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ABSTRACT
Visualization of multidimensional data by means of Mul-
tidimensional Scaling (MDS) is a popular technique of ex-
ploratory data analysis widely usable, e.g. in analysis of
bio-medical data, behavioral science, marketing research,
etc. Implementations of MDS methods include a subroutine
for an auxiliary global optimization problem. The latter is
difficult because of high dimensionality, absence of overall
smoothness, and a large number of local minima. In such
a situation application of a genetic algorithm (GA) seems
reasonable. A favorable assessment of application of GAs
in MDS in previous publications is based on heuristic ar-
guments without estimating quantitatively the precision of
GA while applied to the solution of corresponding global op-
timization problems. Indeed, the estimation of precision is
difficult because of complexity to find the actual global min-
imum not only in routine use but also in unique research
experiments. Quantitatively the precision of GA was es-
timated, at least in the experimental problems of modest
dimensionality, using global minima found by means of the
developed parallel version of explicit enumeration algorithm.
To cope with high complexity of the minimization problem
a parallel version of GA is developed, and its efficiency for
problem of higher dimensionality is investigated.

Track: Genetic Algorithms.

Categories and Subject Descriptors
G.1.6 [Numerical analysis]: Optimization—Global op-
timization, integer programming, quadratic programming
methods; G.4 [Mathematics software]: Parallel and vec-
tor implementations

General Terms
Algorithms, Performance
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1. INTRODUCTION
To grasp the structure of a set of multi-parametric objects

a two-dimensional image of the corresponding multidimen-
sional points frequently can be helpful. Multidimensional
Scaling (MDS) is a widely usable technique for mapping
from a multidimensional space of originals to an embedding
space of lower dimensionality, e.g. to two-dimensional plane
of images [2]. For the detailed description of MDS meth-
ods and examples of application we refer to [2] and to the
publications cited there.

The implementation of MDS methods is reduced to a dif-
ficult problem of global optimization [8]. Genetic algorithms
(GA), who are among the most popular global optimization
algorithms [6, 13, 14], can be applied for the solution of
MDS problems. Because of robustness, the application of
GA in MDS allows various modifications of the underlying
optimization problem implying non differentiability of cor-
responding objective functions [5]. For MDS problems with
the standard STRESS function (see next section) a combi-
nation of GA with an efficient local method seems promis-
ing [12]. Implementations of such a method (GA-MDS) are
more reliable than the other MDS algorithms, as shown by
the results of experiments in [9, 11]. A heuristic method
avoiding solution of an auxiliary optimization problem is
described, e.g. in [15]; but such an approach seems reason-
able mainly to non metric scaling. For a general discussion
on various methods of MDS we refer to [1].

Our recent results [17] support the conclusion of the au-
thors of the cited above papers that application of GA in
MDS is highly promising. However, these conclusions are
mainly heuristic without quantitative estimation of preci-
sion in solving the corresponding global optimization prob-
lems. Indeed, an objective assessment is difficult because of
complexity in finding global minima of the considered prob-
lems.

In the present paper an attempt is made to assess the ef-
ficiency of GA-MDS quantitatively. To estimate errors of
GA-MDS true global minima of corresponding optimization
problems should be known. We consider a version of MDS
problems where global minimum can be found with guaran-
tee, at least for problems of modest dimensionality; i.e. we
considered problems where distances in the embedding space
are measured according to the city block metric. The auxil-
iary optimization problem in this case is piecewise quadratic,

1492



and global minimum can be found by a combination of enu-
meration with quadratic programming. A parallel algorithm
is developed enabling to find global optima in the problems
of moderate dimensionality with guarantee.

The efficiency of the developed GA-MDS was assessed
quantitatively for the problems where global minima have
been found by the described above enumeration algorithm.
The presented below quantitative results can be summarized
as follows: GA-MDS solved all these problems very fast with
reliability depending on dimensionality of the problem. A
parallel version of the proposed GA-MDS is implemented
and tested for large scale problems.

2. GLOBAL OPTIMIZATION IN MDS
We are interested to grasp the structure of a set of n

multi-parametric objects whose pairwise dissimilarities (δij)
are known. For example, the objects can be represented by a
set of points in a metric space where (δij) are defined as dis-
tances between i-th and j-th points. We are interested to vi-
sualize the set of objects by their images in two-dimensional
plane where heuristic human ability to investigate the struc-
ture of a set of points is much stronger than the ability
to investigate such structures in abstract/multidimensional
spaces of objects. By means of MDS the points xi =
(xi1, xi2), i = 1, . . . , n, representing the considered original
objects in the two-dimensional embedding space should be
found fitting pairwise distances between the image points to
the given pairwise dissimilarities of the objects (δij).

Mathematically the problem of MDS is formulated as the
problem of minimization of a fitness criterion, e.g. the so
called STRESS function:

S(X) =

n∑
i<j

wij(d(xi,xj)− δij)
2, (1)

d(xi,xj) =

(
2∑

k=1

|xik − xjk|r
)1/r

, (2)

where X = (x1, . . . ,xn); d(xi,xj) denotes the distance
between the points xi and xj , wij ≥ 0 denote weights,
i, j = 1, ..., n. The distances can be defined using differ-
ent norms in R2, but normally a Minkowski distance (2)
is used. Most frequently the special cases are considered:
the Euclidean distances (r = 2) and the city-block distances
(r = 1) .

Although STRESS function is defined by an analytical
formula, which seems rather simple, its minimization is a
difficult global optimization problem [8]. STRESS func-
tion normally has many local minima. The minimization
problem is high dimensional: the number of variables is
N = 2n. Non-differentiability of STRESS normally can-
not be ignored, although in case of r > 1 gradient based
optimization algorithms can be applied in vicinities of lo-
cal minimizers where STRESS is differentiable [7]. In the
case of city-block metric (r = 1) differentiability of STRESS
cannot be guaranteed even at a local minimum point.

Further analysis is concentrated on MDS with city-block
metric; for specific details of this version of MDS we refer
to [3, 10]. STRESS (1) with city block distances d1(xi,xj)
can be redefined as

S(X) =

n∑
i=1

n∑
j=1

wij

(
2∑

k=1

|xik − xjk| − δij

)2

. (3)

Let A(P) be a set of RN such that

A(P) = {X|xik ≤ xjk for pki < pkj , i, j = 1, . . . , n; k = 1, 2} ,

where P = (p1,p2), pk = (pk1, pk2, . . . , pkn) is a permuta-
tion of 1, . . . , n; k = 1, 2.

For X ∈ A(P), the formula (3) can be rewritten in the
following form

S(X) =

n∑
i=1

n∑
j=1

wij

(
2∑

k=1

(xik − xjk) zkij − δij

)2

,

where

zkij =

{
1, pki > pkj ,
−1, pki < pkj .

Since the function S(X) is quadratic over polyhedron X ∈
A(P), the minimization problem

min
X∈A(P)

S(X) (4)

can be reduced to the following quadratic programming
problem

min

(
−

2∑
k=1

n∑
i=1

xik

n∑
j=1

wijδijzkij+

+
1

2

 2∑
k=1

2∑
l=1

n∑
i=1

xikxil

n∑
t=1,t6=i

witzkitzlit−

−
2∑

k=1

2∑
l=1

n∑
i=1

n∑
j=1,j 6=i

xikxjlwijzkijzlij



s.t.

n∑
i=1

xik = 0, k = 1, 2,

x{j|pkj=i+1},k − x{j|pkj=i},k ≥ 0, i = 1, . . . , n− 1.

Polyhedron A(P) is defined by linear inequality constrains,
where equality constrains ensure centering excluding trans-
lated solutions.

The structure of the minimization problem (4) is favorable
to apply a two level minimization [18]:

min
P

S(P ),

s.t. S(P ) = min
X∈A(P )

S(X),

where the upper level problem is a combinatorial problem
defined over the set P of two permutations (one permuta-
tion per each coordinate of embedding space) of 1, ..., n, and
the lower level problem is a quadratic programming prob-
lem with a positively defined quadratic objective function
and linear constraints. The problem at the lower level is
solved using a standard quadratic programming algorithm.
Globality of search is ensured by the upper level algorithms.

The number of feasible solutions of the upper level com-
binatorial problem is (n!)2. The time required for explicit
enumeration depends on the number of feasible solutions
and grows very fast with increasing n. Solution of MDS
with city-block metric is invariant with respect to mirroring
around coordinate axes and exchanging of coordinates. The
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required number of explicitly enumerated solutions can be
reduced taking into account such symmetries. The number
is reduced to (n!/2)2 refusing mirrored solutions around each
coordinate axis. The number is further reduced refusing mir-
rored solutions with exchanged coordinates to (n!)2/8+n!/4.
However, it is still a large number.

For the problems of exponential complexity random
heuristics normally are applied. Indeed, applicability of GA
in MDS problems is claimed very promising in [5, 9, 11, 12,
15, 17]. However, this claim is not supported by quantitative
results concerning accuracy in estimating the corresponding
global minima. Similar problem can be noted in assessment
of other metaheuristic algorithms (e.g. simulated anneal-
ing) with respect to their applicability to MDS [3, 10]. To
get an objective assessment of a metaheuristic algorithm,
global minima of the mentioned above combinatorial prob-
lems should be known. Generally speaking, theoretically
guaranteed estimates of global minima can be obtained by
enumeration but limitations on the dimensionality of practi-
cally solvable problems can be very restrictive; we attempt
to lift these limitations by means of parallelization of the
explicit enumeration algorithm.

3. PARALLEL IMPLEMENTATION OF GA
AND EXPLICIT ENUMERATION AL-
GORITHM

Because of complexity, guaranteed solutions of the con-
sidered problem can be found only for the problems of mod-
est dimensionality. For larger dimensionalities genetic algo-
rithms seem prospective. In this case the guarantee to find
the exact solution is lost, but good solutions may be found
in acceptable time.

The general idea of GA is to maintain a population
of best (with respect to STRESS value) solutions whose
crossover can generate better solutions. The permutations
in P are considered as a chromosome representing an indi-
vidual. The initial population of individuals is generated
randomly and improved by local search. The population
evolves generating offspring from two randomly chosen in-
dividuals of the current population with the chromosomes
Q and U, where the first corresponds to the better fitted
parent. 2-point crossover is used. The chromosome of the
offspring is defined by the following formula

pk = (qk1, ..., qkξ1 , vk1, ..., vk(ξ2−ξ1), qkξ2 , ..., qkn),

where k = 1, 2; ξ1, ξ2 are two integer random numbers with
uniform distribution over 1, ..., n; and vki constitute the sub-
set of 1, ..., n complimentary to qk1, ..., qkξ1 , qkξ2 , ..., qkn; the
numbers vki are ordered in the same way as they are or-
dered in uk. The offspring is improved by local search and
its fitness is defined by the optimal value of the correspond-
ing lower level problem. An elitist selection is applied: if
the offspring is better fitted than the worst individual of
the current population, then the offspring replaces the lat-
ter. Minimization continues generating new offsprings and
terminates after the predetermined computing time tc.

A parallel version of the genetic algorithm with multiple
populations, similar to [4, 17] has been developed. Commu-
nications between processors have been kept to minimum to
enable implementation of the algorithm on clusters of per-
sonal computers. Each processor runs the same genetic al-
gorithm with different sequences of random numbers. This

is ensured by initializing different seeds for random num-
ber generators in each processor. 60 individuals are used
in every population, this value is tuned using experimen-
tal investigation in [16]. Mutation and migration were not
used in this version of the algorithm, however in the future
we are going to research their potential to improve effective-
ness and robustness of global search. The results of different
processors are collected when search is finished after the pre-
defined time tc. To make parallel implementation as much
portable as possible the general message-passing paradigm
of parallel programming has been chosen. The standard-
ized message-passing communication protocol MPI is used
for communication between parallel processors.

Solutions found by means of GA are assessed heuristi-
cally in the papers cited above as very promising. However,
quantitative assessment is of great interest because of ex-
tending applications of MDS to practical problems. This
can be done using exact minimum values of the considered
global optimization problems found, e.g. by means of enu-
meration. Although the dimensionality of MDS problems
solvable by means of enumeration can not be large because
of exponentially growing number of potential solutions, it is
important to implement and apply such an algorithm for the
problems of highest possible dimensionality. Parallel com-
putation may help us to cope with a large number of feasible
solutions to be explicitly enumerated.

In the developed parallel implementation for explicit enu-
meration each processor runs the same algorithm generat-
ing feasible solutions which should be enumerated explicitly,
but only each p-th is explicitly enumerated on a processor
where p is the number of processors. The first processor
explicitly enumerates the first, (p + 1)-th and so on gener-
ated solutions. The second processor explicitly enumerates
the second, (p + 2)-th and so on generated solutions. The
p-th processor explicitly enumerates the p-th, 2p-th and so
on generated solutions. It is assumed that generation of
the solutions to be explicitly enumerated requires much less
computational time than the explicit enumeration which re-
quires solution of the lower level quadratic programming
problem. The results of different processors are collected
when the generation of solutions and explicit enumeration
are finished. The standardized message-passing communica-
tion protocol MPI is used for communication between par-
allel processors.

4. EXPERIMENTAL INVESTIGATION
Sets of vertices of multidimensional cubes and simplices

have been used as data sets of experiments. The number
of vertices of d-dimensional cube is n = 2d, and the dimen-
sionality of the global minimization problem is N = 2d+1.
The coordinates of i-th vertex of a d-dimensional cube are
equal either to 0 or to 1, and they are defined by the bi-
nary code of i = 0, ..., n − 1. The number of vertices of
d-dimensional simplex is n = d + 1, and the dimensionality
of the global minimization problem is N = 2(d + 1). The
distances between any two vertices of the standard simplex
are equal: δij = 1, i 6= j. Vertices of the unit simplex can
be defined by

vij =

{
1, if i = j + 1,
0, otherwise,

∣∣∣∣ i = 1, . . . , dim+1, j = 1, . . . , dim.

Below we use shorthand ‘cube’ and ‘simplex’ for sets of their
vertices.
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To compare minima found for different problems the nor-
malized value of STRESS is used:

f(X) =

√√√√S(X)

/∑
i<j

wijδ2
ij .

Performance of deterministic global optimization algo-
rithms is measured using the optimization time t and the
smallest function value found. Efficiency of the paralleliza-
tion can be evaluated using standard criteria taken into
account the optimization time and the number of proces-
sors. A commonly used criterion of parallel algorithms is
the speedup:

sp =
t1
tp

,

where tp is the time used by the algorithm implemented
on p processors. The speedup divided by the number of
processors is called the efficiency:

ep =
sp

p
.

Performance of the parallel algorithm composed of explicit
enumeration of combinatorial problem and quadratic pro-
gramming on SUN Fire E15k high performance computer for
test problems ‘simplex’ with n = 7 is shown in Table 1. Di-
mensionality of the global optimization problems is N = 14.
On a single processor optimization takes up to 20 minutes.
Different numbers of processors from 1 to 24 have been used.
On 24 processors optimization takes less than one minute.
The speedup is almost linear and equal to the number of
processors, the efficiency of parallel algorithm is close to
one.

Performance of the same parallel algorithm on a cluster
of personal computers is shown in Table 2 for the problems
of ‘simplex’ with n = 7, n = 8 and ‘cubes’ with n = 8. Di-
mensionality of the global optimization problems is N = 14
and N = 16. The cluster is composed of 3 personal com-
puters with 3GHz Pentium 4 processors and hyper-threading
technology allowing simultaneous multithreading. When the
number of processors is up to 3, the speedup is almost lin-
ear and equal to the number of processors, the efficiency is
close to 1. In this case one processor per each personal com-
puter is used. If the number of processors is larger than 3,
the efficiency of the parallel algorithm is around 0.6 as at
least one processor should be emulated using multithread-
ing. Because of static distribution of workload, the efficiency
is determined by the slowest element of the system. There-
fore the efficiency is similar for the number of processors 4-8.
The speedup of approximately 3.6 has been reached. Par-
allel computation yielded the speedup of approximately 3,
hyper-threading yielded approximately 20% improvement.
With the help of parallel computation problems with n ≤ 9
have been solved.

In the case of stochastic global optimization algorithms,
the reliability is the most important criterion. In our exper-
iments with large scale problems, performance of GA-MDS
with quadratic programming at the lower level is measured
using the best estimate of the global minimum f∗ in 100
runs, and the reliability is measured as percentage of runs
(perc) when the estimate of the global minimum differs from
f∗ by less than 10−4.

The parallel genetic algorithm has been used to solve
problems with different multidimensional data. When 10s

Table 1: Performance of explicit enumeration on
SUN Fire E15k parallel computer for test problems
‘simplex’ with n = 7

standard simplex unit simplex
p t, s sp ep t, s sp ep

1 1037 1.00 1.00 1299 1.00 1.00
2 518 2.00 1.00 650 2.00 1.00
3 349 2.97 0.99 438 2.97 0.99
4 261 3.97 0.99 327 3.97 0.99
5 210 4.95 0.99 262 4.95 0.99
6 175 5.91 0.98 219 5.93 0.99
7 151 6.88 0.98 188 6.89 0.98
8 134 7.73 0.97 168 7.75 0.97
9 118 8.80 0.98 147 8.85 0.98

10 107 9.71 0.97 134 9.66 0.97
11 97 10.72 0.97 120 10.78 0.98
12 90 11.58 0.96 111 11.69 0.97
13 82 12.62 0.97 102 12.68 0.98
14 77 13.54 0.97 95 13.62 0.97
15 72 14.39 0.96 89 14.55 0.97
16 67 15.44 0.97 84 15.54 0.97
17 64 16.12 0.95 79 16.47 0.97
18 60 17.23 0.96 76 17.18 0.95
19 58 17.90 0.94 72 18.03 0.95
20 55 18.95 0.95 68 19.17 0.96
21 52 19.96 0.95 65 19.96 0.95
22 49 20.95 0.95 62 20.85 0.95
23 48 21.81 0.95 59 22.06 0.96
24 46 22.50 0.94 57 22.60 0.94

Table 2: Performance of explicit enumeration on a
cluster of 3 personal computers for test problems
‘simplex’ and ‘cube’

n = 7 n = 8
p t, s sp ep t, s sp ep

standard simplices

1 120 1.00 1.00 10401 1.00 1.00
2 60 1.99 1.00 5304 1.96 0.98
3 41 2.93 0.98 3554 2.93 0.98
4 49 2.43 0.61 4292 2.42 0.61
5 40 3.00 0.60 3468 3.00 0.60
6 34 3.57 0.60 2926 3.55 0.59

unit simplices

1 141 1.00 1.00 11821 1.00 1.00
2 71 1.99 0.99 6019 1.96 0.98
3 48 2.93 0.98 4021 2.94 0.98
4 57 2.46 0.62 4884 2.42 0.61
5 47 3.02 0.60 3915 3.02 0.60
6 39 3.64 0.61 3269 3.62 0.60

cube

1 12729 1.00 1.00
2 6472 1.97 0.98
3 4341 2.93 0.98
4 5199 2.45 0.61
5 4193 3.04 0.61
6 3531 3.61 0.60
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Table 3: Performance of GA-MDS on SUN Fire E15k parallel computer; tc = 30s/p

p = 1 p = 4 p = 8 p = 12 p = 16
n perc f∗ perc f∗ perc f∗ perc f∗ perc f∗

standard simplices
4 100 0.000 100 0.000 100 0.000 100 0.000 100 0.000
5 100 0.1907 100 0.1907 100 0.1907 100 0.1907 100 0.1907
6 100 0.2309 100 0.2309 100 0.2309 100 0.2309 100 0.2309
7 100 0.2621 100 0.2621 100 0.2621 100 0.2621 100 0.2621
8 100 0.2825 100 0.2825 100 0.2825 100 0.2825 100 0.2825
9 100 0.2991 100 0.2991 100 0.2991 100 0.2991 100 0.2991

10 99 0.3115 100 0.3115 100 0.3115 100 0.3115 100 0.3115
11 95 0.3217 100 0.3217 100 0.3217 100 0.3217 100 0.3217
12 79 0.3300 100 0.3300 100 0.3300 100 0.3300 98 0.3300
13 60 0.3371 95 0.3371 86 0.3371 52 0.3371 29 0.3371
14 45 0.3429 87 0.3429 34 0.3429 6 0.3429 1 0.3429
15 35 0.3481 20 0.3481 2 0.3481 1 0.3481 1 0.3484
16 26 0.3525 7 0.3525 1 0.3527 1 0.3527 1 0.3527
17 13 0.3565 5 0.3567 5 0.3572 1 0.3569 1 0.3572
18 4 0.3599 1 0.3600 2 0.3606 1 0.3607 1 0.3609
19 1 0.3630 1 0.3636 2 0.3640 2 0.3639 1 0.3643
20 2 0.3658 1 0.3665 2 0.3671 1 0.3670 1 0.3676
21 4 0.3685 1 0.3689 1 0.3696 1 0.3698 1 0.3702

unit simplices
4 100 0.000 100 0.000 100 0.000 100 0.000 100 0.000
5 100 0.000 100 0.000 100 0.000 100 0.000 100 0.000
6 100 0.1869 100 0.1869 100 0.1869 100 0.1869 100 0.1869
7 100 0.2247 100 0.2247 100 0.2247 100 0.2247 100 0.2247
8 100 0.2569 100 0.2569 100 0.2569 100 0.2569 100 0.2569
9 100 0.2759 100 0.2759 100 0.2759 100 0.2759 100 0.2759

10 100 0.2936 100 0.2936 100 0.2936 100 0.2936 100 0.2936
11 100 0.3058 100 0.3058 100 0.3058 100 0.3058 100 0.3058
12 100 0.3167 100 0.3167 100 0.3167 100 0.3167 100 0.3167
13 91 0.3249 100 0.3249 100 0.3249 77 0.3249 62 0.3249
14 92 0.3325 100 0.3325 49 0.3325 20 0.3325 13 0.3325
15 69 0.3384 61 0.3384 4 0.3384 3 0.3384 2 0.3384
16 64 0.3439 8 0.3439 1 0.3439 1 0.3443 3 0.3443
17 36 0.3484 3 0.3487 2 0.3490 3 0.3495 1 0.3494
18 19 0.3526 1 0.3527 1 0.3533 2 0.3534 2 0.3537
19 7 0.3562 1 0.3568 2 0.3576 1 0.3576 2 0.3585
20 1 0.3595 1 0.3601 2 0.3607 2 0.3611 3 0.3615
21 1 0.3623 2 0.3634 1 0.3637 1 0.3645 2 0.3652

cubes
8 100 0.2245 100 0.2245 100 0.2245 100 0.2245 100 0.2245

16 35 0.2965 1 0.2965 1 0.2965 1 0.2974 1 0.3009

is allocated for each number of processors improvement of
the reliability is significant, especially while comparing the
results of single processor with results of the maximum num-
ber of processors. Although improvement of the reliability
is significant, it is difficult to judge about the efficiency of
parallelization. We suggest to estimate the efficiency of par-
allelization running the algorithm for the fixed total comput-
ing (CPU) time (opposed to wall clock time) on the different
number of processors. The experiment has been performed
running the parallel genetic algorithm for tc = 30s/p.

The results of the experiment on SUN Fire E15k parallel
computer are presented in Table 3. Global minima of some
problems have been found by means of explicit enumera-
tion; they are shown in bold font. These problems have
been solved with 100% reliability by means of the genetic
algorithm too. Larger problems cannot be solved in accept-
able time by the algorithm with explicit enumeration, but
the genetic algorithm still produces good solutions. The
performance of the genetic algorithm does not depend sig-
nificantly on the number of processors, when tc = 30s/p.
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Table 4: Performance of GA-MDS on a cluster of personal computers; tc = 30s/p

p = 1 p = 2 p = 3 p = 4 p = 5 p = 6
n perc f∗ perc f∗ perc f∗ perc f∗ perc f∗ perc f∗

standard simplices

4 100 0.000 100 0.000 100 0.000 100 0.000 100 0.000 100 0.000
5 100 0.1907 100 0.1907 100 0.1907 100 0.1907 100 0.1907 100 0.1907
6 100 0.2309 100 0.2309 100 0.2309 100 0.2309 100 0.2309 100 0.2309
7 100 0.2621 100 0.2621 100 0.2621 100 0.2621 100 0.2621 100 0.2621
8 100 0.2825 100 0.2825 100 0.2825 100 0.2825 100 0.2825 100 0.2825
9 100 0.2991 100 0.2991 100 0.2991 100 0.2991 100 0.2991 100 0.2991

10 100 0.3115 100 0.3115 100 0.3115 100 0.3115 100 0.3115 100 0.3115
11 100 0.3217 100 0.3217 100 0.3217 100 0.3217 100 0.3217 100 0.3217
12 86 0.3300 100 0.3300 100 0.3300 100 0.3300 100 0.3300 100 0.3300
13 68 0.3371 87 0.3371 98 0.3371 98 0.3371 100 0.3371 98 0.3371
14 57 0.3429 75 0.3429 91 0.3429 92 0.3429 95 0.3429 97 0.3429
15 38 0.3481 58 0.3481 70 0.3481 81 0.3481 86 0.3481 93 0.3481
16 20 0.3525 34 0.3525 49 0.3525 54 0.3525 76 0.3525 79 0.3525
17 14 0.3565 28 0.3565 36 0.3565 50 0.3565 52 0.3565 53 0.3565
18 9 0.3599 13 0.3599 18 0.3599 27 0.3599 30 0.3599 28 0.3599
19 8 0.3630 12 0.3630 14 0.3630 19 0.3630 16 0.3630 13 0.3630
20 4 0.3657 10 0.3657 12 0.3657 17 0.3657 17 0.3657 15 0.3657
21 4 0.3682 2 0.3682 9 0.3682 4 0.3682 6 0.3682 8 0.3684

unit simplices

4 100 0.000 100 0.000 100 0.000 100 0.000 100 0.000 100 0.000
5 100 0.000 100 0.000 100 0.000 100 0.000 100 0.000 100 0.000
6 100 0.1869 100 0.1869 100 0.1869 100 0.1869 100 0.1869 100 0.1869
7 100 0.2247 100 0.2247 100 0.2247 100 0.2247 100 0.2247 100 0.2247
8 100 0.2569 100 0.2569 100 0.2569 100 0.2569 100 0.2569 100 0.2569
9 100 0.2759 100 0.2759 100 0.2759 100 0.2759 100 0.2759 100 0.2759

10 100 0.2936 100 0.2936 100 0.2936 100 0.2936 100 0.2936 100 0.2936
11 100 0.3058 100 0.3058 100 0.3058 100 0.3058 100 0.3058 100 0.3058
12 100 0.3167 100 0.3167 100 0.3167 100 0.3167 100 0.3167 100 0.3167
13 93 0.3249 99 0.3249 100 0.3249 100 0.3249 100 0.3249 100 0.3249
14 89 0.3325 100 0.3325 100 0.3325 100 0.3325 100 0.3325 100 0.3325
15 75 0.3384 98 0.3384 99 0.3384 100 0.3384 100 0.3384 100 0.3384
16 72 0.3439 96 0.3439 97 0.3439 99 0.3439 100 0.3439 100 0.3439
17 54 0.3484 78 0.3484 84 0.3484 92 0.3484 93 0.3484 96 0.3484
18 40 0.3526 74 0.3526 87 0.3526 90 0.3526 93 0.3526 86 0.3526
19 36 0.3562 63 0.3562 71 0.3562 68 0.3562 62 0.3562 55 0.3562
20 35 0.3595 50 0.3595 70 0.3595 59 0.3595 40 0.3595 13 0.3595
21 15 0.3623 29 0.3623 44 0.3623 30 0.3623 19 0.3623 3 0.3623

cubes

8 100 0.2245 100 0.2245 100 0.2245 100 0.2245 100 0.2245 100 0.2245
16 89 0.2965 99 0.2965 100 0.2965 99 0.2965 100 0.2965 98 0.2965
32 8 0.3313 5 0.3314 1 0.3315 4 0.3319 1 0.3318 1 0.3348

For middle size problems the algorithm performs better on
4 processors than on a single processor. This indicates that
for these problems randomness is too low when a single pro-
cessor is used. For larger problems the algorithm performs
better on a single processor. The performance on a larger
number of processors may be improved by closer coopera-
tion of processors, for example by interchange of the best
solution found during the search.

The results of similar experiment on a cluster of personal
computers are presented in Table 4. For most of the prob-
lems the algorithm performs better when more processors
are used. This indicates that randomness is too low and
the performance of the algorithm may be improved using
mutations or using several populations even on a single pro-
cessor. Only for the largest problems reliability decreases
when more processors are used, indicating that for these
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Images of standard simplices

n=8 f*=0.2825 n=12 f*=0.3300 n=16 f*=0.3525 n=20 f*=0.3657

Images of unit simplices

n=9 f*=0.2759 n=13 f*=0.3249 n=17 f*=0.3484 n=21 f*=0.3623

Images of cubes

n=8 f*=0.2245 n=16 f*=0.2965 n=32 f*=0.3313

Figure 1: Images of multidimensional geometrical figures produced by GA-MDS.

problems the allowed computing time is too short when sev-
eral processors are used.

In all cases GA-MDS finds the same global minima as
found by explicit enumeration. Let us note that GA-MDS
solves these problems in seconds, while the algorithm of ex-
plicit enumeration requires an hour on a cluster of three
personal computers to solve problems with n = 8 and a day

on a cluster of ten personal computers to solve problems
with n = 9.

Images of multidimensional geometrical figures produced
by GA-MDS are shown in Fig. 1. The images of vertices
are shown by circles. To make representations more visual,
adjacent vertices are joined by lines. The darker lines show
joins adjacent to two opposite vertices in the case of cubes
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and adjacent to the ‘zero’ vertex in the case of unit simplices.
Numbers of vertices and estimates of the global minima are
given above the figures. The global minima found by means
of explicit enumeration are shown in the bold font. Since the
considered geometrical figures are highly symmetric, their
images, corresponding to global minima of STRESS, are ex-
pected to be similarly symmetric. The images shown in
Fig. 1 are very symmetric; only the image of 5-dimensional
cube has some disturbances in the lower part of the image
where oblique lines do not cross at the same point.

5. CONCLUSIONS
The problem of multidimensional scaling with city-block

metric is reduced to a bilevel minimization problem with a
combinatorial problem at the upper level, and a quadratic
programming problem at the lower level. A parallel GA
aimed for fast solution of the upper level problems is devel-
oped. The parallel GA scales well, and it finds the global
minimum in the problems up to 32 variables with 100% relia-
bility in 10 seconds on a cluster of three personal computers.
To evaluate efficiency/reliability of GA for solution of MDS
related global optimization problems guaranteed solutions
were needed; a parallel version of explicit enumeration algo-
rithm for the upper level combinatorial problem is developed
to find a global minimum of interest with guarantee.

The developed parallel GA-MDS algorithm is sufficiently
fast and reliable for many practical applications.
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