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ABSTRACT
This research uses a Design of Experiments (DOE) approach
to build a predictive model of the performance of a combi-
natorial optimization heuristic over a range of heuristic tun-
ing parameter settings and problem instance characteristics.
The heuristic is Ant Colony System (ACS) for the Trav-
elling Salesperson Problem. 10 heurstic tuning parameters
and 2 problem characteristics are considered. Response Sur-
face Models (RSM) of the solution quality and solution time
predicted ACS performance on both new instances from a
publicly available problem generator and new real-world in-
stances from the TSPLIB benchmark library. A numerical
optimisation of the RSMs is used to find the tuning parame-
ter settings that yield optimal performance in terms of solu-
tion quality and solution time. This paper is the first use of
desirability functions, a well-established technique in DOE,
to simultaneously optimise these conflicting goals. Finally,
overlay plots are used to examine the robustness of the per-
formance of the optimised heuristic across a range of prob-
lem instance characteristics. These plots give predictions on
the range of problem instances for which a given solution
quality can be expected within a given solution time.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Design studies

General Terms
Performance

Keywords
Design of Experiments, Minimum Run Resolution V Design,
Response Surface Model, Overlay Plots, Ant Colony Opti-
mization

1. INTRODUCTION AND MOTIVATION
Heuristics are a class of approximate algorithms that are

often applied to problems of search and optimization. Many
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heuristics are stochastic in nature. This means that re-
peated runs of a heuristic produce different behaviors. Their
approximate nature means that while they should produce
good solutions relatively quickly, they will often continue to
produce improved solutions over extended run times.

These characteristics of randomness and approximation
pose a significant challenge to the engineer and researcher.
He/she must have some prediction of heuristic performance
for the heuristic to be of any practical use. The difficulty
of this challenge is exacerbated by the conflicting nature
of the two most important heuristic performance measures,
(1) solution quality and (2) the time to produce a solution
of a given quality (solution time). Longer solution times
yield better solution quality but at some point there is a
trade off between the decreasing likelihood of further solu-
tion improvements and the increasing opportunity cost of
expended computational resources . Furthermore, many
heuristics have large numbers of tuning parameters. It is
an open issue how these parameters affect performance and
how parameter settings and performance relate to classes of
problem instances.

Swarm intelligence heuristics are particularly difficult to
model analytically because of their randomness and their
large number of interacting components. An alternative to
an analytical approach is to use an empirical analysis. De-
sign of Experiments (DOE) [12] is a well-established field
that involves experiment designs and analysis tools for the
empirical modeling of processes. DOE empowers the engi-
neer with the ability to make the best use of experimental
resources, guidelines on good experimental procedure and a
mathematical precision to the conclusions that can be drawn
from collected data.

The heuristics engineer faces a situation where limited
computational resources, sometimes of a varying specifica-
tion, must be used to make performance predictions of a
stochastic heuristic with many tuning parameters and to
place boundaries on those performance predictions. There
is a growing awareness of the need for methodical empirical
approaches to address these challenges [9]. This awareness
is not yet prevalent within Ant Colony Optimization.

This paper introduces DOE methodology and design anal-
ysis techniques to the Ant Colony Optimization (ACO) [8]
community, illustrating their application with the Ant Colony
System (ACS) heuristic. We build a predictive model of
ACS performance where performance is measured in terms
of two conflicting responses, solution quality and time to
solution. Numerical optimization techniques are applied to
this model to determine the ACS parameters that achieve
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optimal performance. For these optimized parameter set-
tings, robustness of performance is analyzed across a range
of problem instances. All reported research uses a publicly
available algorithm implementation1 and problem genera-
tor2.

The paper begins with a background on the problem do-
main, the heuristic and experiment design. Sections 3 and
4 describe the experimental methodology and model fitting
procedure, followed in Section 5 by a confirmation of the
model’s accuracy. Section 6 discusses the model’s predic-
tions and performs a numerical optimization of the model
to determine optimum heuristic parameter settings. Section
7 performs a robustness analysis of these optimum settings.
The paper concludes with a discussion of related work, the
paper’s conclusions and directions for future work.

2. BACKGROUND AND TERMINOLOGY
We give an overview of the Traveling Salesperson Problem

(TSP) problem domain and the Ant Colony System (ACS)
algorithm to better illustrate the DOE decisions discussed
later. The reader is directed to other works for a compre-
hensive discussion of ant systems [8] and of the TSP problem
[11].

2.1 The TSP Problem Domain
The TSP involves finding the shortest route between a set

of cities such that no city is visited more than once. The
TSP is often represented as a graph structure in which the
nodes represent the cities to be visited and the lengths of
links represent the costs associated with traveling from one
node to another. The TSP is a very popular abstraction for
many types of discrete combinatorial optimization problems.

2.2 ACS Algorithm
The Ant Colony System (ACS) algorithm has 3 Stages.

Stage 1 involves initializing pheromone on all edges in the
problem description. Pheromone is an abstraction of the
chemical markers used by real ants. Stage 2 involves all
ants building their tours using a decision rule. The deci-
sion rule is influenced by the distance to the next city being
considered and the pheromone level on the edge connecting
to this city. Nearer cities with a high pheromone level are
more likely to be chosen by an ant. The type of decision at
any given move is governed by an exploration/exploitation
threshold q0. Consider an ant at a city i choosing the next
city j, with a set of Nl cities that remain to be visited. A
uniform-random exploration probability q is generated and
the next city j is chosen as follows.

j =
maxl∈Nl [τil]

α [ηil]
β , if q ≤ q0

J

where J is a next city j chosen with a probability pij ac-
cording to a random proportional rule:

pij =
[τij ]

α [ηij ]
β

l∈Nl

[τij ]
α [ηij ]

β
j ∈ Nl

1http://iridia.ulb.ac.be/~mdorigo/ACO/aco-code/
public-software.html
2www.research.att.com/~dsj/chtsp/download.html

The case of q ≤ q0 therefore represents exploitation while
that of q > q0 represents exploration. ACS is often aug-
mented with candidate lists to improve performance. A
candidate list for a given node is a sorted list of the nearest
neighbors to that node. ACS first restricts its decisions to
elements of its candidate list. If all elements of the candi-
date list have been visited, the decision process is applied to
the full set of unvisited cities Nl as usual.

The local pheromone update involves decaying the pheromone
level on an edge traversed by an ant by a small amount.
Specifically, for an edge ij with pheromone τij , the locally
decayed pheromone value is

τij = (1 − ρlocal) τij + ρlocalτ0

where ρlocal is a local pheromone decay parameter and τ0

is the pheromone level on the edge at the start of the al-
gorithm. This discourages subsequent ants from exploiting
the exact same route and so promotes the exploration of a
diverse range of solutions. In Stage 3, pheromone is de-
posited along the tour of one ant only in a global pheromone
update. Specifically, for an edge ij with pheromone τij , the
globally updated pheromone value is:

τij = (1 − ρglobal) τij +
ρglobal

Tour cost

Stages 2 to 3 then repeat with all ants building new tours
while performing local pheromone decays.

Note that ACO algorithms are often augmented with a lo-
cal search procedure such as 3-opt local search. We omit such
augmentations here. Performance increases due to the local
search would confound the performance effects of variations
in the ACO parameters. Furthermore, modeling all possible
alternative local search modules would be prohibitive. There
are several open questions regarding this common ACS im-
plementation.

1. Ant Placement. Should ants be randomly scattered
across the graph or should they be all placed at a single
randomly chosen city? Presumably the former would
be more computationally expensive. Is this expense
commensurate with any gains in performance?

2. Solution Construction. We identify two possibili-
ties,

(a) Sequential. An ant completes its whole tour and
associated local pheromone decays before process-
ing moves to the next ant.

(b) Parallel. An ant completes a single step of its
tour and associated local pheromone decay before
processing moves to the next ant.

The intuitive difference is that in parallel tour build-
ing, the ant bases its decision on more up-to-date pheromone
levels from the local pheromone decays of the other
ants. Whether this difference has a positive, negative
or negligible effect on performance is an open question
[8, p. 78]

3. Global Pheromone Deposit Ant. Two possibilities
are mentioned in the literature [8, p. 77].

(a) Best Ant So Far. This approach uses the tour
from the best ant so far during the entire algo-
rithm.
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Factorial point Center point

Axial point

Figure 1: Central Composite Designs for two fac-
tors. On the left is a Circumscribed Central Com-
posite (CCC) and on the right a Face-Centred Com-
posite (FCC).

(b) Best Ant This Iteration. This approach uses the
tour from the best ant of the current iteration.

2.3 Designs for Response Surface Models
The overall goal of this research is to investigate how

changes in algorithm tuning parameters and problem char-
acteristics affect algorithm performance. The tuning param-
eters and characteristics we vary are called factors and the
performance measures we gather are called responses. When
investigating the effect of factors on some response(s), the
general approach is to vary those factors over some number
of levels. The experimental region covered by our chosen
ranges of factors is called the design space. We measure
the responses and interpolate these measurements into a re-
sponse surface over the design space. This is the Response
Surface Methodology (RSM) [13]. When individual factors
have an effect on the responses, we say there is a main effect.
We may also encounter higher-order interactions between
factors. That is, the effect of factor A can only be under-
stood when the level of an interacting factor B is known
and fixed. There is a large body of well established work on
RSM. This overview is restricted to those aspects of most
interest to the heuristic researcher and is necessarily brief.

One of the most popular families of designs for building re-
sponse surfaces are known as the Central Composite Designs
(CCD). A CCD contains an embedded factorial design3 aug-
mented with design points at the centre of the design space
(centre points) and so-called axial points located at some
distance α from the design centre. The two most popular
CCD designs are illustrated in Figure 1.

The Circumscribed Central Composite (CCC) sets α at
such a value that the axial points create a circle that cir-
cumscribes the square defined by the embedded factorial.
The Face-Centered Composite (FCC) sets α such that the
axial points lie on the faces of the square defined by the
embedded factorial. For statistical reasons, the rotatability
of the CCC design makes it preferable for analysis. How-
ever, when parameter ranges have a practical limit, the FCC
design may be the only alternative.

The use of a full factorial in the embedded part of a CCD
is expensive since a crossing of say 12 factors, each at only 2
levels, would require 212 = 4096 design points for the embed-
ded factorial alone. The advantage of a full factorial is that
it permits estimating all interactions between factors. Frac-
tional factorial designs provide a manageable alternative to
full factorials. Under the assumption that higher order in-

3 A full factorial design crosses all levels of all factors with
one another.

teractions are insignificant and can be safely ignored, it is
possible to judiciously choose a subset of the full factorial’s
design points such that lower order interactions can still be
estimated. The price we pay is that higher order interactions
become aliased with one another. When two terms A and
B are aliased, it is impossible to tell whether a significant
effect is due to A or to B.

Recently, a state-of-the-art design called a Minimum Run
Resolution V design has been introduced [14]. This provides
a further saving in experiment runs while still allowing all
main and second-order interactions to be estimated.

2.4 Prediction Intervals
It is the unfortunate reality that the vast majority of

meta-heuristics are stochastic in nature. The implication
for the experimenter is that two repeated runs of a meta-
heuristic will produce different behaviour and consequently
different results. Furthermore, responses such as CPU times
are susceptible to noise and therefore will vary from run to
run. How can we evaluate a response surface built from the
averages of algorithm runs given that any individual run
will likely vary somewhat from the response surface model’s
predictions? Prediction Intervals define with mathemati-
cal precision, the range around the response surface inside
which a percentage of runs will fall.

3. METHODOLOGY
Some difficult design issues arise that are particular to

experiments with heuristics.

3.1 Stopping criterion
It is common in the ACO field, and in heuristics in gen-

eral, to halt experiments after some combinatorial count.
This count is typically some algorithm operation or an it-
eration. With regard to reproducibility, this is certainly
preferable to the use of time as a stopping criterion. How-
ever, a hard iteration stopping criterion risks biasing results.
A fixed number of iterations will not solve a more difficult
problem as well as an easier problem. This is of particu-
lar importance as we vary problem characteristics that are
hypothesized to affect performance. This research takes a
practical view that once an algorithm is no longer producing
improved results regularly, it is better to halt its execution
and better employ the computational resources. This leads
to using stagnation as a stopping criterion where stagnation
is a number of iterations in which no solution improvement is
observed. This offers the reproducibility of a combinatorial
count while the softer stagnation mitigates the likelihood of
bias. This research uses a stagnation stopping criterion of
250 iterations without improvement.

3.2 Responses
Performance measures must reflect the conflicting heuris-

tic goals of high solution quality and low time to solution.
The response that reflects time-to-solution is the CPU time
from the beginning of an algorithm run to the time that the
algorithm has stagnated and halted. We were careful not to
include time to write output and the time to calculate out-
put data that is not essential to the algorithm’s functioning.

There are several choices of response to reflect solution
quality and it is a matter of debate within the community
as to which are the more appropriate. This research uses
relative error. Relative error of a solution is the difference
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between the algorithm solution and the optimal solution ex-
pressed as a percentage of the optimal solution. The optimal
solution value was calculated using the Concorde solver [2].

3.3 Problem Instances
This research uses problem size as a factor. It also uses

problem edge cost standard deviation as this has been shown
to affect problem difficulty for ACO algorithms [20]. We
need a method to produce instances with controllable lev-
els of these characteristics. Unfortunately, publicly available
benchmark libraries [19] do not have the breadth to provide
such instances. For reproducibility, we used our own Java
implementation of the 8th DIMACS Implementation Chal-
lenge [10] problem generator. This was informally verified
to produce the same instances as the original C code. Our
generator was then modified to draw its edge costs from a
log-normal distribution where the standard deviation of the
resulting edge costs could be controlled while their mean was
fixed at 100. The use of a log-normal distribution with these
properties was inspired by previous investigations on prob-
lem difficulty for an exact TSP algorithm [5]. Histograms of
the normalized cost matrix of real instances in the TSPLIB
[19] do indeed demonstrate a log-normal shape.

3.4 Experiment Design
The reported research used a Minimum Run Resolution V

Circumscribed Central Composite design with 3 replicates
of the factorial and axial points and 3 centre points. This
requires a total of 1560 runs. A 5% statistical significance
level was used. At this level, a quadratic polynomial surface
of both responses could detect effects with a size of 0.25
standard deviations with a power greater than 74%.

Table 1 lists the 12 experiment factors and their high and
low factorial levels. Note that the design must be repeated
for each level of the categoric factors. We emphasize that
inclusion of a parameter as a factor does not imply the pa-
rameter has a significant effect on performance. This would
require a screening analysis. However, once an RSM has
been built, the sensitivity of the response to each factor can
be determined from the RSM’s equation.

For reasons of practicality, α was set to 1.5. The CCC is
therefore not perfectly rotatable (see Section 2.3). An α of
1.5 results in the parameter Rho having high and low axial
points of 0.05 and 0.95 for example.

• Alpha and Beta. These are the exponential terms in
the ant’s decision rule (Section 2.2) . Exponentiation
with a non-integer exponent is an extremely expensive
operation. This was confirmed with a profiling of the
experimental code. We force Alpha and Beta to be
integers, reasoning that any solution quality benefit
offered by say, an alpha of 1.95, would be outweighed
by the time saving of using alpha of 2.

• Ants. This is the number of ants expressed as a per-
centage of problem size. This is typically expressed as
an absolute value in the literature. We use the per-
centage to improve the extent to which our results can
be generalised.

• NNAnts. This is the length of the ant’s candidate
list, expressed as a percentage of problem size. Again,
we avoid the more common absolute expression for the
same reasons as above.

Table 1: Factors and factor levels at factorial points.
N=numeric, C=categoric.

Factor Type Low (-) High (+)

A Alpha N 3.00 11.00

B Beta N 3.00 11.00

C Ants N 25.00 100.00

D NNAnts N 10.00 25.00

E q0 N 0.20 0.80

F Rho N 0.20 0.80

G RhoLocal N 0.20 0.80

H Problem Size N 335 475

J Problem

StDev

N 20.00 60.00

K Solution

Construc.

C parallel sequential

L Placement C random same

M Pheromone

Update

C Best So

Far

Best Of It-

eration

• q0. This is the exploration/exploitation threshold. Its
value must be between 0 and 1.

• Rho and RhoLocal. The pheromone related terms
are also limited to be between 0 and 1. We make the
distinction between the value used for local pheromone
decay and global pheromone deposit as others have
done [4]. It is an open question whether this distinc-
tion should be made, with the majority of research
setting both values equal to one another.

• Problem size and standard deviation. These do-
main characteristics were discussed in Section 3.3.

• Solution construction. As observed in Section 2.2,
ants can produce their solutions sequentially or in par-
allel.

• Ant Placement. The random setting scatters all ants
across the graph. The same setting places them all at
the same randomly chosen start city.

• Pheromone Update. As discussed in Section 2.2,
there are at least two choices for the ant that performs
the global pheromone update procedure (Figure Figure
1).

Factor levels were chosen so that they (1) covered the
range of parameters with a limited range (e.g. rho) or (2)
covered the ranges typically seen in the literature (e.g. al-
pha). The design has a sufficient resolution that all main ef-
fects and second order effects are not aliased. The crossings
of factors H and J required 9 problem instances (including
the centre points). The same instance was used for every
occurrence of a given size and standard deviation combina-
tion. Since experiments were conducted on 5 similar ma-
chines, it was necessary to randomize the run order. This
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Table 2: Fit summary for CPU Time.

Source Sum of

Squares

df Mean

Square

F Value

Linear 320.86 12 26.74 422.85

2FI vs Linear 13.62 66 0.21 3.63

Quadratic vs 2FI 19.19 9 2.13 48.46

Table 3: Fit summary for Relative Error.

Source Sum of

Squares

df Mean

Square

F Value

Linear 80.28 12 6.69 807.98

2FI vs Linear 7.05 66 0.11 27.77

Quadratic vs 2FI 2.13 9 0.24 98.11

is a standard DOE technique for dealing with unknown and
uncontrollable nuisance factors [15].

4. MODEL FITTING
The data for Time and Relative Error were checked with

the usual diagnostic tools4. A Box-Cox plot recommended
a log10 transformation of both responses. 13 outliers (less
than 1% of the data) were removed. The transformed data
then passed all diagnostics satisfactorily.

A fit analysis was conducted for each response to de-
termine the highest order statistically significant unaliased
model that could be fit to the responses. A fit analysis be-
gins by fitting the lowest order model, a linear model, to
the response. The next higher order model is then fit to the
same response. If no additional terms from the higher order
model are statistically significant, it is not necessary to use
the higher order model. This procedure continues until the
highest required order is found. The Minimum Run Resolu-
tion V design is aliased for cubic models (see Section 2.3).
This leaves a linear model, a 2 factor interaction model and
a quadratic model to be considered. Summaries of the fit
analyses for both responses are found in Table 2 and Table
3.

Based on these results, two quadratic models were thus
built for each response and for each combination of the cat-
egoric factors (Table 1). Insignificant terms were removed
from the models. Note, this is distinct from screening where
insignificant factors and all their associated terms are re-
moved from the original experiment design. Unfortunately,
space requirements prevent reproducing these models here.
Before drawing conclusions from the resulting response sur-
face models for each response, we must confirm the accuracy
of the models.

4Normal plot of Internally Studentized Residuals; Residuals
versus Predicted; Residuals versus Run; Predicted Versus
actual; Externally Studentized Residuals versus Actual; and
Leverage, DFFITS, DFBETAs and Cooks Distance versus
Run. See the literature [13] for details.
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Figure 2: Prediction intervals and actual values of
relative error from 25 replicates of 20 randomly gen-
erated runs.

5. CONFIRMATION
How do we confirm the accuracy of a response surface

model without reproducing the entire response surface model
again? A common approach in DOE [12] is to randomly
sample points within the design space, run the actual pro-
cess (in this case, the algorithm) at those randomly gen-
erated points, and compare the model’s predictions to the
measurements from the randomly generated algorithm runs.
Since response surface models are interpolative, we should
only expect them to perform well within the design space
on which they were built. For example, the models pre-
sented here use problem sizes between 300 and 500 and so
should not be expected to perform well on instances of size
1000. However, it is always worthwhile to assess perfor-
mance outside the design space and we do so here. Recall
that the CCC’s design space lies circumscribed within its
axial points. We should expect predictive performance to
be better within the factorial ranges of Table 1 than be-
tween the factorial and axial ranges. Failing a completely
accurate prediction of performance, we identify two crite-
ria upon which our satisfaction with the model (and thus
confidence in its predictions) can be judged.

• Conservative: we should prefer models that provide
consistently higher predictions of relative error and
higher solution time than those actually observed.

• Matching Trend: we should prefer models that match
the trends in algorithm performance. The prediction
of the parameter combinations that give the best and
worst performance should match the actual parameter
combinations that give the observed best and worst
performance.

We randomly generate new experiment runs on combina-
tions of factors within the design space. For the randomly
chosen combinations of problem characteristics, completely
new instances were generated. Each experiment run was
replicated 20 times. The measured responses were then com-
pared to the models 95% prediction interval (Section 2.4).
Figure 2 and Figure 3 illustrate the results for the Relative
Error and Time responses on new problem instances.

We see that both RSM models follow the trends of the
actual responses. The RSM of relative error is conservative.
The RSM of solution time made poor predictions of a small
number of runs as evidenced by the outliers that fell above
the upper limit of the 95% prediction interval. These times
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Figure 3: Prediction intervals and actual values of
solution time from 25 replicates of 20 randomly gen-
erated runs.
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Figure 4: Prediction intervals and actual values of
solution time from 25 replicates of 5 TSPLIB in-
stances.

may be due to variation in the hardware of the 5 experimen-
tal machines used and the fact that these machines were not
in a strictly controlled computational environment.

We applied this procedure to several instances from TSPLIB
[19] that were close to the model design space in terms of
problem characteristics. Figure 4 shows the prediction inter-
vals and actual data on solution time. The model is an excel-
lent predictor of solution times of TSPLIB instances, despite
those instances being outside the design space. However, the
predictions for relative error were not good, although they
were consistently conservative. This may be because the in-
stances are outside the model design space or because these
instances have some characteristic that is not present in the
instances produced by the DIMACS [10] problem generator.

6. PREDICTIONS AND OPTIMISATION
Satisfied with the model, we can begin to explore its re-

lationships and move to the region of the design space that
optimizes the responses. We express the multiple responses
in terms of a single desirability function5 [7]. For each re-
sponse Yi (x), its desirability function di (Yi) maps values
between 0 to 1 to the possible values of Yi (x). di (Yi) = 0 is
completely undesirable and di (Yi) = 1 is an ideal response.
The overall desirability for all k responses is the geometric
mean of the individual desirabilities:

D =

k

1

di

1
k

5www.itl.nist.gov/div898/handbook/pri/section5/pri5322.htm

If the goal is to minimize a responses (as in this research),
the desirability functions take the following form where Li,
Ui and Ti are the lower bound, upper bound and target
values of the desired response.

di Ŷi =

1.0 if Ŷi (x) < T
Ŷi(x)−Ui

Ti−Ui
if Ti ≤ Ŷi (x) ≤ Ui

0 if Ŷi (x) > Ui

Note that

the fitted response value Ŷi is used in place of Yi.
A well-established multi-objective numerical optimization,,

the Nelder-Mead downhill simplex [18, p. 326], is then per-
formed on the response surface model’s equations such that
the desirability of all responses is maximized. We specify
the optimization here with the dual goals of minimizing
both quality and solution time, while allowing all algorithm-
related factors to vary within their design ranges. The two
problem characteristics are also factors in the model since
we want to establish the relationship between these problem
characteristics, the algorithm parameters and the response.
It does not make sense to include these factors in the opti-
mization. We therefore perform the numerical optimizations
with the two problem characteristics fixed at three-level fac-
torial combinations. The results of these 9 optimizations are
presented in Table 4.

Recall that we are forcing Alpha and Beta to only take
on integer values because of the expensive cost of non-integer
exponentiation. Recall that two problem characteristics were
included as factors in our model. In general, the user of
the algorithm is presented with a problem of given charac-
teristics and wishes to determine the algorithm parameter
settings that will optimize the desirability of all responses.
The above numerical optimization above could of course be
rerun with new constraints on problem size and problem
cost matrix standard deviation that match the characteris-
tics of the problem to hand. However, such optimization
tools may not be available to the user. We should therefore
like to determine how robust the recommended parameters
settings are to variations in the problem size and problem
cost matrix standard deviation.

7. ROBUSTNESS
Overlay plots effectively lay the contour plots of each re-

sponse on top of one another so that a common region of
operability can be identified. Operability in this case is de-
fined by some boundary constraints on problem character-
istics that can be solved within given ranges of the quality
and time responses. Figure 5 illustrates an overlay plot of
the responses that are within 1% and 3% relative error and
under 35 seconds solution time. The white area represents
combinations of problem size and problem standard devia-
tion that can be solved subject to these constraints using
the optimal parameter settings from the desirability opti-
mization. Expectedly, the region is concentrated around
smaller problem sizes and smaller problem standard devia-
tions. Clearly, more relaxed constraints will allow a wider
range of problems to be solved.

The significance of the DOE techniques presented is as
follows. We have been able to efficiently model the per-
formance of a stochastic heuristic in terms of two perfor-
mance measures with a Central Composite Design. Pre-
diction Intervals have allowed us to judge the accuracy of
the model. Desirability functions have allowed us to simul-
taneously optimize performance in terms of both responses.
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Table 4: Results of optimisations on 9 combinations of problem characteristics. Each result is the best of 25
numerical optimisations. Last row gives the overall parameter setting recommendations. -, 0 and + are low,
medium and high levels respectively.

Size StDev alpha beta ants NNAnts Q0 rho rhoLocal Solution

Construc-

tion

Ant

Place-

ment

Pheromone

Update

- - 3.00 10.19 25.01 10.00 0.80 0.20 0.54 parallel random bestOfIteration

- 0 4.82 11.00 25.01 10.00 0.80 0.60 0.58 sequential random bestOfIteration

- + 3.16 10.34 25.00 10.00 0.80 0.79 0.59 sequential random bestOfIteration

0 - 6.45 10.92 25.00 10.00 0.80 0.20 0.53 parallel random bestSoFar

0 0 3.58 11.00 25.00 10.08 0.79 0.20 0.57 sequential random bestOfIteration

0 + 3.05 11.00 25.01 10.11 0.74 0.20 0.56 sequential random bestOfIteration

+ - 3.70 11.00 25.00 10.03 0.80 0.20 0.64 parallel random bestOfIteration

+ 0 5.91 11.00 25.00 10.01 0.80 0.21 0.60 parallel random bestOfIteration

+ + 8.48 11.00 25.00 10.00 0.21 0.20 0.52 parallel Same bestOfIteration

3 11 25 10 .8 .2 .55 Parallel Random bestOfIteration

Figure 5: Overlay plot of responses within 1% and
3% relative error and under 35 seconds solution time
for different combinations of problem size and prob-
lem standard deviation. All other parameters are
set to the values recommend by the numerical opti-
misation of desirability.

Overlay plots have allowed us to generalize the robustness of
the optimal parameter settings across variations in problem
characteristics.

8. RELATED WORK
Factorial designs have been combined with a local search

procedure to systematically find the best parameter values
for a heuristic [1]. CALIBRA begins by finding a set of ‘op-
timal’ parameter values using the Taguchi methodology in a
2 level factorial design. This analysis is used only as a guide-
line to focus the search through the parameter space. An
iterative local search then improves on the parameter values
within a refined region of the design space. Unfortunately
CALIBRA can only tune five algorithm parameters. The re-
strictive linear assumption precludes examining interactions
between parameters. ACO algorithms require more than 5
parameters and our fitting analysis shows that interactions
in higher order models are indeed important.

Coy et al [6] systematically find good settings for 6 tuning
parameters on a set of Vehicle Routing Problems (VRP).

Presented with a set of problems to solve, the procedure
finds high quality parameter settings for a small number
of problems in the problem set (the analysis set) and then
combines these settings to achieve a good set of parameters
for the complete problem set. A fractional factorial design is
used to produce a response surface. The optimal parameter
settings of the RSMs from the analysis set are averaged to
obtain the final parameter settings for all problems in the
set. The approach does not use higher-order models (such
as quadratic) since different response surfaces are averaged
over all analysis set instances. Coy et al acknowledge that
their method will perform poorly if the representative test
problems are not chosen correctly or if the problem class is
so broad that it requires very different parameter settings.
We see our work as a more general approach than Coy et
al since problem characteristics are included in our RSM
model.

Park and Kim [16] used a non-linear response surface
method to find parameter settings for a simulated annealing
algorithm. Parsons and Johnson [17] used a central com-
posite design with embedded fractional factorial to build a
response surface and improve the performance of a genetic
algorithm on a test data set. Only two parameters were
modeled.

Birattari [3] uses algorithms derived from a machine learn-
ing technique known as racing to incrementally tune the pa-
rameters of several metaheuristics including Max-Min Ant
System for the TSP [22]. Tuning was achieved with a fixed
time constraint where the goal is to find the best configura-
tion of an algoirthm within this time. While the dual prob-
lem of finding a given threshold quality in as short a time as
possible was acknowledged, the author does not pursue the
idea of a bi-objective optimisation of both time and quality.
We have shown here how a bi-objective optimisation can be
achieved with a stagnation stopping criterion and the use of
desirability functions.
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9. CONTRIBUTIONS AND FUTURE WORK
The reported research makes several important contri-

butions to the field of Ant Colony Optimization and the
broader field of heuristics.

• Efficient Experiment Designs. To our knowledge,
this is the first application of Minimum Run Resolu-
tion V designs to efficiently model a heuristic’s perfor-
mance. This design offers huge savings in experimental
runs over full factorials and over fractional factorials.
This saving is important for heuristics that typically
have 8 or more tuning parameters.

• Methodical Model Evaluation. The paper illus-
trates the use of prediction intervals to confirm the
predictive accuracy of a response surface model with
a given confidence. Building response surface models
and using DOE diagnostic tools involves some sub-
jective judgements. This is unavoidable. Prediction
intervals and new random experiment runs provide us
with feedback on those subjective decisions.

• Simultaneous Analysis of Conflicting Responses.
This is the first use of desirability functions to simulta-
neously analyse and optimise the conflicting responses
of solution quality and solution time. These are crit-
ical to all heuristic performance analyses and should
not be considered in isolation. While much good re-
search has been done by running algorithms for a fixed
time or up to a target quality, these choices necessarily
bias one response in favour of the other.

• Optimal Parameter Recommendations for ACS.
Established DOE numerical optimisation techniques
allowed us to find parameter settings that optimise
ACS performance for different combinations of prob-
lem characteristics. Results suggested answers to sev-
eral open questions (Section 2.2).

– It is worthwhile distinguishing between Rho and
RhoLocal as different values were recommended.

– Parallel solution construction seems preferable.

– Random ant placement seems preferable.

– Using the best ant from the current iteration is
preferable.

Note however that inclusion of a factor and its optimi-
sation does not mean that the factor actually affects
performance. Such a recommendation would require a
so-called screening analysis [21].

• Robustness of Parameter Recommendations. This
is the first use of the DOE technique of overlay plots
to provide a visualisation of the robustness of recom-
mended optimal parameter settings across a range of
problem characteristics.

An immediate direction for our future work is the inves-
tigation of other designs to improve the accuracy and prac-
ticality of the response surface model. The Circumscribed
Central Composite (CCC) is preferable from a statistical
point of view but it is difficult to make its design space
cover the whole range of parameter values (See Table 1).

The more practical Face-Centered Composite should be in-
vestigated and compared to the CCC.

We have conducted methodical screening analyses of ACO
parameters to decide on the minimal set of parameters to
predict performance [21].

We hope to see the power and versatility of these well-
established DOE methodologies and engineering tools be-
coming more widespread within the ACO community.
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