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ABSTRACT
The work addresses the problem of identifying the epistatic
linkage of a function from high cardinality alphabets to the
real numbers. It is a generalization of Heckendorn and
Wright’s work that restricts problem representation into the
binary-string domain. Discrete Fourier transform is used
to analyze underlying structure in high-cardinality alpha-
bets space. Boolean operators are replaced with new op-
erators such as ⊕,�,⊗ and so on in high cardinality al-
phabets. The “probe” formulation is redesigned to deter-
mine epistatic properties of non-binary function. Theoreti-
cal analysis shows the close relationship between probe value
and problem structure. A deterministic and a stochastic al-
gorithm based on properties of probes are proposed to com-
pletely identify the linkage structure and rigourously com-
pute all Fourier coefficients. Some discussion about linkage
detection for continuous problems is given.

Categories and Subject Descriptors: I.2.8 [Artificial
Intelligence]: Problem Solving, Control Methods, Search;
F.2 [Analysis of Algorithms and Problem Complexity]: Gen-
eral

General Terms: Algorithms, Theory

Keywords: epistasis, linkage detection, high-cardinality
probe, Fourier transform

1. BACKGROUND AND MOTIVATION
The importance of linkage information (nonlinear inter-

action relationship between variables) in optimization algo-
rithms has been studied in the evolutionary computation
field[1, 3, 11, 10, 14]. Linkage information is critical for de-
signing scalable and competent evolutionary algorithms[16].
For many real-world optimization problems, the interaction
structure is actually unknown, and identifying these un-
known interaction structure is an important and interesting
research topic. Messy GA [2], gene expression messy GA
[7] and LLGA [3] manipulate the representation of solutions
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to make the interacting components of partial solutions less
likely to be disrupted. EDAs [11, 10, 14] deal with linkage
information by the estimated probabilistic graphical model.
Another research line as described in details in next para-
graph is on methods to directly detect the linkage informa-
tion before evolutionary search.

There has been extensive previous work that address the
linkage detection problem in binary-coded domain. Mune-
tomo and Goldberg proposed LINC and LIMD algorithms
to identify linkage structure directly by performing pertur-
bations between a pair of loci to detect monotonicity/non-
monotonicity of fitness changes[12]. Kargupta et al. demon-
strated that for an epistatically bounded function, i.e. the
size of the epistatic subsets is bounded, all the Walsh coef-
ficients could be computed in a polynomial number of func-
tion evaluations [8].In 2002, Heckendorn introduced embed-
ded landscapes as extension of NK landscapes and MAXSAT
problems[4] and gave theoretical analysis about the rela-
tionship between Walsh coefficients and epistases. In 2004,
Heckendorn and Wright further built the mathematical foun-
dations for predicting epistasis of binary functions [5]. Walsh
coefficients completely describe the function and so com-
pletely characterize the epistatic linkage. Probe methods
are randomized algorithms for linkage detection. They ex-
tended the previous work by Munetomo et al. and Kargupta
et al. by proposing a framework of probe theory and algo-
rithms [5].

The paper addresses the problem of detecting epistasis
in a high-cardinality domain. It is a generalization of
Heckendorn and Wright’s work [5] which restricts problem
representation into the binary strings. After introducing
some basic mathematical notations in Section 2, a general
theoretical framework for probe methods is developed based
on discrete Fourier transform of high-cardinality function in
Section 3 and 4. Section 5, 6 and 7 propose a top-down
deterministic and a bottom-up stochastic algorithm to de-
termine the linkage structure and accurately calculate the
Fourier coefficients. An artificial Needle-in-Haystack func-
tion is used to verify the algorithms in Section 8. The contri-
butions and shortcomings of the work are discussed at last,
and some promising research directions are given.

2. NOTATIONS
Below are some basic notations and definitions.

1. fM = {0, 1, · · · ,M − 1}, where M is a positive integer

that M ≥ 2. The space fML is the space of L dimen-
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sional vectors with each component selected from fM .
Specially, B = {0, 1}.

2. x, y ∈ fML, the supplement of x is denoted by x̄:
∀k = 1, · · · , L, x̄k = modM (M−xk), the operator ⊕ is
defined x⊕ y = (modM (x1 + y1), · · · ,modM (xL + yL),
the operator � is defied as x�y = x⊕ȳ, the operator ⊗
is defined x⊗y = (modM (x1y1), · · · ,modM (xLyL), dot
product is defined as x · y = modM (

L
i(xi ⊗ yi)). ‖x‖

denotes the number of positions with nonzero value.
We say x ⊆ y, if and only if: ∀xi, xi = yi if yi 
= 0;
x ⊂ y, iff x ⊆ y and x 
= y.

3. Template set S(x) is defined over x ∈ fML such that:

S(x) = {y|y ∈ fML ∧ (xk = 0 → yk = 0)}. For ∀x ∈fML, ‖x‖ 
= 0, there are M‖x‖ elements in S(x); if
‖x‖ = 0, then S(x) = ∅.

4. A function pack(x, y) is defined as: fML×fML �→ fMH ,
where H , L are positive integers, and H is the number
of nonzero elements in y, H ≤ L. pack(x, y) is the
vector composed of elements in x that are in the same
positions as the elements of y that are nonzero. Order
is preserved. For example, pack((0, 2, 3, 0, 1, 2), (0, 1, 0,
1, 1, 0)) = (2, 0, 1).

5. A function zero(x): fML �→ BL is defined as: if y =
zero(x), then yi = 1 if xi = 0 and yi = 0 if xi 
= 0.

Note that, if we restrict fM = B, the operator ⊗ is equiva-
lent to boolean operator and ∧, ⊕ and � are both equivalent
to exclusive-or. It should be also noted that the definition
of supplement in high-cardinality domain is very different
from that in binary domain, and can not be directly reduced
to the definition in binary domain. In binary domain, the
supplement of x, x ∈ B is usually defined as: x̄ = zero(x);
clearly this type of definition does not apply to the general
discrete domain.

3. HIGH-CARDINALITY FOURIER
ANALYSIS

Original Walsh function[5, 8, 4] can not be applied to
analyze the high-cardinality domain, so we have to extend
it to discrete Fourier function. Some useful properties of
Fourier functions are given.

Discrete Fourier basis function in domain fML is defined[13,
6, 9, 17]

ψ
(M)
i (x) = vM (i · x) (1)

where i, x ∈ fML, and vM (a) = e
2π

√−1
M

a where a ∈ fM .

Its complex conjugate is denoted by ψ̄
(M)
i (x) = vM (̄i · x).

The following properties about discrete Fourier functions are
important. Theorem 1∼4 are obvious or have been proved
recently[17, 6]; Theorem 5 is a new theorem.

Theorem 1. (Sum of Power of Roots of One)

M−1X
b=0

vM (a⊗ b) =

(
M if a = 0

0 if a 
= 0
(2)

Theorem 2. (Basic Properties of Discrete Fourier Func-

tion) For p, q, x ∈ fML,

ψ(M)
p (x) = ψ(M)

x (p) (3)

ψ(M)
p (x)ψ(M)

q (x) = ψ
(M)
p⊕q (x) (4)

ψ
(M)
�0

(x) = ψ(M)
x (�0) = 1 (5)

Theorem 3. (Inverse Fourier) For p, q, x ∈ fML,X
x∈fML

ψ̄(M)
p (x)ψ(M)

q (x) =

(
ML if p = q

0 if p 
= q
(6)

Theorem 4. (Balance Sum Theorem for High-cardinality

Hyperplane)For x, i,m ∈ fML, ‖m‖ = H, j ∈ fMH ,X
x:pack(x,m)=j

ψ(M)
x (i) =

(
ML−Hψ

(M)
pack(i,m)(j) if i ∈ S(m)

0 if i 
∈ S(m)

(7)

Theorem 5. (Inverse Fourier for High-cardinality Hy-

perplanes) For p, q, x,m ∈ fML, ‖m‖ = H,X
x∈S(m)

ψ̄(M)
p (x)ψ(M)

q (x) =

(
MH if pack(p,m) = pack(q,m)

0 if pack(p,m) 
= pack(q,m)

(8)

Proof.X
x∈S(m)

ψ̄(M)
p (x)ψ(M)

q (x)

=
X

x∈S(m)

vM (p · x)vM (q · x)

=
X

x∈S(m)

vM (pack(p,m) · pack(x,m))vM (pack(q,m)

· pack(x,m))

=
X

u∈fMH

vM (pack(p,m) · u)vM (pack(q,m) · u)

=
X

u∈fMH

ψ̄
(M)
pack(p,m)(u)ψ

(M)
pack(q,m)(u)Note: ψs here are in fMH

=

(
MH if pack(p,m) = pack(q,m)

0 if pack(p,m) 
= pack(q,m)
By Theorem 3

Any function f : fML �→ R can be written as a linear
combination of discrete Fourier functions:

f(x) =
X

i∈fML

ωiψi(x) (9)

where ωi is the Fourier coefficients. The Fourier coeffi-
cients can be calculated:

ωi =
1

ML

X
x∈fML

f(x)ψ̄i(x) (10)

The generalized embedded landscape (GEL) is a func-

tion f : fML �→ R which can be written as a sum of sub-
functions each of which depends only on a small number
of variables. A GEL is k-bounded epistatic if it can be
written as the sum of subfunction each of whose number of
variables is at most k. It has recently shown the close re-
lationship between Fourier coefficients and the structure of
k-bounded GEL [17, 18].
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Theorem 6. (Generalized Embedding Theorem) A func-

tion f : fML �→ R has k-bounded epistasis, if and only if
ωj = 0∀‖j‖ > k.

4. HIGH-CARDINALITY PROBES
In binary domain, a probe is a way of determining epistatic

properties of a function f : BL �→ R by performing a series
of specific function evaluations[5]. Here, we would like to re-
describe the definition of “probe” in the language of section
2’s notations, so that we can extend it to high-cardinality
domain more naturally:

P (f,m, c) =
1

2‖m‖
X

i∈S(m)

(−1)‖i‖f(i⊕ c) (11)

where m ∈ BL and c ∈ S(zero(m)).
It is not straightforward to generalize the above formula-

tion to a domain of high-cardinality alphabets. But we find
that in binary domain ∀i ∈ S(m), (−1)‖i‖ = (−1)‖i⊕m‖ =

ψ
(B)
m (i) = ψ̄

(B)
m (i). So, we define probe in high-cardinality

domain as:

P (f,m, c) =
1

M‖m‖
X

i∈S(m)

ψ̄(M)
m (i)f(i⊕ c) (12)

where m ∈ fML and c ∈ S(zero(m)). c is called the back-
ground of the probe. Complex conjugate of a probe is
defined below and we will use conjugate probe for short.

P̄ (f,m, c) = P (f, m̄, c) =
1

M‖m‖
X

i∈S(m)

ψ(M)
m (i)f(i⊕ c)

(13)
The order of the probe is number of nonzeros inm. The

direct computation of the value of a probe requires M‖m‖

function evaluations. Later theoretical induction about the
properties of the high-cardinality probe will show the valid-
ity of this extension.

4.1 Properties of Probes

Theorem 7. (Fourier Function Probing) For any j,m ∈fML and c ∈ S(zero(m))

P (ψj ,m, c) =

(
ψj(c) if j ⊆ m
0 otherwise

(14)

Proof.

P (ψj , m, c) =
1

M‖m‖
X

i∈S(m)

ψ̄(M)
m (i)ψ

(M)
j (i⊕ c)

=
1

M‖m‖
X

i∈S(m)

ψ̄(M)
m (i)ψ

(M)
j (i)ψ

(M)
j (c)

=
1

M‖m‖ψ
(M)
j (c)

X
i∈S(m)

ψ̄(M)
m (i)ψ

(M)
j (i)

By Theorem of Inverse Fourier for High-cardinality Heyper-
planes, we know that the sum is M‖m‖ if pack(m,m) =
pack(j,m), that is j ⊆ m, and is 0 otherwise.

Theorem 8. (High-cardinality Probe Subset) For any m ∈fML and c ∈ S(zero(m))

P (f,m, c) =
X
j⊆m

ωjψj(c) (15)

Proof. Recall that f(x) =
P

j∈fML ωjψj(x). Thus,

P (f,m, c) =
X

j∈fML

ωjP (ψj(x),m, c)

=
X
j⊆m

ωjψj(c) By Theorem 7

A maximal nonzero Fourier coefficient is a Fourier co-
efficient ωm such that ωm 
= 0 and ωj = 0∀j ⊂ m.

Theorem 9. (Maximal Probe) If ωm is a maximal nonzero
Fourier coefficient, then for any c ∈ S(zero(m)),

P (f,m, c) = ωm (16)

Proof. It follows from High-cardinality Probe Subset
Theorem that

P (f,m, c) =
X
j⊆m

ωjψj(c)

= ωmψm(c) +
X
j⊂m

0ψj(c) = ωmψm(c)

And ψm(c) = vM (m · c) = vM (0) = 1.

In binary domain, a probe can be written as a sum of
lower-order probes. We check whether this property still
holds in high-cardinality domain.

Theorem 10. (High-cardinality Probe Recursion) For any

function f : fML �→ R, and m,n ∈ fML with m ⊆ n, and any
c ∈ S(zero(m)):

P (f,m, c) =
1

M‖n‖
X

i∈S(n)

ψ̄(M)
n (i)P (f,m� n, i⊕ c) (17)

Proof. Any j ∈ S(m) can be written uniquely as j =
i⊕ u where i ∈ S(n) and u ∈ S(m� n). Thus:

P (f,m, c)

=
1

M‖m‖
X

j∈S(m)

ψ̄(M)
m (j)f(j ⊕ c)

=
1

M‖m‖
X

(i⊕u)∈S(m)

ψ̄(M)
m (i⊕ u)f(i⊕ u⊕ c)

=
1

M‖n‖M‖m⊕n‖
X

i∈S(n)

X
u∈S(m�n)

ψ̄(M)
m (i)ψ̄(M)

m (u)f(i⊕ u⊕ c)

=
1

M‖n‖
X

i∈S(n)

ψ̄(M)
m (i)

1

M‖m�n‖
X

u∈S(m�n)

ψ̄(M)
m (u)

f(i⊕ u)⊕ c)
=

1

M‖n‖
X

i∈S(n)

ψ̄(M)
m (i)(

1

M‖m�n‖
X

u∈S(m�n)

ψ̄
(M)
(m�n)(u)

f(u⊕ (i⊕ c)))`
Since (i⊕ c) ∈ S(zero(m� n)), by definition of probe:

´
=

1

M‖n‖
X

i∈S(n)

ψ̄(M)
m (i)P (f,m� n, i⊕ c)

=
1

M‖n‖
X

i∈S(n)

ψ̄(M)
n (i)P (f,m� n, i⊕ c)
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Note that the above extension of Probe Recursion Theo-
rem from binary domain to high-cardinality domain is not
straightforward. The key point is that the operator � is
brought into to replace the original operator “exclusive or”
somewhere. The special design of n that m ⊆ n makes it
possible that ∀j ∈ S(m) can be written uniquely as j = i⊕u
where i ∈ S(n) and u ∈ S(m � n), so that we can decom-
pose the probe into additive low-order probes. Further we
can derive the following theorem. The description is also
different from that in binary domain.

Theorem 11. (Nonzero High-cardinality Probe Existence)
Given a maximal nonzero Fourier coefficient ωm, then ∀a :
m ⊆ a, there exists an i ∈ S(m� a) such that

P (f, a, i⊕ c) 
= 0 ∀c ∈ S(zero(m)) (18)

Proof. By the Maximal Probe Theorem, P (f,m, c) =
ωm 
= 0 for any c ∈ S(zeros(m)). We know that ∀a : m ⊆ a,
there exists unique n such that (m ⊆ n) ∧ (a = m� n). By
High-cardinality Probe Recursion Theorem, concerning the
n, we have:

P (f,m, c) =
1

M‖n‖
X

i∈S(n)

ψ̄(M)
m (i)P (f,m� n, i⊕ c)

Thus, there must exist an i ∈ S(n), S(n) = S(m� a), such
that P (f,m� n, i⊕ c) = P (f, a, i⊕ c) 
= 0.

Nonzero High-cardinality Probe Existence Theorem im-
plies the close relationship between the problem linkage struc-
ture and the probe values, which are summarized in the fol-
lowing corollary.

Corollary 12. (Relationship Between Linkage Structure

and Probes) Given any function f : fML �→ R and m ∈ fML,
the variable positions whose values are nonzero in m are
linkage epistatic if and only if:

∃c ∈ S(zero(m)), P (f,m, c) 
= 0 (19)

5. LINKAGE HYPERGRAPH AND
NON-ZERO FOURIER COEFFICIENTS

For the convenience of description, we use the concept
hypergraph[5] to represent the interaction relationship be-
tween variables. Generally, a hypergraph G is defined as a
pair (V,E), where V is a set of vertices, and E ⊆ 2V is a set
of hyperedges between the vertices. The linkage hyper-
graph of a fitness function f is denoted by Gf = Gf (V,E)
where the vertex set V = {x1, x2, · · · , xL} corresponds the
set of variables (alphabet string positions), and e ∈ E if and
only if there are linkage relationship between those variables
included in e. The order of a hyperedge e is the number of
vertices in e; the order of a hypergraph Gf is maximum
of the orders of e’s. For example, considering a function
f(x1, x2, x3) = g1(x1, x2)+g2(x3), where g1 and g2 are max-
imum epistasis, the vertices set of Gf is V = {x1, x2, x3},
hyperedge set E = {Φ, {x1}, {x2}, {x3}, {x1, x2}}, and the
order of hyperedge {x1} is 1, the order of Gf is 2. Below
are the linkage hypergraphs of some specified functions.

Theorem 13. (Linkage Hypergraph of Some Specified Func-
tions)

1. If f : fML �→ {c}, where c ∈ R is constant, then Gf =
(V,Φ).

2. If f : fML �→ R is linear function (i.e. order-1 epistatic),
then Gf = (V,E), where E = {Φ, {x1}, {x2}, · · · , {xL}}.

3. If function f : fML �→ R is maximal epistasis, then
Gf = (V,E), where E = 2V .

4. If f : fML �→ R is k-bounded epistatic function, then
Gf = (V,E), where the order of Gf is k.

From the Theorem of Relationship Between Linkage Struc-
ture and Probes, we should notice that: a hyperedge e cor-

responds to at least one mask string m ∈ fML in which
mi 
= 0 if xi ∈ e and mi = 0 if xi 
∈ e, and m has the prop-
erty ∃c ∈ S(zero(m)), P (f,m, c) 
= 0. Thus, by Theorem
of Nonzero High-cardinality Probe Existence, we have the
following corollary.

Corollary 14. (Linkage Hypergraph Property) Given f :fML �→ R and its linkage hypergraph Gf = Gf (V,E), if
a ∈ 2V is a hyperedge (i.e. a ∈ E), then ∀e ∈ 2a, e ∈ E.

In binary domain, each e ∈ E corresponds a unique mask
string m ∈ BL; but in high-cardinality (M > 2) alphabets
domain, each e might correspond many strings, and those
strings have the property: if m1 and m2 are two different
M -cardinality strings corresponding to e, then zero(m1) =
zero(m2). We should also note the observation that for

any m ∈ fML and c ∈ S(zero(m)), if p(f,m, c) 
= 0, then
p(f, m̄, c) 
= 0 (This is easily seen from the definition of
probe). Therefore, in high-cardinality domain, if m 
= m̄,
one non-empty hyperedge corresponds at least two mask
strings of nonzero probe value.

Now, we consider how to identify the order-j hyperedges
of a given function. In the following description, we will
not distinguish the denotations of a hyperedge and its cor-
responding binary mask string, because there exists one-
to-one mapping between them. The Order-j Linkage Detec-
tion Algorithm in Figure 1 can construct the set of order-j
hyperedges of the linkage hypergraph for problems in high-
cardinality domain.

Detect-Linkage(j,N)
V ← {0, 1, · · · , L− 1}, E ← Φ
for each possible hyperedge e ∈ BL with ‖e‖ = j

if e 
∈ E then
sign← 0

for each m ∈ fML that zero(m) = zero(e)
for i← 1 to N do

c← a random string in S(zero(m))
if P (f,m, c) 
= 0 then

E ← E ∪ {e}
sign← 1
break

endif
endfor
if sign = 1 break endif

endfor
endif

endfor
reture E.

Figure 1: Order-j linkage detection algorithm

1487



Next, we give the computation complexity of detecting
all order-j mask strings that correspond to order-j hyper-
edges. The reason that the complexity analysis is focused
on mask strings instead of hyperedges is that in Section 7
we will propose a stochastic algorithm that can compute
all Fourier coefficients, which need to detect order-j mask
strings of nonzero probe values. The Detect-Nonzero-Probe-
Algorithm is shown in Figure 2. Considering a class of k-
epistatically bounded fitness functions where the number of
hyperedges is O(L), how many function evaluations are re-
quired? Theoretical results about the question in binary
domain are given in [5]. Their results can be extended to
the high-cardinality domain.

Detect-Nonzero-Probe(j, N)
T ← Φ
for each mask strings m ∈ fML with ‖m‖ = j

if m 
∈ T then
for i← 1 to N do

c← a random string in S(zero(m))
if P (f,m, c) 
= 0 then

T.add(m)
break

endif
endfor

endif
endfor
reture T .

Figure 2: Detect order-j mask strings with nonzero
probe value that correspond to hyperedges

Theorem 15. (Nonzero Probe Probability) Let f : fML �→
R be k-epistatically bounded and let m ∈ fML have the prop-
erty: ‖m‖ = j, j ≤ k. If c is a randomly chosen string in
S(zero(m)), then the probability that P (f,m, c) 
= 0 is at
least M j−k.

Proof. Since P (f,m, c) 
= 0, by the Theorem of Nonzero
High-cardinality Probe Existence, there is a u such that
u ⊆ m and ωu 
= 0. Without loss of generality we can
assume that u has the property that v ⊂ u ⇒ ωv = 0.
By assumption, ‖u‖ ≤ k. The Nonzero High-cardinality
Probe Existence Theorem shows that there is at least one i ∈
S(u�m) such that P (f,m, i⊕b) 
= 0 for any b ∈ S(zero(u)).
The probability that the randomly selected background c
matches some such i on the positions masked by u�m is at
least M−‖u�m‖ = M‖m‖−‖u‖ ≥M j−k.

Theorem 16. Let f : fML �→ R be k-epistatically bounded
and let J be the number of order-j mask strings with nonzero
probe value. If the number of iterations N in the Algorithm
of Figure 2 is chosen so that either

N ≥
(

ln(1−δ1/J )

ln(1−Mj−k)
if j < k

1 if j = k
(20)

or

N ≥
(
Mk−j ln(1− δ1/J ) if j < k

1 if j = k

then the probability that all order-j mask strings of nonzero
probe value are detected is at least δ.

Proof. Theorem of Nonzero Probe Probability shows
that the probability of failure for one probe on one trial
is at most 1−M j−k. Thus, the probability of failure on N
independent trials is at most (1 −M j−k)N , and the prob-
ability of success on N trails is at least 1 − (1 −M j−k)N .
The probability of success on all J hyperedges is at least
(1− (1−M j−k)N )J . Thus, we want to choose N so that

(1− (1−M j−k)N)J ≥ δ
1− δ1/J ≥ (1−M j−k)N

ln(1− δ1/J ) ≥ N ln(1−M j−k)

ln(1− δ1/J )

ln(1−M j−k)
≤ N

To prove the second formula, we need to show that

−Mk−j ln(1− δ1/J ) ≥ ln(1− δ1/J )

ln(1−M j−k)

⇔ Mk−j ≥ − 1

ln(1−M j−k)

⇔ M j−k ≤ −ln(1−M j−k)

Note the difference from the binary domain: in fML do-
main, for each order-j hyperedge, we have to do at most
(M − 1)jN probes, so that the probability that all order-j
strings of nonzero probe value are detected is at least δ; in
binary domain, we only need to do at most N probes. We
next consider how the number N of iterations increases as
the strings length increases for a class of high-cardinality
fitness functions.

Theorem 17. Assume a class of k-epistatically bounded

fitness function fML �→ R where the number of maximal hy-
peredges is O(L). If δ is constant, the number of function
evaluations required by Algorithm of Figure 2 is O

`
Mk

`
L
j

´`
lnL+ ln

`
k
j

´´´
. If j is constant, then the number of function

evaluations is O(MkLj lnL).

Proof. We set N to be −Mk−j ln(1− δ1/J ). For each of
the N iterations of the inner loop a probe needsM j function
evaluations. The outer loop is executed

`
L
j

´
times, so the

total number of function evaluations is −Mk
`

L
j

´
ln(1−δ1/J),

and by Lemma 10[5], this is O
`
Mk

`
L
j

´
lnJ

´
.

The number of order-j hyperedges in a single maximal
Fourier coefficient of order k is bounded by

`
k
j

´
, and we have

assumed that the number of maximal order-k hyperedges is
O(L) (that is, the number of nonzero Fourier coefficients is
at most O((M − 1)kL) ), so J is bounded by O

``
k
j

´
(M −

1)kL
´
. Since we assume that M and k are fixed number in-

dependent of L, thus, lnJ is O
`
lnL+ln

`
k
j

´´
. If j is constant,

the number of function evaluations is O(MkLj lnL).

The above analysis gives us an upper bound on the amount
of work to guarantee that all order-j mask strings of nonzero
probe value are detected with at least probability δ, under

the assumption that f : fML �→ R is k-epistatically bounded
and the number of order-k hyperedges is O(L). The scalabil-
ity in L seems similar to that in binary domain[5]. Note that,
for the same L, k, j but differentM , bigger M will need more
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function evaluations. For example, when M = 2, the func-
tion evaluations O

`
2k

`
L
j

´`
lnL + ln

`
k
j

´´´
, when M > 2, the

function evaluations O
`
Mk

`
L
j

´`
lnL+ ln

`
k
j

´
+ kln(M − 1)

´´
.

6. COMPUTING FOURIER COEFFICIENTS
USING DETERMINISTIC ALGORITHM

Given a black-box high-cardinality function f : fML �→ R

with k-bounded epistasis, we design a deterministic algo-
rithm to compute its Fourier coefficients based on the prop-
erties of probe.

Since f is k-bounded epistatic, by Generalized Embed-
ding Theorem, let ωm, ‖m‖ = k be a maximal nonzero
Fourier coefficient. The Maximal Probe Theorem shows that
P (f,m, c) = ωm for any c ∈ S(zero(m)). Thus, we do the
probe P (f,m, 0), and the result will be ωm. By Equ.(12), all
the order-k Fourier coefficients can be computed by doing`

L
k

´
probes, each of which uses Mk function evaluations.

Then, concerning the calculation of ωj that j = k − 1, by
High-cardinality Probe Subset Theorem, we have:

P (f, j, 0) =
X
u⊆j

ωuψu(0)

=
X
u⊂j

ωuψu(0) + ωjψj(0)

=
X
u⊂j

ωu + ωj

(21)

The potential nonzero Fourier coefficients in the summation
are all of order k and has been computed. Thus ωj can be
calculated by ωj = P (f, j, 0)−P

u⊂j ωu.

1. ∀k′ > k, ωj:‖j‖=k′ = 0.

2. k′ = k, ωj:‖j‖=k′ = P (f, j, 0).

3. k′ = k′ − 1, if k′ < 0, all the Fourier Coefficients have
been computed, and exit.

4. ωj:‖j‖=k′ = P (f, j, 0)−P
u:u⊂j ωu, go to step 3.

Figure 3: Deterministic Algorithm to Compute
Fourier Coefficients

The above algorithm is an extension of probe-based top-
down algorithm from binary [5] to high-cardinality domain.
We next consider the function evaluations needed for calcu-
lating all Fourier coefficients. Note that all function eval-
uations necessary to compute P (f, j, 0) that m ⊂ j have
already been done in the computation of P (f,m, 0). So, for
problems with bounded order k, calculating all the Fourier
coefficients need Mk

`
L
k

´
function evaluations.

7. STOCHASTIC LINKAGE DETECTION
AND FOURIER COMPUTATION BASED
ON PROBE METHOD

A stochastic algorithm is proposed here to detect linkage
hypergraph and compute Fourier coefficients. We will show
that the stochastic probe algorithm for binary problems de-
veloped by Heckendorn and Wright[5] can be extended to a
high-cardinality domain.

Because an order-j hyperedge of high-cardinality func-
tion might correspond to at most (M − 1)j mask strings of

nonzero probe value, in the following description, we have
to concentrate on mask strings instead of hyperedges. This
is different from that in binary domain.

TestByProbe Algorithm in Figure 4 is to see whether a
high-cardinality mask string corresponds a hyperedge. If
variables of m does not nonlinearly interacts, then Test-
ByProbe algorithm returns a NULL probe value; else it will
return the probe value P (f,m, c) where c is an all-zero back-
ground. N(m) depends on ‖m‖ and is determined by The-
orem 16. N(m) guarantees that we correctly detect the hy-
peredges with probability δ.

TestByProbe (m,N(m))
ProbeV alue = null
for i = 1 : N

c← a random string in S(zero(m))
temp = P (f,m, c)
if temp 
= 0 then

zero(zero(m)) is a hyperedge
ProbeV alue = P (f,m, 0)
break

endif
return ProbeV alue
endfor

Figure 4: Algorithm of TestByProbe

The bottom-up part of stochastic algorithm in Figure 5
is aimed to detect all the mask strings that corresponds to
hyperedges. It traverses strings from low order to high order
due to the following observation: considering a mask string

m ∈ fML, by Corollary of Linkage Hypergraph Property,
if there exists any m′ ⊃ m that m′ does not correspond a
hyperedge, then the mask m does not correspond to a hyper-
edge. It does a breadth-first traversal of the lattice of mask
strings, starting with empty mask, then looking at the order-
1 masks, order-2 masks, etc. Before seeing whether a new
mask string m corresponds a hyperedge by TestByProbe
Algorithm, we first test that whether all masks m′ ⊃ m cor-
respond a hyperedge, i.e. whether m′s are in the maskList.
If all of them are in the maskList, then we do TestByProbe;
otherwise, we need not do probing any more, because we can
surely say that it does not correspond to a hyperedge.

In the algorithm, quene is used for breadth-first traversal,
hyperedgeList is to store the hyperedges, maskList is used
to store the those mask strings of nonzero probe value which
correspond to hyperedges, and maskSet stores the probe
values (all-zeros string background) of those mask strings in
maskList. Superset − List(m) is a list of mask strings a
such that ‖a‖ = ‖m‖+ 1 and a ⊂ m.

Then, a top-down algorithm in Figure 6 for computing
Fourier coefficients traverses the mask strings in maskList
from higher order masks to lower order, that is in the re-
verse order from which they were added to maskList. The
algorithm is based on Equ.(21). The Fourier coefficients
are computed accurately using only the function evaluations
done in the bottom-up part of the algorithm.

We take a simple embedded landscape as an example.
Consider a function f(x1, x2, x3) = g1(x1, x2)+g2(x3), where
(x1, x2, x3) ∈ {0, 1, 2}3, there are two epistatic block {x1, x2}
and {x3}. Assume that those Fourier coefficients are nonzero:
ω000, ω100, ω200, ω010, ω020, ω001, ω002, ω011, ω022(note
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the variable position is counted from right to left); other
Fourier coefficients are zero. The algorithm of Traverse-
Mask-Strings traverses the lattice of mask strings as shown
in Figure 7. First, TestByProbe algorithm is applied to
empty mask 000, and nonzero probe value is obtained, so
Φ is added in the hyperedges set hyperedgeList and 000 is
added to maskList. Then, test order-1 mask strings. Take
001 as an example: because all the subset strings of 001
(the only order-0 mask string,000) are in the maskList, so
we calculate the probe value of 001. After all order-1 mask
strings have been tested, then consider order-2 mask strings.
For example, there are two substrings of 011 that are order-
1 (010 and 001), both of which in the maskList, so we have
to test 011 using TestByProbe algorithm. Then consider
order-3 strings. Because for any order-3 string, there exist
some of order-2 substrings that are of zero probe value and
are not included in maskList, so all the order-3 strings can
not be nonzero-probe-valued strings and we do not need to
run TestByProbe algorithm on order-3 strings any more.

According to the above analysis, we can classify all ML

mask strings into three types: type-1, type-2 and type-3.The
mask string that may be included in maskList is named
type-1 mask. Considering a mask string a with order r, if
all the order r−1 submasks of a ({i : ‖i‖ = r−1&a ⊂ i}) are
type-1, but a is not included in maskList; then a is called
type-2 mask. The other type of masks is named type-3
masks. Note that a type-3 mask will never be tested by
TestByProbe algorithm. The same definitions in binary do-
main have been given by Heckendorn and Wright[5]. For
example, as shown in Figure 7, the strings with solid under-
line are type-1, the ones with dot underline are type-2 and
others without underline are type-3.

8. EXPERIMENTAL VERIFICATION
The experiment aims to verify the correctness of our algo-

rithms. We construct a “needle-in-haystack” problem over
high-cardinality alphabets domain and, see whether our al-
gorithm can correctly detect its hyperedges and accurately
compute the Fourier coefficients. The dimension is 30, the
alphabet cardinality is 3, the order of maximum epistasis is
3 and there are 10 subfunctions. For each subfunction, the
fitness is a constant value 8 except a randomly placed needle
point with a different value 8.1. The variable positions of
each subfunction are randomly chosen.

For the deterministic algorithm in Section 6, we do not
need to set any parameters. The algorithm run in a de-
terministic way, and after 33

`
30
3

´
function evaluations all

Fourier coefficients was computed accurately. The epistatic
structure was obtained from those strings with nonzero co-
efficients.

For the stochastic linkage detection algorithm in Section
7, the only parameter in the algorithm is number of itera-
tions N per mask string. It is determined by Theorem 16.
For example, the probability that all order-2 mask strings of
nonzero probe value are detected is set to 0.99. The number
of such order-2 mask strings is J = (M−1)kL

`
L
k

´
= 120

`
30
3

´
.

And then we bring j into Equ.(20) and get N = 23. The
algorithm successfully detected all the hyperedges and com-
puted the Fourier coefficients.

The simple experiment demonstrates the correctness of
our theory and methods. More experiments are needed to
further test the performance of the algorithms, especially
the scalability of algorithms.

Traverse-Mask-Strings
hypergraphList.initialize()
maskList.initialize()
queue.initialize()
m = {} //Empty mask
ProbeV alue = TestByPorbe(m,N(m))
if PorbeV alue 
= null then

quene.add(m)
maskSet[m]← ProbaV alue

endif
while queue.notEmpty() do

m← queue.remove()
for a ∈ SuperSet− List(m) do

if all subsets of a of order ‖m‖ are in the
maskList then

ProbeV alue← TestByProbe(a,N(a))
if ProbeV alue 
= null then

queue.add(a)
maskSet[a]← ProbeV alue
maskList.addF irst(a)
e = zero(zero(a))
if e is not in hypergraphList

hypergraphList.addF irst(e)
endif

endif
endif

endfor
endwhile

Figure 5: Bottom-up part: traverse mask strings
with nonzero probe value

Compute-Fourier-Coefficients(maskList)
for m ∈ maskList

ProbeV alue← maskSet[m]
if ω[m] 
= null then ω[m]← ω[m] + ProveV alue
else ω[m]← endif
for each a ∈ m

if ω[a] 
= null then ω[m]← ω[a]− ω[m]
else ω[a]← −ω[m] endif

endfor
endfor

Figure 6: Top-down part: compute Fourier coeffi-
cients

001 002 010 020 100 200

011 012 021 022 101 102 201 202 110 120 210 220

111 112 121 211 221 212 122 222

{x0} {x1} {x2}

{x0, x1} {x0, x2} {x1, x2}

{x0, x1, x2}

000

Figure 7: Breadth-first traversal of lattice masks in
stochastic linkage detection algorithm
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9. CONCLUSION AND DISCUSSION
The main contribution is that we design the “probe” in

high-cardinality alphabets domain. The work gives a gen-
eral theoretical foundation for perturbational methods for
determining the epistatic structure of functions in a gener-
alized discrete domain. It is an extension of Heckendorn and
Wright’s probe theory and methods from the binary domain
to a more general high-cardinality alphabets domain. Based
on rigorous mathematical induction, two methods are de-
veloped to detect the epistatic structure: one is a top-down
deterministic algorithm, the other is a stochastic bottom-
up algorithm. Both can discover the epistatic structure of
order-bounded functions, and at the same time compute the
Fourier coefficients accurately in a deterministic way or un-
der some given probability.

However, the work is far from complete and many un-
solved problems remain. The computational complexity of
the algorithms needs to be further explored in theoretical
and experimental aspects. Ref.[5] shows that probe method
in binary domain has polynomial computational complex-
ity under the assumption that the problem is epistatically
bounded and the number of hyperedges is O(L). It is neces-
sary to study the scalability of probe methods in non-binary
domain and further understand a trade-off between compu-
tational cost and applicability of the probing method.

The meaning of nonzero Fourier coefficients should be fur-
ther studied. As shown in Section 5, a hyperedge might cor-
respond many nonzero Fourier coefficients. The relationship
between those nonzero Fourier coefficients and the epistatic
structure should be theoretically analyzed clear in the fu-
ture. There is also much space for algorithmic enhancement.
The algorithm might be enhanced if we restrict ourself only
into the work of hyperedge detection: for the purpose of
order-j linkage detection, we do not necessarily compute
all the nonzero Fourier coefficients; once we detect ONE
nonzero Fourier coefficient, then it is surely a hyperedge.
Further research is needed to improve the algorithm.

Extension of the work to the continuous domain is also a
promising direction. Below we will give some basic con-
sideration about linkage detection in continuous domain.
A research LINC-R based on Munetomo et al.’s previous
work[12] has been proposed elsewhere[15], which tests non-
linearity by order-2 perturbations for real-coded GA.

9.1 About Linkage of Continuous Problems
Without loss of generalization, we consider continuous

function f : [a, b]L �→ R, where a < b. The linkage hy-
pergraph is Gf = Gf (V,E). Since all the continuous prob-
lems have to be considered under some granularity in digital
computer, we can discretize the continuous variables into
a few intervals and then discuss the epistatic structure in
the discrete domain. D indicates a discretization method
D : [a, b]L �→ fML, that converts a continuous domain to a

discrete domain. The linkage hypergraph of fD : fML �→ R

is denoted by GfD = GfD (VD, ED). If f is a continuous
embedded landscape with bounded epistasis, then fD is a
discrete embedded landscape and GfD can be obtained us-
ing the algorithm of the paper. So, the question is: what
is the relationship between Gf and GfD , or how does GfD

approximate Gf?
We have the following suppositions: 1) Given any D,

GfD ⊆ Gf ; 2) For any continuous domain, there exists a dis-
cretization method D that make that GfD = Gf ; 3) D1 and

D2 are two discretization methods that convert a continuous
domain to fML

1 and fML
2 , if fML

1 ⊆ fML
2 , then GfD1

⊆ GfD2
.

Now, the problem becomes how to discretize continuous
variables so that GfD = Gf . The disretization is not nec-
essarily uniform. If we know a prior that some subspace
is more important or complicated than others, then we can
place more intervals in this subspace. From the aspect of
linkage detection, the “goodness of discretization” means
that it is a discretization that leads to the correct detection
of epistatic structure between variables. Given a continu-
ous black-box problem with bounded epistatic order, if the
discretization method D is sufficient to preserve the link-
age information, then its epistatic linkage structure can be
obtained by the method in the paper.
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