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ABSTRACT
In this paper we describe and evaluate a fully distributed P2P evo-
lutionary algorithm (EA) with adaptive autonomous selection. Au-
tonomous selection means that decisions regarding survival and re-
production are taken by the individuals themselves independently,
without any central control. This allows for a fully distributed EA,
where not only reproduction (crossover and mutation) but also se-
lection is performed at local level. An unwanted consequence of
adding and removing individuals in a non-synchronized manner is
that the population size gets out of control too. This problem is re-
solved by adding an adaptation mechanism allowing individuals to
regulate their own selection pressure. The key to this is a gossiping
algorithm that enables individuals to maintain estimates on the size
and the fitness of the population. The algorithm is experimentally
evaluated on a test problem to show the viability of the idea and to
gain insight into the run-time dynamics of such an algorithm. The
results convincingly demonstrate the feasibility of a fully decen-
tralized EA in which the population size can be kept stable.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming – Distributed program-
ming; I.2.8 [Artificial Intelligence]: Problem Solving, Search

General Terms
Algorithms, Experimentation

Keywords
distributed EA, autonomous selection, parameter adaptation, gos-
siping, newscast protocol

1. INTRODUCTION
Evolutionary algorithms (EAs) have gained a long-standing his-

tory of successfully solving computationally hard problems. Their
popularity can be partly attributed to the principal simplicity of
the structure of evolutionary algorithms, the transferability of code
(representations and operators) between application areas, and of
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course their good performance [8]. A characteristic element of the
algorithmic structure is that data and computations are clearly sep-
arated: a common data space is used to store a population of candi-
date solutions (individuals, genotypes), whereas potentially a large
number of threads of computation (selection and variation opera-
tors) act concurrently on this data space.

From the beginning, efforts have been taken to distribute the pop-
ulation in such a way that concurrent threads could operate as in-
dependently as possible, effectively aiming at maximizing the at-
tainable degree of parallelism in the evolutionary algorithm as a
whole [2, 3, 22]. Key to this approach is constructing groups of in-
dividuals such that local decisions, i.e., intra-group decisions, can
be taken in a fully autonomous fashion, with at the very extreme
having only one individual per group. To this end, it is important
that variation operators are local by nature, but selection operators
are not. As for variation, mutation and crossover operators involve
only one (two) individual(s), and mutation (crossover) can be exe-
cuted on many individuals independently from each other. In con-
trast, selection in an EA (parent selection and survivor selection)
typically involves a comparison of an individual with all others in
the population, as in fitness proportional and ranked-based selec-
tion. Tournament selection involves only few other individuals, but
the pool for the tournament is composed by a central oracle apply-
ing a (random) selection mechanism to the whole population.

For designing fully distributed evolutionary algorithms selection
mechanisms are required that can work in a fully decentralized
way such that threads can operate asynchronously and indepen-
dently from each other. This type of evolutionary algorithm is
becoming increasingly important with the rising need for decen-
tralized decision-making in fields where an evolutionary approach
has proven to be successful. Examples include data allocation in
large-scale (collaborative) content distribution networks [20], as
well as optimal distributed scheduling in BitTorrent systems (see,
e.g., [10]).

In this paper we describe and experimentally evaluate a selection
method, autonomous selection, that meets this requirement. Our
mechanism is based on:

1. Locally available global information. In particular, statistical
information about the population’s fitness, available at each
individual (e.g. average fitness).

2. A locally executable function that determines selection prob-
abilities for each individual based on its own fitness and the
available global information.

Additionally, we have:

3. An adaptation method regulating the parameters of the selec-
tion mechanism on-the-fly, depending on the course of the
search.
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Technically, we work with a P2P system, with no centralized
components, where each individual corresponds to a node and each
node has a collection of neighbors, cf. Figure 4.

There are two main research challenges we address. First, we
need to ensure that the population size remains within bounds. By
the decentralized reproduction the population can explode of im-
plode (die out) and controlling this has proven to be a difficult
problem [18]. Second, we investigate whether a gossip-based dis-
semination protocol can be effectively used to allow for local-only
decision making by nodes, i.e., individuals in the population. In
this paper we show a solution for both problems.

Our key contribution is that we demonstrate how fully autonomous
decision making in evolutionary computing can be achieved by
combining standard evolutionary algorithms with decentralized ag-
gregation of global statistics through gossiping. In principle, our
approach will allow the development of solutions that can oper-
ate on decentralized networks, notably peer-to-peer overlays, thus
opening the road to massively, large-scale evolutionary computa-
tions in completely asynchronous environments.

2. RELATED WORK
The research behind this paper is a new idea in both fields of

evolutionary computing and peer-to-peer (P2P) computing. It is
important to note that most of the related research work referenced
here is based on centralized algorithms.

2.1 Related work in evolutionary computing
Evolutionary computing is mainly used in the form of central-

ized algorithms running on single-processor computers. In decen-
tralized algorithms, we generally see the members of populations
being spatially organized in the form of graphs [22]. However, even
in these cases the execution of the actual algorithm takes place in
a centralized fashion. Parallel versions of evolutionary algorithms
are described in [3, 4, 1, 19]. The main goal in these cases is to
simply improve efficiency by exploiting parallelism in the evolu-
tionary computations. Due to the fact that virtually all algorithms
make use of a shared data space, success has been mainly limited
to shared-memory parallel processors, although combining spatial
structures and parallelism has also proven to be a promising ap-
proach [1]. The work described in this paper essentially follows
this last approach as well.

Local selection algorithms for distributed models of evolution-
ary algorithms have been given some attention in the last decade [5,
11, 21, 22, 19, 9]. Recent work [7] concerns devising a locally ex-
ecutable function to determine selection probabilities for each in-
dividual. Parent selection and survivor selection are separated and
handled independently, but selection probabilities in both cases are
determined by a sigmoid function. This function has two parame-
ters, m and s, that determine the properties of the selection mecha-
nism. Using this function an individual first determines if it should
live or die and if it survives it also checks if it is good enough to
create offspring. If it proves good enough it will mate a randomly
chosen other individual and the new offspring can be added to the
population without replacing any old individual. Note that by this
latter property the population can shrink or grow. This poses a new
challenge to the EA designer, because population explosion and
implosion should be prevented by calibrating the parameters m and
s. Previous work considered a system with perfectly informed in-
dividuals that received the exact population statistics from an “ora-
cle” and provided proof-of-principle evidence that the autonomous
selection idea is viable [7]. However, tuning m and s required sub-
stantial efforts. The work described in this paper exceeds previous
research in two aspects.

• We remove the central oracle and use a gossiping protocol to
acquire global statistics locally.

• We introduce an adaptation mechanism to calibrate m and s
on-the-fly, depending on how the search proceeds.

In this system an individual can exchange information only with
its neighbors. The individual can ask a neighbor for its estimations
of the population’s average fitness and the population size. With
this information it can make (adjust) its own estimations for the
population size and average fitness. Then according to this infor-
mation an individual would make decisions for the selection pro-
cess. This method is the main feature of our proposed decentralized
algorithm.

Another angle to position the present work is that of parameter
control in evolutionary algorithms. Over the last decades signif-
icant efforts have been devoted to regulate EA parameters either
deterministically, adaptively, or self-adaptively [6]. The traditional
efforts mainly concern variation operators. In this paper we intro-
duce a novel way to control selection by an adaptive mechanism.

2.2 Related research in P2P computing
Our research is based on results from gossip algorithms [15, 12,

13, 14, 17] and decentralized peer sampling [12, 14].
Gossip-based (or epidemic based) algorithms have the inherent

ability to reliably pass information among a large set of intercon-
nected nodes. They are robust even if the nodes regularly join and
leave the system (either purposefully or on account of failures),
or the underlying network suffers from broken or slow links. In
a gossip-based protocol, each node in the system periodically ex-
changes information with a subset of its peers. The choice of this
subset is crucial to the wide dissemination of the gossip. This ex-
change of information is in the form of either push or pull. In a push
methodology a node will inspect to see if one of its peers (neigh-
bors) has data and if not send (or push) the current data to the peer.
In a pull-based system it is the reverse, where a node will get infor-
mation from its peers. A combination of push and pull has proved
to operate best [17].

The gossiping protocol that was used in our research was the
Newscast protocol [16]. Although this is a simple protocol it is very
efficient in networks where nodes join and leave the network con-
tinuously (churn). Using the Newscast protocol the peer-sampling
service has been defined. This fully decentralized service provides
a node a uniform randomly selected set of peers, which can be used
to exchange information with.

In this setting once we have our individuals of the evolutionary
algorithm running on nodes of a P2P system, they exchange infor-
mation by gossiping. This gossiping is crucial for the execution of
our algorithm, because it defines a methodology to make estima-
tions of the population size and average fitness. An individual can
also use the peer-sampling service to locate a mate.

3. SYSTEM DESCRIPTION
The system we propose resembles a staged, layered protocol ar-

chitecture. This allows us to divide the functionalities of the evo-
lutionary algorithm and the P2P networking components. We used
PeerSim [16] as the P2P computing simulator for our experiments.

3.1 Layered algorithm approach
Each node of the P2P system runs our algorithm, which is di-

vided into three stages organized in a layered fashion. The core is
formed by the evolutionary stage during which selection and vari-
ation operators (mutation and crossover) are executed locally. The
execution of this algorithm is interrupted to allow for the adaptation
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of selection mechanism (that decides on the probabilities for select-
ing parents and survivors on this node). This adaptation concerns
properly setting the values s and m of Equation 1. To this end, the
adaptation stage itself is interrupted for a gossiping stage during
which (1) estimates of the network size and global average fitness
are computed, and (2) the neighbor set of each node is randomized.
When the gossiping stage finishes, the adaptation stage can com-
plete its work, in turn allowing the completion of the evolutionary
stage. Execution of these three stages is iterated until a solution is
found.

3.2 Algorithmic details
Our algorithm runs on each node of the P2P system, where each

node represents a candidate solution to the given problem. There
are two main algorithmic parts: the evolutionary stage and the
adaptation stage, see Algorithm 1. The termination of the algo-
rithm is managed in a distributed fashion too: each node decides
to terminate when it reaches the optimal fitness value or it “hears”
that other nodes have done so.

Algorithm 1 Outline of the adaptive distributed evolutionary algo-
rithm

initialize
repeat

if a solution is found then
inform the neighbors (by gossiping)

end if
if adaptation stage then

exchange information by gossiping
estimate the population size and average fitness
update selection parameters by adaptation

end if
if evolutionary stage then

if not able to survive then
die

end if
if fertile then

get a neighbor and mate and create a new offspring
end if

end if
until stop criteria

3.2.1 Evolutionary algorithm
The core of the evolutionary mechanism is the selection-variation

cycle. Variation operators, mutation and crossover, must always
match the problem at hand, that is, the data structure representing
an individual. Therefore, we do not specify them in this generic
description. The autonomous selection mechanism is, however,
generic. As mentioned before, it determines selection probabilities
by a sigmoid function.

sigm,s(x) =
1

1+e−m·(x−s) (1)

This sigmoid yields large probabilities when x > 0 and small prob-
abilities when x < 0 as illustrated in Figure 1. If f̄ is the aver-
age fitness of the population and we fill in the fitness deviation
Δ f (x) = f (x)− f̄ of an individual x in sig, we get:

P(x) = sigm,s(Δ f (x)) =
1

1+e−m·(Δ f (x)−s)
(2)

Note that the sigmoid function depends on two parameters s and

1

0

0

Figure 1: Sigmoid curve

1

0

0

Figure 2: For m > 1 the curve becomes step-like

m. The shift s determines where the transition from low proba-
bilities to high probabilities takes place. Using s = 0 centers the
transition interval in the middle of the whole region, increasing s
will shift it to the right, thus decreasing the number of individu-
als selected. The multiplier m determines how sharp the transition
is. Low values imply a smooth curve with a broad slope, while
increasing m will make the transition sharper. This effect is illus-
trated in Figure 2 (m > 1, probabilities are more discrete) and Fig-
ure 3 (0 < m < 1, a stretched sigmoid curve making the differences
in probability smaller). Obviously, the choice of these parameters
greatly influences the response of the sigmoid and hereby the prop-
erties of the selection mechanisms.

This selection mechanism is used in a fully decentralized man-
ner. Each node applies survivor selection and parent selection on
itself with possibly different m and s values. First a node applies
the sigmoid formula for survivor selection to see whether it is fit
to survive. If not, it simply puts itself in a dead state. If the node
survives it applies the sigmoid formula for parent selection to de-
termine if it is fertile (i.e., good enough to mate). When a surviving
node is fertile, it selects a random neighbor to mate with. Ran-
dom mate selection is possible as a by-product of gossiping that
not only exchanges information, but also imposes an overlay net-
work of neighbors on the population. This network is updated by
exchanges of neighbors among nodes. This exchange of neighbors
is crucial to operate as a peer-sampling service [12].

If two individuals are coupled for mating, they reproduce by exe-
cuting crossover followed by mutation. The resulting child is added
to the system as a new node without removing an existing one. This
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Figure 3: For 0 < m < 1 the curve resembles a line

latter feature implies that the population size becomes an observ-
able, rather than a user parameter. It is important to note that a
node/individual will never change through the evolutionary oper-
ators. More precisely, the candidate solution it represents will re-
main the same, only the status of the node can change from alive
to dead by survivor selection. The gossiping algorithm, however,
can change a node: if a node hits upon a solution it will infect other
nodes through gossiping, thus proliferating a solution over the net-
work. As mentioned above, the evolutionary algorithm terminates
if all nodes become “aware” of a solution, either by being one, or
by being told about one.

3.2.2 Adaptation algorithm
The adaptation algorithm as part of our layered architecture forms

the interface stage between the gossiping stage and the evolutionary
stage. The adaptation process is mainly deployed to prevent explo-
sion and implosion of the population by adjusting the parameters of
the sigmoid. We do this in each node independently, which requires
that nodes know whether the population as a whole is growing or
shrinking. However, in our situation there is no meta observer to
provide this information. A node only has its locally computed
estimations. Therefore, within the adaptation stage the counting al-
gorithm is called that makes estimations about the size of the P2P
system. Based on that information the parameters for the selection
functions (m and s) are adjusted. We use simple heuristic rules to
achieve this. The rules are based on observing how the sigmoid
responses to various value, e.g., the population grows if parent se-
lection uses s < 0 and shrinks when s > 0.

Recall that the autonomous selection mechanism is used for par-
ent selection and survivor selection as well, so all together there
are four parameters: mS and mF denoting the m values for sur-
vival selection and parent selection (F as in fertile) and sS and sF
that stand for the s values for survival and parent selection. The
adaptation heuristic meant to prevent implosion of the population
is based on an absolute boundary rule: If the estimated popula-
tion size is smaller than a user defined implosion threshold TI , then
the selection parameters are increased/decreased by adding a posi-
tive/negative δ. The adaptation heuristic meant to prevent explosion
of the population is based on a relative increase rule: If the present
estimation of the population size exceeds the previous one by more
than a user defined explosion threshold TE , then the selection pa-
rameters are increased/decreased by adding a positive/negative δ.
Specific δ values we use in this study are shown in Table 3 later on.

3.2.3 Counting algorithm
The counting algorithm described in Algorithm 2 is part of the

gossiping layer. It deploys an aggregation protocol described in [13].
We have modified the original protocol so that it also provides each
node with an estimate of the global average fitness. It is only after
these estimations have been obtained that the the adaptation stage
can complete.

Algorithm 2 Counting algorithm
initially
msg tag := id /* all nodes have unique identifier */
size est := 1 /* initially a node knows that only it exists */
avg est := fitness value /* a node knows its own fitness value */
compute estimates(size est, avg est, msg tag)
repeat

pull estimates(size estp, avg estp, msg tagp) from neighbor p
if (msg tag < msg tagp) then

/* abort own counting process */
msg tag := msg tagp
size est := 0

else if (msg tag > msg tagp) then
/* abort other counting process */
size estp := 0

end if
size est := (size est + size estp) / 2
avg est := (avg est + avg estp) / 2
push estimates(size est, avg est, msg tag) to neighbor p

until desired number of gossiping rounds

Note that although each node starts an estimation process for the
size and fitness of the system, at the end only one estimation pro-
cess survives, namely the one started by the node with the highest
identifier.

The counting algorithm needs to be executed in several time
steps, or rounds [13]. The required number of rounds grows loga-
rithmically in the size of the P2P system. We executed the counting
algorithm alone first on the P2P system with the Newscast proto-
col to find out how many rounds are needed to get good (almost
perfect) estimations of the size of the system.

Using Table 1 we computed Equation 3, which gives the required
number of gossiping rounds needed to get a good estimation of the
size of the network. The variable γ is the current population size, α
is the initial population size and β is the number of rounds needed
for the initial population size.

#rounds = (log10 (γ)− log10 (α))∗5+β (3)

During our experiments we found that for our initial population size
of 200 we required about 13 rounds to accurately compute the net-
work size. This finally led to the following simpler approximation:

#rounds ≈ (log10 (γ)−2)∗5+15 (4)

This equation gives more than the minimum number of rounds
needed to estimate the network size. It is robust enough for the
growth of the network also since the network can never grow more
than a factor 2 during the execution of the evolutionary stage, in
which every node can at best create one offspring.

3.3 Workflow of the algorithm
Our solution is deployed on a P2P system, with no centralized

components, in contrast to a traditional evolutionary computing
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Table 1: Minimum number of rounds (n) for a good estimate
Population size Minimum rounds Average estimation Standard deviation

10 6 9.6 0.5163977794943321
100 12 99.48 0.9043106644159661

1,000 18 999.477 0.7266353961777479
10,000 23 9,999.4976 0.7790089272147155
100,000 29 99,999.50162 0.6690605610882638

setup. Each individual corresponds to a node in our P2P system,
and like cellular evolutionary algorithms, will have a collection of
neighbors. An individual can only mate with one of its neighbors.
As we mentioned, the set of neighbors of a given node changes over
time.

Figure 4: A simple 1-1 mapping of a cellular EA to a P2P net-
work

In our setup the nodes can be in one of two states: alive or dead.
A live node participates in the algorithm, while a dead node does
not. A node is set to dead if the evolutionary algorithm finds that it
is not fit for survival. Initially, we start with a number of live nodes,
while all others are declared dead.

Live nodes are initialized with candidate solutions as is usually
done in any evolutionary algorithm (here: randomly). After initial-
ization, each live node gossips with its neighbors (some of which
may be dead) in order to estimate the current network (population)
size and the global average fitness. With these estimates, a node
can then adapt the parameter values of the sigmoid functions, and
take subsequent decisions on its viability and fertility.

Newly created offspring (i.e., a node that becomes alive) is po-
sitioned close to its parents, which is done by assigning neighbors
from those of its parents. This proximal placement turned out to be
important for the efficient dissemination of information.

Every (live) node in the system is able to choose a mate if it is
fertile. Thus, there are two ways to become a parent: by selecting a
mate, or by being selected as mate by another node. After mating,
a node resets its estimation of network size and fitness value to
the default values. However, the previously known estimated size
of the network is used to decide on the next number of gossiping
rounds. The number of rounds chosen is good enough even if the
population has changed during the evolutionary stage.

If a node finds a solution it will piggyback it while gossiping for
estimating the population size and overall fitness. The net effect is
that the solution will spread across all nodes, allowing each of them
to take the correct termination decision.

This brings us to a complete single iteration of our algorithm.
Each iteration consists of n + 3 steps, as shown in Algorithm 3.
Note that n may change as the algorithm iterates. The bulk of an
iteration consists of n gossiping rounds, normally in the order of
a few tens. Gossiping is done for disseminating information and

computing estimates. Step n+1 consists of adapting the selection
function, while step n+2 constitutes an evolutionary step in which
the population is adjusted. Finally, step n+3 consists of resetting
estimates and determining the next number of steps for the follow-
ing iteration.

Algorithm 3 Outline of an iteration of the distributed algorithm
1 to n time steps: Gossiping rounds

Exchange information with neighbors
If there is a solution inform the neighbors
Perform the counting algorithm

n+1 time step: Adaptation
Call the adaptation process
Update the parameters for selection

n+2 time step: Evolution
Call selection process
Either die or mate or do nothing accordingly

n+3 time step: Resetting
Reset the values for the counting algorithm
Calculate steps needed (n) for next iteration

4. EXPERIMENTAL SETUP
For an empirical study we use the N Queens problem with differ-

ent problem sizes (values of N). We represent a board setting as an
array of integers that form a permutation. The value xi ∈ {1, . . . ,N}
on the i-th position denotes the row of the queen standing in the i-
th column. This representation ensures that each column and each
row contains only one queen, thus we only need to resolve the con-
straints on diagonals. Such permutations form then the individuals
(nodes). The fitness value of an individual is the number of queens
who attack each other in the board setting it represents. The op-
timal fitness value is 0 meaning that no queens are attacking each
other. As for the variation operators, we used the Partially Mapped
Crossover (PMX) and swap mutation to ensure that all children are
permutations if the parents are [8]. The numerical parameters are
shown in Table 2 and Table 3. Note that although the Newscast
gossip protocol is mentioned as a static value in this table, Jelasity
et al. [12] have shown that this choice is generally not crucial for
the correct execution of higher layer protocols.

5. EXPERIMENTAL RESULTS
We monitored all experiments from an external observer’s view

point and collected data from this perspective. The data plots in the
following subsections show exact values on the average fitness, the
size of the network (population), etc. during a typical run.

5.1 Fitness of the population
We illustrate how the fitness of the population evolves over time

by plotting the average and best fitness values. Each evaluation
time corresponds to a completed iteration from Algorithm 3. Fig-
ure 5 depicts how the fitness of the population increases as the algo-

1464



Table 2: Parameter settings for the algorithm setup
Evolutionary Algorithm
Initial population size 200
Initial multipliers (mS and mF) 10
Initial shifts (sS and sF) 0.1
Crossover probability (pc) 0.2
Mutation probability (pm) 0.05
Adaptation Algorithm
Implosion threshold TI 200
Explosion threshold TE 500
Gossip Algorithm
Number of neighbors (elements in a view) 20
Gossip protocol Newscast

Table 3: values for δ used in the adaptation heuristics
heuristic to prevent

implosion explosion
δ for mS 100 - 10
δ for sS - 1 1
δ for mF 20 -10
δ for sF 0.1 - 0.1

rithm progresses. From an evolutionary computing point of view,
this shows that our algorithm is capable of finding solutions to the
given problem. Quite naturally, the best fitness curve shows a step-
wise progress with plateaus indicating periods where no improve-
ment of the best known fitness value takes place. The curve exhibit-
ing the development of the average fitness shows more gradual im-
provements. It is especially interesting to observe the very last step
before termination. The last plateau is short, which indicates that
once a node (individual) has found a solution (fitness 0), it spreads
quickly within the population. As we have mentioned before this is
done by the use of gossiping. Note that gossiping about a solution
may not reach the whole population at once, making other nodes
continue to work towards becoming a solution themselves or until
they hear the solution from a neighbor.
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Figure 5: Fitness curves for the 96 Queens problem.
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Figure 6: Changes of the population size.

5.2 Population size and selection parameters
Figure 6 displays the population sizes during a run. There are

several key observations to be made. First, we have started the ex-
periments with an initial population size of 200 live nodes. During
the algorithm run the population shrinks and grows, but it never ex-
plodes or implodes to extinction. The plots show that there were
periods when the population plunged down due to more deaths of
individuals than births, but implosion of the population has been
automatically avoided through controlling the selection pressure
on-the-fly.

-100

 0

 100

 200

 300

 400
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 600

 50  100  150  200  250  300

48 Queens mS

48 Queens mF

96 Queens mS

96 Queens mF

Figure 7: Average multiplier values for parent selection (mF)
and survivor selection (mS).

Figures 7 and 8 show how the parameter values of the autonomous
selection mechanism are adapted during a run. Recall, that the au-
tonomous selection mechanism has two parameters (m and s) and
that it is used for parent selection and survivor selection as well, all
together amounting to four parameters for selection: mS, mF , sS,
and sF . Furthermore, each individual has its own parameter values
and it changes these values independently from the other individu-
als (using the same adaptation mechanism). In the figures we show
the average values for the whole population.
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Figure 8: Average shift values for parent selection (sF) and sur-
vivor selection (sS).

These plots can be related to those showing the population vari-
ation as depicted in Figure 6. Aligning these we can see how the
multiplier and shift adapt to keep the population size more or less
stable. When the population size is stable only minute changes oc-
cur for the multiplier values, while in need of avoiding an implosion
or explosion of the population larger variances are seen. Figure 8
shows clearly that the shift value for parent selection is larger than
zero, while for survival selection the value is negative.

In our experiments the parameter s was found to be more sen-
sitive to the adaptation mechanism than m. We also noted that m
should be a large positive integer for the mechanism to work prop-
erly.

All in all, these figures illustrate how locally made decisions and
adaptation at local level are able to keep the population alive and
stable on global level.

5.3 Accuracy of population estimates
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Figure 9: Population estimates for the 96 Queen puzzle

Figure 9 exhibits the the actual population size and the average
of the population size estimates in the individuals over a run. The

averaged estimates and the real values are very close to each other.
The standard deviation of the average was always about 0.5 indi-
cating that almost every individual was able to correctly estimate
the population size.

5.4 Gossiping a solution
Table 4 shows how a node is able to proliferate a solution to the

rest of the population by gossiping. We can see how the popula-
tion’s average fitness increases during each time step.

Table 4: Infection process for the 96 Queens problem
Time Step Pop. size Avg. Fitness Std. Dev
1 746 -4.9571 2.829525
2 746 -4.94102 2.846263
3 746 -4.87668 2.842311
4 746 -4.77748 2.907307
5 746 -4.50134 3.048269
6 746 -3.88606 3.21392
7 746 -2.97587 3.269868
8 746 -1.72118 2.880624
9 746 -0.80027 2.089681
10 746 -0.2748 1.154313
11 746 -0.10456 0.693057
12 746 -0.03083 0.351966
13 746 -0.01609 0.273695
14 746 -0.00268 0.073225
15 746 0 0

The population size has not changed during the gossiping rounds
of the solution. This is because it has been possible to disseminate
the solution to the others within the required number of time steps
for the counting algorithm. Therefore no evolutionary algorithm
step gets executed within that period. Also, since the termination
criterion is satisfied within the amount of time steps required for the
counting algorithm the distributed algorithm stops with the popula-
tion having a solution to the given problem instance. In effect, what
we see is that during the gossiping rounds when multiple tasks are
being carried out, the dissemination of a solution is quicker than
any other task can complete.

6. CONCLUSIONS
Our experiments demonstrate the feasibility of a fully decentral-

ized evolutionary algorithm in which the population size can be
kept stable. What makes our solution unique, is that parent and
survivor selection can be done completely autonomously and asyn-
chronously, without central control, yet avoiding the risk of popu-
lation explosion or implosion.

The gossip protocols play a major role with respect to node selec-
tion and the dissemination of information. Note that gossiping does
require that nodes cooperate. In other words, it requires (coarse)
synchronization between nodes. Each node starts the gossiping
stage for estimations, followed by the adaptation and evolution-
ary stages, and finally resets before executing the next iteration.
In practice, enforcing such a synchronization can be simply estab-
lished by having a node defer responding to gossiping messages
until it has entered its gossiping stage again.

The effect of estimations to our algorithm compared to the ac-
tual values was also an important finding. Since the estimates were
as good as the actual value, the distributed algorithm was able to
perform properly. The estimates did however play a crucial part
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in the whole algorithm setup, since it was the main building block
of the adaptive process. This adaptive process made sure that the
population size stayed within bounds. It is worthwhile to note that
because of the gossip algorithm’s ability to disseminate informa-
tion reliably each of the nodes could obtain proper estimates about
the network. Also since the new offspring stay close to the parents
(in the sense of sharing neighbors), there is a much better chance
of proper delivery of messages and information between the nodes
from gossiping. These factors also made possible for nodes to com-
municate better with each other and make correct estimates about
the population.

7. FUTURE WORK
An important area for improvement is making the individual

nodes more independent by loosening or removing the implied syn-
chronization between them. In particular, we are interested in re-
placing the gossiping stage with a solution that will allow a node
to take a local decision whenever needed. For example, it may be
possible to let nodes gossip continuously and in this way also con-
tinuously collect information about the behavior of the population.

From the EA perspective, further study is required to investigate
the algorithm’s sensitivity to its parameters, e.g., the initial values
for population size, m, s, and the adaptation heuristics. It would be
also interesting to try whether this, or a similar, adaptation mech-
anism could be used in a traditional EA for on-the-fly population
size control.

Last, but not least, the algorithm should be evaluated on more
problems. A specific area of interest is to apply decentralized evo-
lutionary algorithms for hard scheduling problems in P2P networks.
One such example is formed by content distribution networks in
which placement of data is crucial for optimizing client-perceived
performance [20].
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