
A Building-Block Royal Road 
Where Crossover is Provably Essential 

Richard A. Watson 
Electronics and Computer Science 

University of Southampton 
Southampton, SO17 1BJ, UK 

+44 23 8059 2690 

raw@ecs.soton.ac.uk 

Thomas Jansen 
Universität Dortmund 
FB Informatik, LS 2 

44221 Dortmund, Germany 
 +49 231 755 4702 

Thomas.Jansen@udo.edu 
 

ABSTRACT 

One of the most controversial yet enduring hypotheses about what 
genetic algorithms (GAs) are good for concerns the idea that GAs 
process building-blocks. More specifically, it has been suggested 
that crossover in GAs can assemble short low-order schemata of 
above average fitness (building blocks) to create higher-order 
higher-fitness schemata. However, there has been considerable 
difficulty in demonstrating this rigorously and intuitively. Here 
we provide a simple building-block function that a GA with two-
point crossover can solve on average in polynomial time, whereas 
an asexual population or mutation hill-climber cannot. 

Categories and Subject Descriptors 
I.2.8 [Artificial Inteligence]: Problem Solving, Search – heuristic 
methods; F.2.2 [Analysis of Algorithms and Problem 
Complexity]: Non-numerical Algorithms and Problems. 

General Terms 
Algorithms, Performance, Theory. 

Keywords 
Mutation, crossover, modularity, building block hypothesis, 
genetic algorithms theory, royal roads. 

1. WHAT A GA IS GOOD FOR 
It follows from the NFL theorem [12] that for both crossover and 
mutation there are classes of functions where one operator excels. 
Accordingly, there are many examples for evolutionary 
algorithms using only mutation performing provably well e.g. [5]. 
But, finding rigorous proofs of such results for evolutionary 
algorithms with crossover is much harder. The building block 
hypothesis, BBH, [6][8][10][11][17] suggests that a GA will 
perform well when it does because crossover can assemble short 
low-order schemata of above average fitness (building blocks) to 
create higher-order schemata of higher-fitness. Much effort has 
been directed at finding functions that discriminate the abilities of 

crossover-based and mutation-based algorithms [1][14][17][23] 
[26][27], and recently some functions have been provided that 
show a principled distinction [13][22][26]. But interestingly, the 
first of these to prove rigorously that a GA with crossover can 
find the global optimum in expected time polynomial in the 
problem size, whereas a mutation-based algorithm takes on 
average exponential time [13], does not use explicit building-
blocks. This function, like that in [21][22], incorporates a wide 
fitness valley that must be overcome by a crossover event and all 
other fitness improvements are provided by mutation. These 
functions seem quite contrived: There is no intuitive explanation 
for why it should be the case that the positions of the global 
optimum and local optima should be just as they are (such that the 
global optimum is located at a genotype produced by crossover of 
the locally optimal genotypes). Although such a function does 
satisfy the essential property of distinguishing polynomial versus 
exponential expected time complexities of crossover and 
mutation-based algorithms respectively, their contrived structure 
makes it difficult to see what they have to offer with respect to 
our understanding of what GAs are good for in general.  

Some of the other functions that show a principled distinction 
in the ability of crossover [26][27] do use a building-block 
structure but are too complex to facilitate rigorous proofs for their 
time complexities [13]. In particular, the HIFF function [27] 
illustrates building-block structure directly inspired by the BBH 
but the ability of a GA to outperform mutation-based algorithms 
on this function is dependent on its multi-level building-block 
structure, and indeed the requirement for a true GA rather than a 
‘crossover hill-climber’ [4][27] requires additional modifications 
to the function (specifically, the use of non-complementary global 
optima [27]). As yet, no simple single-level building-block 
function has been provided where crossover is provably essential. 

In this paper we return to a simple separable building-block 
function to see if we can rescue some intuition and yet maintain 
rigorous proofs that distinguish polynomial and non-polynomial 
time complexities for a GA with and without crossover 
respectively. In this paper we address only the original conception 
of a building-block that includes the assumption of tight linkage 
[6][8][10][11][17] and ordinary one- or two-point crossover that 
could potentially exploit this structure as described in the BBH. 
Note that a large body of work on linkage learning [9] and model-
building methods, e.g. [19], has developed in the GA community 
that addresses the exploitation of schemata (of bounded size) with 
above-average fitness without the assumption of tight linkage. But 
the original (i.e. tight-linkage) building-block idea, where the bits 
of a block are close together on the genome, has previously failed 
to demonstrate an advantage for ordinary crossover. We will not 

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
GECCO’07, July 7–11, 2007, London, England, United Kingdom. 
Copyright 2007 ACM 978-1-59593-697-4/07/0007…$5.00. 
 

1452



address genetic algorithms with linkage learning methods, model 
building methods or crossover methods that use learned linkage 
information since this is not relevant to the original BBH, or 
necessary to show a principled advantage to crossover. 

The intuitive concept we wish to emphasise is simply that a 
GA with crossover can provide something that mutation cannot 
because it allows selection to operate on building-blocks. That is, 
we want a function where mutation finds good building blocks 
and then these good blocks can be brought together to create high-
fitness genotypes by using the ability of crossover to separate 
blocks from the genetic backgrounds they arose in whilst keeping 
the bits of a block together (the latter requires tight linkage).This 
is a simple intuitive concept that has been sought after since the 
inception of the GA [10][11], notably with the use of the royal 
road functions [6][7][17] discussed in the next section. However, 
this apparently simple intuition has problems: 1) If there is any 
fitness-gradient information within a block that makes solving a 
block easy then it appears to make the whole problem easy 
without the need for crossover. Conversely, any intra-block 
gradient information that hinders mutation also hinders discovery 
of blocks in the GA and perhaps should be ignored. 2) Yet, if 
gradient information within blocks is ignored then blocks must be 
small enough for the best bit-configurations to be guessed (e.g. in 
the initialisation of the population), but if this is so then they are 
also small enough to be solved by mutation in reasonable time. 
(Note that taking time exponential in the block size for any 
constant block size, as opposed to the problem size, does not 
produce the principled distinction we seek, as we will discuss 
later.) We will discuss how this problem is overcome with the use 
of large blocks that are semi-reliably solvable by following 
internal fitness gradients. 

It is notable that some very well-known functions, the 
concatenated trap functions [2][3] discussed in the next section, 
are almost suitable to illustrate the effect we want, but do not (in 
the form they are usually used) resolve the above problems 
wsince they assume small blocks with deceptive internal 
gradients. Much of the prior work with trap functions, although 
directed at understanding the abilities of GAs, was not directed at 
testing the BBH per se since it did not assume tight linkage (i.e. 
did not assume that schemata of above average fitness had short 
defining length). If schemata do not have short defining length 
then crossover cannot keep the bits of a schema together during 
recombination events. In such cases a more general crossover 
model such as uniform crossover, which does not depend on this 
assumption, is more appropriate – but uniform crossover does not 
address the capacity of a GA to select on building-blocks since 
uniform crossover provides no genetic linkage between any bit 
and any other bit. 

Maintaining diversity has been a tricky aspect of previous 
work on the benefit of crossover, requiring methods like 
deterministic crowding in some cases [27] or the removal of 
duplicate genotypes in others [13]. In this paper we use and 
analyse a multi-deme population, or Island model, for the 
purposes of maintaining diversity. 

In the next section we discuss some background on prior 
building-block functions. In section 3 we introduce our new 
function. In Section 4 we analyse the expected behaviour of 
mutation-based methods and a multi-deme GA with crossover. In 
Section 5 we illustrate the behaviour of a GA on this function 
with simulation experiments. Section 6 concludes. 

2. BUILDING-BLOCK FUNCTIONS 
The royal road functions [6][17] were specifically designed to test 
the building block hypothesis by providing an idealised problem 
structure presenting short low-order schemata of above average 
fitness that contain the global optimum. The royal roads are a 
simple separable building-block function. The fitness of a 
genotype F(G) in a separable building-block function (with tight 
linkage) can be defined using Eq.1.  

∑
=

=
B

i
igfGF

1
)()(   Eq.1. 

where G = <x1, x2, …xN> is a binary genotype of N bits, B=N/k is 
the number of blocks in the function, gi = <x(i-1)k+1, x(i-1)k+2, …xik> 
is the ith sub-block of G, and f is a sub-function defining the 
fitness of each block. In the royal roads f is defined as per Eq.2. 

⎩
⎨
⎧ =

=
.
,)(

0
,

)(
otherwise

kguifk
gf   Eq.2. 

where g is a sub-block of k bits, and u(g) is the unitation of g, i.e. 
the number of ones in g. Note that in the royal roads there is no 
selective gradient within each block to guide selection to find 
good blocks, and accordingly the expected time to find a good 
block is exponential in the block size, k=N/B. However, since in 
the canonical form of the function N=64 and k=B=8 it is not too 
difficult for a GA to find good blocks of all-ones.  

However, when all schemata of above average fitness contain 
the global optimum, as is the case in the royal roads, there are no 
local optima in the resultant fitness landscape. Accordingly, 
although a GA with crossover is able to assemble building blocks 
as expected in this function, it is also possible to find the global 
optimum efficiently with a random mutation hill-climber 
(RMHC) [6]. The important point to note is that it is not too 
difficult for either a GA or a mutation-only algorithm to find good 
solutions to blocks. Hence it should not be surprising that a 
mutation-only algorithm finds the global optimum in this problem 
in time that is polynomial in N for small k. 

Perhaps in large part because the GA failed to outperform a 
hill-climber on a function specifically designed to exemplify 
building block recombination, the GA community is somewhat 
divided into those that have discarded the building block idea 
altogether and those that moved their interest to blocks that do not 
depend on tight linkage. Nonetheless, it should be noted that the 
failure of the royal roads to demonstrate the advantage of a GA 
via building block assembly, despite their explicit design to do so, 
does not prove that this intuition has no value. 

The concatenated trap functions [2] used a simple building-
block structure like the royal roads but also included deceptive 
[2][3] schemata that did not contain the global optimum. A simple 
trap function is given by the sub-function defined in Eq.3. 

⎩
⎨
⎧ =

−
=

.
,)(

,2/))((
,

)(
otherwise

kguif
guk

k
gf   Eq.3. 

This sub-function, like Eq.2. of the royal roads, has a 
maximum at the all-ones configuration. However, it also contains 
a secondary lower-fitness local optimum at all-zeros, and 
importantly, the local fitness gradient at all points (other than 
those that neighbour the all-ones genotype) misleads a mutation 
hill-climber towards the sub-optimal blocks. This causes a 
mutation hill-climber to become trapped at locally-optimal all-
zero blocks. Intuitively, this makes the good blocks harder to find 
and should make the problem difficult for a mutation-only 
algorithm. However, as noted, this structure also makes these 

1453



blocks more difficult to solve with the mutational processes 
within a GA. Often it is assumed that in the worst case the fitness 
gradients within a block should be ignored altogether, and the 
solutions to each block are therefore often assumed to be provided 
by random initialisation of the population. 

At this stage it is worth pointing out that any problem that is 
linearly separable into blocks of order k, where k is a constant, 
can be solved by a mutation hill-climber in polynomial time (i.e. 
time to solution is a polynomial function of the problem size, N ). 
This is quite obvious when the locations of blocks are assumed to 
be known since the configuration space of each block can be 
enumerated in 2k steps, and there are only N/k blocks to solve, 
requiring N2k/k steps in total. Mutational methods that exploit the 
assumption of tight linkage without explicit knowledge of the 
module boundaries (e.g. MMHC discussed later) also perform 
efficiently [14]. 

But even if the linkage is assumed to be random such problems 
are still solvable in polynomial time. Specifically, the time to find 
the global optimum can be expressed as T ≤ tS, where t is the 
maximum time for a mutation hill-climber to find a fitness 
improvement and S is the maximum number of fitness 
improvements necessary to find the global optimum [27]. For 
blocks of size k, for any genotype that is not optimal, there is 
always a fitness improvement available by changing at most k 
bits. The expected time to find this improvement by k-bit 
mutation1 is t < AB where A=(N choose k) ≤ Nk/k! is the number 
of ways of choosing k bits from N, and B=2k is the number of 
different k-bit combinations. So, t < Nk2k/k!. S, the number of 
fitness improvements necessary to reach the global optimum is at 
most S=CD, where C ≤ 2k is the maximum number of fitness 
improvements in a block, and D=N/k is the number of blocks. So, 
S ≤ N2k/k. Thus the total time to find the global optimum, T ≤ tS < 
(Nk2k/k!)(N2k/k) is therefore a polynomial function of N when k is 
a constant.  

This is not a tight bound and naturally there are many ways to 
devise methods that can do better than this given appropriate 
assumptions about the nature of the sub-functions in the problem. 
But this observation is sufficient to show that problems with this 
kind of bounded difficulty (order-k separable functions with 
constant k, regardless of linkage) cannot be used to show a 
principled polynomial versus non-polynomial distinction between 
the time to solution for crossover and a mutation since they do not 
require more than polynomial time for a mutation-based method. 
In fact, for the same reason they cannot be used to show that any 
algorithm, any kind of GA (including linkage learning and model 
building methods) or anything else, can solve something in 
polynomial time that requires non-polynomial time for a 
mutation-only process.  

Accordingly, showing a principled distinction between 
crossover and mutation using a building block function will 
require large blocks; a k which is a function of N. But in the royal 
roads and the concatenated deceptive trap functions a mutational 
process will take at least time exponential in the block size to 
solve a block since there is no useful fitness gradient within each 
block to guide a (mutation-based) search process. Yet if there 
were a useful fitness gradient within each block to guide a 
mutation-based search process to find the correct solution to a 
block in polynomial time, then it seems that the total time to solve 
                                                                 
1 In principle, if k is not known the mutational process can be 

repeated for k=1, k=2 and so on, and yet still produce an overall 
time that is polynomial in N.  

the whole problem with mutation will also be polynomial. Given 
that blocks are separable and solving the whole problem is simply 
matter of solving each of the sub-problems, there appears to be no 
way to make the blocks difficult to solve, and yet make the whole 
problem easy for a GA to solve. 

A very simple solution to these issues is simply to use blocks 
with size that is a function growing with N, and where the basin 
of attraction of both the optimal schema and non-optimal 
schemata remain some constant proportion of the total intra-block 
search space. This is provided by large trap functions, but they 
must not be fully-deceptive [2][3] else the basin of the preferred 
optimum becomes a vanishingly small proportion of the intra-
block search space as k increases. 

Specifically, the following sub-function serves to provide these 
simple properties. 

⎪
⎩

⎪
⎨

⎧
>>

=

−
=

.
,2/)(

)(

,2/))((
,2/)(

,
)(

otherwise
kgukif

kguif

guk
gu
k

gf  Eq.4. 

This sub-function, like the previous two, has a maximum at 
all-ones. Like Eq.3. it also has a sub-optimum at all-zeros. 
However, unlike Eq.3. the basins of attraction for the optimum 
and the sub-optimum are of equal size (for even k) in this 
function. This means that a mutation hill-climber will find the 
optimal schema (in polynomial time) with probability 0.5 even in 
large blocks, whereas in Eq.3. this probability approaches 0 for 
large blocks.  

We want k to be large so that mutation hill-climbers cannot 
escape the sub-optimal solutions in time polynomial in N. We 
cannot use k=N because a single-block function would obviously 
make the probability of finding the optimal genotype 0.5. 
Although the basin of attraction of the optimal block should be a 
significant fraction of each intra-block search space, the basin of 
attraction of the global genotype should be an insignificant 
fraction of the total problem search space. The basin of attraction 
of the optimal genotype, given that each block is independent, is 
0.5B (see Fig.2). So we want B large and k large. Since k=N/B, the 
best compromise is to use k=B=√N. 

The resolution to the apparent no-win trade-off between 
making blocks difficult for mutation hill-climbing or easy for 
mutation hill-climbing mentioned in the introduction is simply 
that although there is useful fitness gradient information within 
each block, the problem as a whole is not easily solvable by a 
mutation-only method because the basin of attraction for the 
global optimum is only 2-√N of the search space, and every other 
optimum is at least √N bits away from the global optimum. 
Nonetheless, utilisation of the mutational gradients within each 
block is crucial else a GA could not find the solution to even one 
block in polynomial time. 

Eqs.1 and 4 thus define a problem that is sufficient for the 
aims of this paper. We clearly have not analysed this formally yet 
but we have built some intuition for the analysis that follows. 
However, this form of function is still more contrived than it 
needs to be, so before we do any analysis we generalise this 
function. In particular, there is no need for each sub-function to be 
a trap function where the sub-optimal configuration is the 
complement of the optimal configuration, nor is there any need to 
suppose that there are exactly two local-optima. These properties 
are a vestige of prior work that wanted to analyse fully-deceptive 
functions where the sub-optimum must be the complement of the 
optimal configuration. Being fully-deceptive actually defeats our 
aims, so the use of complementary optima is completely 

1454



unnecessary. In the next section we describe a more general sub-
function which shows that the ability of a GA to utilise building-
block structure can be general and intuitive. 

3. A GENERAL BUILDING-BLOCK 
FUNCTION 
In this section we introduce a general and simple building-block 
function that we can use to prove a polynomial versus exponential 
distinction in the average time to find the global optimum for a 
crossover-based and mutation-only algorithm, respectively. The 
function simply concatenates sub-functions each of which has 
multiple fitness peaks of different heights, where each peak has an 
appreciable basin of attraction for a mutation hill-climber. As 
before, this is a separable building-block function: 

∑
=

=
B

i
igfGF

1

)()(     Eq.5. 

where G = <x1, x2, …xN> is a binary genotype of N bits, B=N/k is 
the number of blocks in the function, gi = <x(i-1)k+1, x(i-1)k+2, …xik>  
is the ith sub-block of G, and f is a sub-function defining the 
fitness of each block as per Eq.6. 

∑
=

=

iT

j
ijii tgcgf

1

),()( , where 

( )⎪⎩

⎪
⎨
⎧ =−

−+
= −

.
,0

,1

,
),( 1

otherwise
tgif

tg

w
tgc ij

ij

ij
ij

 

 Eq.6. 
where Ti is the number of different fitness peaks within the ith 
block, tij is the jth target string (peak) within the ith block, |g-t| is 
the Hamming distance between the genotype of the block and the 
target string, and wij>1 is the fitness weighting of tij. 

Eq.6 defines the fitness of a block to be the sum of fitness 
contributions related to a set of T target strings. The fitness 
contribution, defined by c, related to a particular target string is 
maximal when the block matches the target string and is 
otherwise inversely proportional to the distance from the target 
string. We see that Eq. 4 is qualitatively similar to a particular 
instance of Eq.6 where Ti=2, ti1=0k and ti2=1k, and wi1=k/2 and  
wi2=k, for all i. Since the slopes approaching each peak are the 
same for all peaks, the fraction of the intra-block search space that 
is in the basin of attraction for each peak, including the fitness 
optimum of the block, will be on average 1/T for T randomly 
positioned peaks (regardless of k). 

With some care in interpretation, we can visualise Eq.6 by 
substituting a one-dimensional metric space for the k-dimensional 
binary space of a block and using Euclidian distance instead of 
Hamming distance. Fig. 1 shows an example using T=4 with 
random tj and random 1<wj<2.  

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

genotype, g

fit
ne

ss
, f
(g
)

 
Figure 1. A one-dimensional, 4-peak sub-function (Eq.6). 

Thus the sub-function used in this problem is nothing more 
than a random multi-peaked function (it is important though that 
the number of peaks is not exponential in k, so a purely random 
intra-block fitness landscape is not appropriate). However, the 
fact that the overall function, Eq. 5, sums several blocks of this 
form creates an overall fitness landscape that has significant 
structure. We can visualize the symmetries created by using a 
two-block example as in Fig. 2. - this uses the sub-function shown 
in Fig.1 for g1 and a different random sub-function (with three 
peaks) for g2. Any function created by the summation of fitness 
contributions from several independent sub-functions has this 
kind of symmetry, so this is quite a natural fitness landscape 
structure to expect for a problem that results from several sub-
problems. Since the sub-functions are also simply random-peaked 
landscapes, the only special features of the overall function is that 
it is composed of several sub-functions, each containing multiple-
peaks, and the optimum of each peak has a significant basin of 
attraction. This is, we argue, much more natural and less 
contrived than the functions in prior work, even if it is a bit more 
complicated to define. 

0
3 6 9

12
15

18

0

4

8 12

16

20

0
0.5

1
1.5
2

2.5
3

3.5
4

4.5

F (G)

g1
g2

 
Figure 2. A two-block random function, Eq.5, T1=4,T2=3. 

Note that the number of local optima in the overall function is 
the product of the number of peaks in each sub-function. Because 
the blocks are separable, high-fitness points in the overall 
function are created by combining high-fitness points in the sub-
functions. Thus without any contrivance in the positioning of the 
global optimum with respect to the position of the local optima, it 
is nonetheless the case that the global optimum is both 
mutationally isolated from the local optima and yet exactly in the 
right position to be reached by crossover of locally optimal 
genotypes. 

4. ANALYSIS 
We address the behaviour of mutation-based and crossover-based 
algorithms on the function defined by Eq.5. (given small T and 
large k). Before providing formal analysis, we first sketch the 
expected behaviour which should now be quite intuitive. The crux 
of the result depends on the simple observation that since the 
optimal configuration for each block will not be found reliably by 
mutation, it is very unlikely that all optimal building-blocks will 
be found in any one individual in a population (thus defeating a 
purely mutation-based algorithm), nonetheless it is very likely 
that each optimal building-block will be found in at least one 
individual in the population (and this is sufficient for a crossover 
method to produce a genotype with all the optimal blocks). A 
mutation-based algorithm will become stuck at one of the local 
optima, requiring a specific multi-point mutation to escape to a 
higher-fitness optimum. The number of bits that must be mutated 
simultaneously in this case is determined by the width of fitness 
saddles between local optima, which will be O(k) on average 

1455



assuming T is constant. If we chose k to be a function of N, such 
as k=√N as suggested in the previous section, then the number of 
bits that need to change to escape a local optimum will be O(√N). 

The basic idea for a GA with crossover is that different 
individuals are likely to find different local optima in time 
polynomial in k (and therefore N). With probability 1/T, on 
average, a given individual will find the optimal configuration for 
a given block, but accordingly, it will find a suboptimal 
configuration with probability 1-1/T. Nonetheless, so long as the 
good configuration for a block is found by some individual in the 
population, selection in a sexual population will be able to 
increase the frequency of this building-block (semi-) 
independently of the inferior configurations that may have been 
found at other blocks in that individual. If this happens 
independently for all blocks then the maximum fitness genotype 
will be discovered. Since the expected time to find the best 
configuration for each block (in at least some fraction of the 
population) is polynomial in N, and the expected time to find 
appropriate crossover points to put these blocks together is 
polynomial in N, the overall expected time for a crossover GA 
will also be polynomial in N. 

To provide formal analysis of this intuition, we may assume 
without loss of generality, that the sub-functions are identical for 
each block. To keep analysis simple we assume the minimum 
number of peaks per block that will suffice, i.e. Ti=2 for all i. We 
also assume that each tij is chosen such that the Hamming distance 
between the peaks is exactly the average that would be expected 
with random peaks, i.e. k/2. For example, ti1={01}k/2 and ti2=1k 
would suffice. We also assume that each wi1=1 and wi2=2. The 
maximum fitness string is thus all-ones. 

Mutation: First considering evolutionary algorithms without 
crossover, we want to show that such algorithms fail to be 
efficient. Statements about the performance of evolutionary 
algorithms cannot be made without describing the evolutionary 
algorithm considered in some detail. For a negative result, 
however, it is desirable to make statements about a large class of 
evolutionary algorithms. Here we consider evolutionary 
algorithms with the following properties. The initial population is 
generated uniformly at random, the only variation employed is 
standard bit mutations mutating each bit independently with some 
probability pm to a new random bit. Moreover, the selection 
employed depends on fitness values only, does not favour smaller 
fitness values, and does not take any other properties of the 
individuals into account. For our fitness function the B = √N 
blocks are independent and each block is symmetric. The class of 
mutation-based evolutionary algorithms considered here will find 
in each block only the local optimum with probability ½. Thus, 
with probability  1−2−√N, there is at least one block where Ω(√N) 
bits must be flipped and there are no hints towards the global 
optimum that can be utilised. Note that for a direct mutation 
pm=1/√N is the optimal mutation probability for a direct mutation 
of √N bits. For any mutation probability the time needed for such 
a mutation is therefore bounded below by 2Ω(√N). The same lower 
bound holds for the time needed for a completely random walk 
towards the global optimum which is the best selection can do 
since fitness values lead back to the local optimum. This is due to 
the fact we rule out any selection mechanism preferring lower 
fitness. It follows that such algorithms will not find the unique 
global optimum within 2o(√N) steps with probability 1−2−Ω(√N). 

Crossover: To analyse a crossover-based method is more 
involved. The algorithm must be treatable such that guarantees for 
its performance on F can be proven in a rigorous way. Note that it 

is not too difficult to come up with some evolutionary algorithm 
that optimizes F quite efficiently in most runs (see simulation 
results), but here we desire a theoretical analysis advancing from 
experience to knowledge.  

The diversity of the population will, as mentioned, be crucial 
to the success of the crossover method. Many different 
mechanisms are known and in use that are designed to maintain 
the diversity of a population. One way to achieve sufficient 
diversity is the use of population subdivision or multi-deme 
models. In fact, a multi-deme model allows us to not be 
concerned with intra-deme diversity, such that all useful diversity 
is inter-deme2. This enables a simple way for us to control how 
much genetic diversity is available, and assess how many 
independent demes are sufficient. In general we assume g 
independent evolutionary algorithms that exchange some 
members of their population with some migration rate. We call 
the number of generations, e, between two such exchanges an 
epoch, and the independence of the g EAs in the first epoch 
means that if any local optima are found within this epoch then 
the local optima found are independent. However, on a multi-
epoch timescale where migrants are numerous we cannot 
guarantee continued independence of the local optima the 
different demes find. Thus although crossover of migrants 
provides the opportunity for getting good blocks together it also 
introduces the possibility that good blocks may be lost. For 
analysis we avoid this complication by having just one population 
that receives immigrants from the other populations. This way, 
the g−1 populations that are not receiving any immigrants remain 
independent throughout the run. Thus, independence of the local 
optima provided is given all the time.  

The choice of EA used in each deme is not so important but 
must enable us to maintain formal treatment. One of the first 
choices one can make when designing an evolutionary algorithm 
is the choice of the overlap between two subsequent populations. 
A steady state approach has the advantage that the change from 
one generation to the next is easier to control facilitating analysis. 
Therefore, we choose to consider a (μ+1) evolutionary algorithm 
where a population of size μ produces just one offspring in each 
step that replaces one member of the population that is not 
superior with respect to fitness. We leave the choice of μ open for 
the moment. We use standard bit mutations with mutation 
probability 1/N as one of the variation operators. This is a very 
common operator, well known to optimize OneMax-like functions 
efficiently so it will suffice to find the local optima efficiently. 
Two-point crossover allows the algorithm to exchange single 
blocks between two parents. Note that uniform crossover would 
not be helpful since it would perform such an exchange with 
probability at most 2−Ω(k) which is way too small. We assume a 
probability of applying crossover in each reproduction, pc.  

We give a formal definition of the GA used in each deme for 
the sake of clarity. For xi ∈ {0, 1}n and j ∈ {1, 2, ···  , n}, xi[j] 
denotes the jth bit in xi. 
Algorithm 1. EA for each deme. 

Initialization 
1.  For i:= 1 To μ Do 
                                                                 
2  Clearly, this means that each deme may just as well be replaced with a 

mutation hill-climber, so long as some provision for crossover of 
migrants is enabled. Considering a GA as a combination of hill-climbing 
and crossover is familiar and intuitive and this multi-deme scenario 
formalises this. It also suggests that some forms of memetic algorithm 
with crossover will work well on this function. 

1456



Choose xi ∈ {0, 1}N uniformly at random. 
 Selection for Reproduction 
2.  Select i, j ∈ {1, ···, μ} uniformly at random. 
 Variation 
3.  With probability pc 

2-Point Crossover 
4. Select c1 ∈ {1, ··· , N} uniformly at random. 
5. Select c2 ∈ {1, ··· , N} uniformly at random. 
6. If c1 > c2, exchange c1 and c2. 
7. y1 := xi[1]xi[2] ··· xi[c1 − 1]xj[c1]xj[c1 + 1] ···xj[c2]xi[c2 + 1] ··· xi[N] 
8. y2 := xj[1]xj[2] ··· xj[c1 − 1]xi[c1]xi[c1 + 1] ···xi[c2]xj[c2 + 1] ··· xj[N] 
9. If F(y1) ≥ F(y2), Then y := y1, Else y := y2. 

10.  Else 
Mutation 
11. y := xi 
12. Flip each bit in y independently with probability 1/N. 

 Selection for Replacement 
13.  If F(y) ≥ min{F(x1),···,F(xμ)} Then let y replace some randomly 

chosen xi with minimal F-value. 
14.  Continue at line 2. 

All g demes work this way in normal generations. Every e-th 
generation, the receiving deme uses an xj in lines 7 and 8 of the 
algorithm from some other deme (selected uniformly at random) 
rather than from its own deme. We call the resulting algorithm a 
single-receiver multi-deme EA. When measuring its optimization 
time we use the number of function evaluations to measure time. 

Theorem 1. The multi-deme EA with g demes, one receiving 
deme, with deme size μ, crossover probability pc, and epoch 
length e, finds the unique global optimum of F within 
O(μegN 2logN) function evaluations with probability 1−O(1/N) if 
g ≥ c log√N and ξ ≤ pc ≤ 1−ξ hold for some constants ξ > 0 and c > 
1 sufficiently large. 

Proof. It is known that on average after O(μNlogN) generations, 
each deme consists only of local optima [13]. We consider the 
B=√N blocks that comprise the bit string of length N. Considering 
one specific block, we see that the expected number of demes 
where the current best individual contains a global optimum in 
this block is bounded below by ⎣g/2⎦ (i.e. half the demes will find 
the better peak rather than the inferior peak). Application of 
Chernoff bounds [18] yields that we have at least g/3 optima with 
probability 1 − e−Ω(g). Since we have g ≥ c logB sufficiently large, 
this probability is sufficiently close to 1. Now, we consider the 
receiving population, only. We consider the current best of this 
population and give an upper bound on the number of 
recombinations needed until the unique global optimum is 
constructed. The probability to select the current best of this 
population for crossover is 1/g. The probability to select a second 
parent with an optimal piece where the already chosen parent is 
not optimal is Ω(1) as we have just seen. With probability at least 
i/N 2, two good crossover points are chosen if i pieces are still not 
optimal in the current best individual. Summing up the expected 
waiting times for i ∈ {1, … , B − 1} we obtain that O(μegN 2logN) 
function evaluations are sufficient on average. Choosing the 
multiplicative constant sufficiently large yields the claimed bound 
on the probability.▪ 

From these analyses we see that for large N a GA with two-
point crossover using a reasonable number of subdivided demes 
and one receiving deme will find the global optimum with 
probability close to 1 in time polynomial in N. In contrast a 
mutation based-method, either a GA with mutation-only variation 
or a mutation hill climber, will, with probability close to 1, take 
time exponential in √N to find the global optimum. Accordingly, 

this function is proven to show a principled distinction in the 
performance of crossover-based and mutation-based algorithms. 

For the purposes of analysis, we supposed a (μ+1) algorithm 
for each deme with a replacement strategy that ensures that good 
genotypes are not lost. We also used a subdivided GA where only 
one deme received migrant individuals from the other demes (and 
the others only had outgoing migrants). This is assumed simply 
for the purposes of analytic assurance that the diversity of the 
initial demes is not lost before it can be used appropriately in the 
receiving deme. Similarly, we also assumed exactly two peaks in 
each sub-function separated by exactly k/2 bits, but this is merely 
for convenience. In practice, these restrictions are not necessary 
but showing this rigorously is beyond the proofs given. 
Accordingly, the next section provides simple simulation results 
on this function to illustrate that the result is not limited to these 
special cases. 

5. SIMULATION RESULTS 
In this section we use a normal multi-deme Island model GA, 
with rank-based selection in each deme, and low symmetric 
migration rates. We use a low per-bit mutation rate and one-point 
crossover. This serves to show that the few special details of the 
algorithm treated in theorem 1, in particular, the use of only one 
receiving deme and the special replacement scheme, are not 
necessary for solving this problem with a crossover GA.  

We also show results of mutation-only methods for 
comparison. The ability of a GA with crossover to manipulate 
building blocks is, we would expect, dependent on the assumption 
of strong genetic linkage – we verify this by comparison with 
uniform crossover where no bits are linked with any other. And 
finally, the ability of a GA with crossover to manipulate building 
blocks is, we would expect, also dependent on the assumption that 
the genetic linkage corresponds with the epistasis that defines the 
building block structure, i.e. tight linkage – we verify this by 
comparison with the use of one-point crossover and shuffled 
genetic map. In this shuffled version of the problem the overall 
function is the sum of B sub-functions over B disjoint sets of k 
variables as before, but these subsets of variables are randomly 
located in the genotype rather than in contiguous loci.  

Problem parameters: B=20 blocks; K=20 bits per block; N=400 
bits per genotype; T=2 peaks per block; w1=1 = value of 1st target 
string; w2=10= value of 2nd target string;  
t1=10101010101010101010 = 1st target string;   
t2=11111111111111111111 = 2nd target string. 

Algorithms: Multi-deme GA with one-point crossover. Multi-
deme GA with uniform crossover. Multi-deme GA with one-point 
crossover and shuffled genetic map. Random Mutation Hill-
Climber (RMHC). Macro Mutation Hill-Climber (MMHC). 

The RMHC is a simple mutation hill-climber using a per-bit 
mutation rate [6]. Mutation rates of 1/L, 5/L, 10/L, 15/L, 20/L, and 
25/L were run. Results for 20/L (= k/L), which had the highest 
fitness on average, are shown. The MMHC is a mutation-based 
hill-climber that is able to utilise the problem specific knowledge 
of tight linkage, but not crossover. It picks two inter-local 
positions at random and randomises the bits in the section of 
genotype in-between these positions. The MMHC is of notable 
interest since it solves concatenated trap functions, or other 
separable functions with tight linkage and small k, efficiently 
[14].  

1457



GA parameters: 100 demes of 10 individuals each; Rank-based 
selection in each deme; Per-bit mutation rate 1/N (probability of 
assigning a new random bit at each site); Crossover is applied in 
all reproduction events; Migration rate 0.0004 (i.e. over the whole 
population, on average one individual in every 2.5 generations is 
a migrant from another deme). 

Results: Fig. 3 shows the average fitness of individuals across the 
whole population averaged over 30 independent runs. The 
maximum fitness for these parameters is 20*(10+1/(1+10))) = 
201.81. Error bars show +/- 1 standard deviation. All 30 runs of 
the multi-deme GA with one-point crossover (and tight linkage) 
find the globally optimal genotype in around 50 generations. 
None of the other algorithms finds the globally optimal genotype 
in any of the 30 runs. The results for other mutation rates of the 
RMHC are for the most part indistinguishable from those of the 
k/L mutation rate shown, but k/L has a slightly higher average 
fitness at the end of the runs than the other rates tested. 

These results show that a GA with crossover is able to find the 
maximum fitness genotypes in this function quite easily, given 
sufficient population diversity as provided by population 
subdivision in this case. Given that this function has 2√N=220 local 
optima (only one of which is globally optimal), and each of these 
is at least √N/2=10 bits from the unique global optimum, it is not 
surprising that these results also show that mutation-based 
methods fail. The shuffled and uniform crossover GAs do better 
than the mutation hill-climber because they are able to utilise the 
diversity provided by the population and they only produce new 
combination of bits at loci where the parents’ bits disagree. 
Nonetheless, even if useful diversity is maintained (as indicated 
by the success of the one-point GA) the inability of crossover to 
bring together good blocks when linkage is either absent (uniform 
crossover) or not tight (shuffled genetic map) is clearly illustrated. 

5

25

45

65

85

105

125

145

165

185

205

0 10 20 30 40 50 60 70 80 90
generations  (evaluations /1000)

fit
ne

ss

     GA
     GA shuffled linkage
     GA uniform  crossover
     MMHC
     RMHC

 
Figure 3. Simulation results using Eq.5, T=2. 

The proofs in the previous section concern the expected 
number of evaluations to find the optimal genotype rather than the 
expected fitness found in a given number of evaluations. But the 
flat response of all methods after the initial generations makes this 
distinction quite apparent. The simulations show that the special 
details of the GA used in theorem 1 are not necessary for a GA to 
solve this problem efficiently. They show that crossover with 
tight linkage, as employed in the original intuition of the BBH is 
necessary for the success of the GA. And they show that 
mutation-based algorithms, even the MMHC utilising the 
knowledge of which bits depend on which others (implicit in the 

assumption of tight linkage), is not sufficient to solve this 
problem with these parameters. Of course, rigour is provided by 
the proof of the distinction between crossover and mutation-based 
methods in the previous section, so the central claims of this 
paper are independent of the necessarily non-exhaustive 
simulation study performed here.  

The population structure of the GA used in these simulations is 
still somewhat non-standard however. It seems likely that 
appropriate fitness scaling and population sizing could provide 
appropriate population diversity to ensure reliable success in a 
single-population, generational GA with fitness-proportionate 
selection – but this has not been investigated thoroughly and the 
use of a multi-deme GA makes the parameter range where 
appropriate diversity is maintained easy to find. 

6. DISCUSSION AND CONCLUSIONS 
In the function we study here, search at two different scales [28] 
is required to find fit genotypes—local search at the bit scale 
provided by mutation is required to find the good solutions to 
blocks, and search in combinations of building blocks by 
crossover is required to put the blocks together. Although this 
idea is natural and intuitive it differs fundamentally from the 
approach of the fully-deceptive subfunctions or the original royal 
roads where bit-wise fitness gradients within each block are not 
useful. In our function, there is a significant likelihood that an 
individual will find the optimum of a given sub-function, and find 
it quickly, by exploiting bit-wise fitness gradients. But the fact 
that there is also a significant likelihood that the superior peak is 
not found means that the likelihood of solving all sub-functions 
by mutation alone becomes very small when the number of blocks 
is large. This point is important because although Walsh 
transform analysis [25] and schema disruption analysis [10][24], 
for example, will agree that our function, like other separable 
building-block functions, is GA-easy for moderate k, such 
analysis does not confirm that a problem is difficult for mutation-
only algorithms.  

The critical property of crossover that is exploited in our 
function is that it allows (semi-)independent search on different 
segments of the chromosome. Separating selection on schemata in 
one block-partition from selection on schemata in another block-
partition via crossover allows solutions to different blocks to be 
found independently. Inevitably, we could devise a specialised 
algorithm that could also solve our problem in polynomial time 
using this same property of crossover but in another form. For 
example, an algorithm that uses the knowledge of tight linkage to 
apply a random-restart hill-climber to each block, one after the 
other, would suffice. Similarly, a cooperative coevolution 
approach [20] might also be made to work with some 
modification. But in fact, the suitability of such algorithms 
depends on multiple independent trials at solving each building-
block, and this is just what crossover in the GA provides. 

Explicit mention of two other functions that might be proposed 
as sub-functions for a discriminating problem is warranted. First, 
an entirely random subfunction will not provide the distinction we 
seek. In this case the expected number of local optima in a block 
is exponential in k, and the fraction of the configuration space 
from which a hill-climber may find the optimal configuration of 
the block approaches 0 for large k. Second, the NK-landscape [15] 
provides a tuneable amount of ruggedness in a landscape and it 
may be tempting to suggest concatenated NK-landscapes [16] 
(with low epistasis, K) might provide a suitable problem. 
However, since the gross-scale structure of an NK fitness 

1458



landscape is similar to a unimodal function with noise, the 
positioning of high-fitness peaks in NK-landscapes is not random 
but clustered. Our result depends on the property that several 
different runs of a mutation-selection process may reach local 
optima that are different in fitness and far apart in Hamming 
space and this is unlikely in NK-landscapes.  

In general, it is not essential that the sub-functions in a 
discriminating problem of this type are separable, but it is 
important that inter-block epistasis does not change which block-
configuration is optimal nor significantly change the ability of a 
mutational hill-climbing process to find that configuration. If this 
is maintained, inter-block dependencies are permissible. It is 
certainly not the case that F must be the sum of all sub-
functions—any monotonic function, e.g. product, will suffice. 
This is significant since in population genetics ‘no epistasis’ is 
defined as multiplicative fitness not additive fitness (it is the ratio 
of a genotype’s fitness to population mean fitness that controls its 
change in frequency under fitness proportionate selection, not the 
difference of fitnesses [29]). Moreover, it is notable that in natural 
genomes the genes themselves, each composed of thousands of 
nucleotides, constitute modules of genetic material that are both 
functionally and physically particulate—forming a very obvious 
and ubiquitous biological ‘building-block’ structure [29].  

In summary, we provide the first separable building-block 
function that is easy for crossover and difficult for mutation in a 
provably rigorous sense (i.e. polynomial versus non-polynomial 
time to solution respectively). We describe a general function 
class that maintains the simple intuitions that were sought in the 
early work on the building block hypothesis, and we explain how 
prior work on building-block functions omitted crucial features. 
This helps us to better understand one of the most enduring 
hypotheses about what GAs are good for. 

7. REFERENCES 
[1] J. C. Culberson, “Mutation-Crossover Isomorphisms and the 

Construction of Discriminating Functions”, Evolutionary 
Computation 2, 279 (1995). 

[2] K. Deb, D. E. Goldberg. “Analyzing Deception in Trap 
Functions”, in D. Whitley, Ed. Foundations of Genetic 
Algorithms 2, (Morgan Kaufmann, San Mateo, CA, 1992) pp. 
93–108. 

[3] K. Deb, D. E. Goldberg, “Sufficient Conditions for Deceptive 
and Easy Binary Functions”, Annals of Mathematics and 
Artificial Intelligence 10, 385 (1992). 

[4] M. Dietzfelbinger, B. Naudts, C. van Hoyweghen, I. Wegener, 
“The analysis of a recombinative hill-climber on H-IFF”, IEEE–
Trans. on Evolutionary Computation 7, 417 (2002). 

[5] S. Droste, T. Jansen, I. Wegener, “On the analysis of the (1+1) 
evolutionary algorithm”, Theoretical Computer Science, 276, 51. 
(2002) 

[6] S. Forrest, M. Mitchell, “Relative Building-block fitness and the 
Building-block Hypothesis”, in D. Whitley, Ed., Foundations of 
Genetic Algorithms 2, (Morgan Kaufmann, San Mateo, CA, 
1993), pp. 109–126. 

[7] S. Forrest, M. Mitchell, “What Makes a Problem Hard for a 
Genetic Algorithm? Some Anomalous Results and Their 
Explanation”, Machine Learning 13(2), 285 (1993). 

[8] D. E. Goldberg, Genetic Algorithms in Search, Optimization, 
and Machine Learning (Addison-Wesley, Reading, MA, 1989). 

[9] G. Harik, D. E. Goldberg, “Learning Linkage”, in R. K. Belew, 
M. D. Vose, Eds. Foundations of Genetic Algorithms 4 (Morgan 
Kaufmann, San Francisco, 1997), pp. 247-262. 

[10] J. H. Holland, Adaptation in Natural and Artificial Systems (Ann 
Arbor, MI: Univ. Michigan Press, 1975). 

[11] J. H. Holland, “Building Blocks, Cohort Genetic Algorithms, 
and Hyperplane-Defined Functions”, Evolutionary Computation 
8, 373 (2000). 

[12] C. Igel, M. Toussaint, “A no-free-lunch theorem for non-
uniform distributions of target functions”, Journal of 
Mathematical Modeling and Algorithms, 3(4), 313 (2004). 

[13] T. Jansen, I. Wegener, “Real royal road functions - where 
crossover provably is essential”, Discrete Applied Mathematics 
149, 111 (2005). 

[14] T. Jones, Evolutionary Algorithms, Fitness Landscapes and 
Search, PhD dissertation, 95-05-048, University of New Mexico, 
Albuquerque (1995). 

[15] S. Kauffman, S. Levin, “Towards a general theory of adaptive 
walks on rugged landscapes”, J. Theor. Biol. 128, 11 (1987). 

[16] V. Kvasnicka, “An Evolutionary Model of Symbiosis”, Studies 
in Fuzziness and Soft Computing, 54, 293 (2000). 

[17] M. Mitchell, S. Forrest, J. H. Holland, “The royal road for 
genetic algorithms: Fitness landscapes and GA performance”, in 
F. J. Varela, P. Bourgine Eds., Procs. of first European 
Conference on Artificial Life, (MIT Press, Cambridge, MA, 
1992) pp. 245-254. 

[18] R. Motwani, P. Raghavan. Randomized Algorithms. (Cambridge 
Univ. Press, 1995). 

[19] M. Pelikan, Bayesian Optimization Algorithm: From Single 
Level to Hierarchy, Ph.D. Dissertation, Dept. of Computer 
Science at the University of Illinois at Urbana-Champaign 
(2002). 

[20] M. A. Potter, K. A. De Jong, “Cooperative Co-evolution: An 
Architecture for Evolving Coadapted Subcomponents”, 
Evolutionary Computation, 8(1), 1 (2000). 

[21] A. Rogers, A. Prügel-Bennett, “A Solvable Model of a Hard 
Optimisation Problem”, in L. Kallel, B.Naudts, A.Rogers, Eds. 
Procs. of Theoretical Aspects of Evolutionary Computing 
(Springer, Berlin, 2001), pp. 207–221. 

[22] J.L. Shapiro, A. Prügel-Bennett, “Genetic algorithm dynamics in 
two-well potentials with basins and barrier”, in Foundations of 
Genetic Algorithms 4, R. K. Belew, M. D. Vose, Eds. (Morgan 
Kaufmann, San Francisco, 1997), pp. 101-116.  

[23] W. M. Spears, “Crossover or Mutation?”, in D. Whitley, Ed. 
Foundations of Genetic Algorithms 2, (Morgan Kaufmann, San 
Mateo, CA, 1992), pp. 221–237. 

[24] M. D. Vose, G. E. Liepins,. “Schema disruption”, in Procs. of 
the Fourth International Conference on Genetic Algorithms, 
(Morgan Kaufmann: San Mateo, 1991), pp. 237–243.  

[25] M. D. Vose, A. H. Wright, “The Simple Genetic Algorithm and 
the Walsh Transform: part I, Theory”, Evolutionary 
Computation, 6(3), 253 (1998). 

[26] R. A. Watson, “A Simple Two-Module Problem to Exemplify 
Building-Block Assembly Under Crossover”, in X. Yao et al. 
Eds. Parallel Problem Solving from Nature - PPSN VIII, 
(Springer, Berlin, 2004), pp. 161-171. 

[27] R. A. Watson, “Analysis of Recombinative Algorithms on a 
Non-Separable Building-Block Problem”, in W.N. Martin, W.M. 
Spears, Eds. Foundation of Genetic Algorithms 6, (Morgan 
Kaufmann, San Francisco, 2001) pp. 69–89. 

[28] R. A. Watson, “On the Unit of Selection in Sexual Populations”, 
in Advances in Artificial Life, Eighth European Conference 
(ECAL 2005) (Springer, Berlin, 2005), pp. 895-905. 

[29] R. A. Watson, D. Weinreich, J. Wakeley, “Sex avoids intragenic 
local optima that trap asexuals”, in prep. 

[30] J. B. Wolf, E. D. Brodie III, M. J. Wade, Epistasis and the 
Evolutionary Process. (Oxford University Press: New York, 
2000). 

 

1459


