In general those schemes that
make use of multiple collaborations (to use Wiegend’s ter-
minology) - either explicitly within the same generation, or
via a memory - have higher success rates, and this does not
seem to be at the expense of significantly increased run-
times. The memory-based approach (CTD) is faster, but
can be mislead as shown by the lower Success Rates for
the SAT functions. We hypothesise that this is because the
meme population is not converging in these runs, so the
use of fitness inherited from both parents is more “noisy”.
In contrast the approach which exploits the creation of two
offspring during recombination (CT2M/B) displays reliable
optimum finding on all problems without a significantly in-
creased overhead compared to the CT strategy.

6. CONCLUSIONS
The survey of meme-pairing and credit assignment schemes

in Adaptive Memetic Algorithms [29] concluded that for
continuous-variable problems a global adaptive scheme was
preferable. In this work we have extended their work to
consider combinatorial optimisation problems, and in par-
ticular to consider the adaptations that are necessary to the
global-adaptive schemes when the set of memes available is
not held static, but evolves. We have also taken into account
the studies by Wiegend et. al. [46] on the optimal size of
the “collaboration pool” in co-evolution. Our results sug-
gest that for combinatorial optimisation, where the concept
of “locality” is less well defined, a global-adaptive scheme
is indeed preferable, subject to the ability of the credit as-
signment scheme to accurately reflect the value of a meme
at that point in time. This can be done either by the use
of a “memory” where the results of past encounters have a
time-decaying contribution to the fitness of a meme, or by
evaluating each meme with two different solutions. This of
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Figure 2: Average Evaluations to Success on Trap
(top) and H-IFF (middle) functions. Box-plots of
Evaluations to Success on SAT functions (bottom).
Lighter boxes are for 50-variable instances, darker
ones for 100 variables.

course has the benefit that each solution is subjected to LS
using two potentially different neighbourhoods, which can
enhance the escape from local optima. This effect can be
seen on the SAT problems, and to a lesser extent on the H-
IFF problems. Of the two schemes tested, the one which as-
signs to each meme the average of the improvements caused
in the two solutions (CT2M) outperformed the use solely of
the better of the two.

The resulting algorithm, CT2M displays problem solving
capability better than either the fixed (SMA) memetic algo-
rithms or the other adaptive memetic algorithms, and ap-
pears to represent a computationally inexpensive solution to
the problems noted in previous papers e.g. [37]. The next
phase of research will concern testing these conclusions with
other meta-heuristics.
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Partners. In T. Bäck, editor, Proceedings of the 7th
International Conference on Genetic Algorithms, pages
370–377. Morgan Kaufmann, San Francisco, 1997.

[7] L. Bull and T. Fogarty. Horizontal gene transfer in
endosymbiosis. In C. Langton and K.Shimohara, editors,
Proceedings of the 5th International Workshop on Artificial
Life : Synthesis and Simulation of Living Systems
(ALIFE-96), pages 77–84. MIT Press, Cambridge, MA, 1997.

[8] E. Burke, G. Kendall, and E. Soubeiga. A tabu search
hyperheuristic for timetabling and rostering. Journal of
Heuristics, 9(6), 2003.

[9] E. Burke and A. Smith. Hybrid evolutionary techniques for the
maintenance scheduling problem. IEEE Transactions on
Power Systems, 15(1):122–128, 2000.

[10] 2003 Congress on Evolutionary Computation (CEC’2003).
IEEE Press, Piscataway, NJ, 2003.

[11] P. Cowling, G. Kendall, and E. Soubeiga. A hyperheuristic
approach to scheduling a sales summit. Lecture Notes in
Computer Science, 2079:176–95, 2001.

[12] A. Eiben, R. Hinterding, and Z. Michalewicz. Parameter
control in evolutionary algorithms. IEEE Transactions on
Evolutionary Computation, 3(2):124–141, 1999.

[13] D. Fogel. Evolving Artificial Intelligence. PhD thesis,
University of California, 1992.

[14] P. Hansen and N. Mladenovic̀. An introduction to variable
neighborhood search. In S. Voß, S. Martello, I. Osman, and
C. Roucairol, editors, Meta-Heuristics: Advances and Trends
in Local Search Paradigms for Optimization. Proceedings of
MIC 97 Conference. Kluwer Academic Publishers, Dordrecht,
The Netherlands, 1998.

[15] W. Hart, N. Krasnogor, and J. Smith, editors. Recent
Advances in Memetic Algorithms. Springer, Berlin,
Heidelberg, New York, 2004.

[16] R. Hinterding, Z. Michalewicz, and A. Eiben. Adaptation in
evolutionary computation: A survey. In Proceedings of the
1997 IEEE Conference on Evolutionary Computation. IEEE
Press, Piscataway, NJ, 1997.

[17] P. Husbands and F. Mill. Simulated coevolution as the
mechanism for emergent planning and scheduling. In R. Belew
and L. Booker, editors, Proceedings of the 4th International
Conference on Genetic Algorithms, pages 264–270. Morgan
Kaufmann, San Francisco, 1991.

1418



[18] Proceedings of the 1996 IEEE Conference on Evolutionary
Computation. IEEE Press, Piscataway, NJ, 1996.

[19] G. Kendall, P. Cowling, and E. Soubeiga. Choice function and
random hyperheuristics. In Proceedings of Fourth Asia-Pacific
Conference on Simulated Evolution and Learning (SEAL),
pages 667–671, 2002.

[20] N. Krasnogor. Coevolution of genes and memes in memetic
algorithms. In A. Wu, editor, Proceedings of the 1999 Genetic
and Evolutionary Computation Conference Workshop
Program, 1999.

[21] N. Krasnogor. Studies in the Theory and Design Space of
Memetic Algorithms. PhD thesis, University of the West of
England, 2002.

[22] N. Krasnogor. Self-generating metaheuristics in bioinformatics:
The protein structure comparison case. Genetic Programming
and Evolvable Machines. Kluwer academic Publishers,
5(2):181–201, 2004.

[23] N. Krasnogor and S. Gustafson. A study on the use of
“self-generation” in memetic algorithms. Natural Computing,
3(1):53–76, 2004.

[24] N. Krasnogor and J. Smith. A memetic algorithm with
self-adaptive local search: TSP as a case study. In D. Whitley,
D. Goldberg, E. Cantu-Paz, L. Spector, I. Parmee, and H.-G.
Beyer, editors, Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2000), pages 987–994.
Morgan Kaufmann, San Francisco, 2000.

[25] N. Krasnogor and J. Smith. Emergence of profitable search
strategies based on a simple inheritance mechanism. In Spector
et al. [45], pages 432–439.

[26] N. Krasnogor and J. Smith. A tutorial for competent memetic
algorithms: Model, taxonomy and design issues. IEEE
Transactions on Evolutionary Computation, 9(5):474–488,
2005.

[27] S. Luke and L. Spector. Evolving teamwork and coordination
with genetic programming. In J. Koza, D. Goldberg, D. Fogel,
and R. Riolo, editors, Proceedings of the 1st Annual
Conference on Genetic Programming, pages 141–149. MIT
Press, Cambridge, MA, 1996.

[28] Y. Ong and A. Keane. Meta-lamarckian learning in memetic
algorithms. IEEE Transactions on Evolutionary
Computation, 8(2):99–110, 2004.

[29] Y. Ong, M. Lim, N. Zhu, and K. Wong. Classification of
adaptive memetic algorithms: A comparative study. IEEE
Transactions on Systems Man and Cybernetics Part B,
36(1), 2006.

[30] J. Paredis. The symbiotic evolution of solutions and their
representations. In L. Eshelman, editor, Proceedings of the 6th
International Conference on Genetic Algorithms, pages
359–365. Morgan Kaufmann, San Francisco, 1995.

[31] J. Paredis. Coevolutionary algorithms. In Bäck et al. [4].
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