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ABSTRACT 

In this note, we briefly describe a new type of genetic algorithm 
that is designed to mitigate one or both of the following two 
major difficulties that traditional genetic algorithms may suffer:  
1. When the number of “active genes” needs to be held constant 
or kept within some prescribed range,  and 2. When the set of 
genes is much larger than the set of active genes of feasible 
solutions under consideration.     These homogeneous genetic 
algorithms use (unordered) sets to represent “active genes” in 
chromosomes rather than strings, and accordingly the selection, 
mating and mutation operators are (naturally) defined using set-
theoretic operations.  Homogeneous GAs have significantly 
outperformed traditional genetic algorithms for some typical 
problems in which these difficulties arise. 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Search– heuristic 
methods. G.2.2 [Graph Theory]: Network Problems. 

General Terms 
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1. ELEMENTS OF THE ALGORITHM 
For a given discrete optimization problem, in a homogeneous 
GA, elements of the feasible solution set are represented by their 
corresponding (unordered) set of active genes.  The solution 
space must first be represented by binary sequences in some 
predetermined way.  For example, in a homogeneous GA, the 
chromosome that represents the following binary string: 

000100000010000000000000000000000000000000000000000 

would be {4,11} since only the 4th and 11th genes are active in this 
binary string.   

The mating selection schemes of traditional GAs depend only on 
the fitness function, and so will carry over identically to 
homogeneous GAs.  Homogeneous GAs, have the following 
natural (set theoretic) crossover and mutation operators that make 
these algorithms very amenable to the two difficulties mentioned 
above: 
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Crossover operator for mating:  Once the mating pool is 
formed, parents are randomly paired off to mate using the 
following crossover scheme that we call random mixing 
crossover:  Suppose that a mating pair of parents is represented by 
the following sets of active genes: 1 2{ , , , }nx a a a= L and  

1 2{ , , , },nx a a a ′
′ ′ ′′ = L  where ,i ja a ′  are the active genes.    We 

let Int =  P P′∩ denote the set-theoretic intersection of the active 
genes of the parents, and we let s denote the number of elements 
of Int. If either parent coincides with this intersection (i.e., if 
either n s= or ),n s′ =  then the two offspring are identical with 
the parents (i.e., the parents are cloned into the next generation, 
but subject to the mutation operator). In all other cases, we 
randomly choose an integer {1, 2, ,min( , ) },j n n s′∈ −L  and then 
randomly choose two subsets of size j from the two parent 
chromosomes that lie outside of their common intersection:  

Intz x⊂  and Int.z x′ ′⊂  (We are using the tilde to denote 
relative complements of sets.)  The two offspring are then defined 
by swapping the genes of these two subsets in the two parents.  In 
set-theoretic notation, the offspring can thus be expressed as 

( ) ,y x z z′= ∪  and ( ) .y x z z′ ′ ′= ∪    

Mutation operator:  We employ a natural mutation scheme that 
we refer to as random pool mutation.  The chromosomes of the 
new offspring (with the two that were cloned being excepted) are 
first randomly selected to undergo mutations with a specified 
probability select .p    For a selected chromosome x, a random 
number of genes j to be mutated is selected from the range 
{1, 2, , min(size( ), size( ))}.x A xL  Here, A is simply the set of 
all available genes (available for all feasible solutions to the 
optimization problem) and we use “size(S)” to mean the 
size/cardinality of a set S.   Then a random set of j genes is 
selected from x and is exchanged with a randomly selected set of j 
genes from .A x  

Performance comparisons have been done on some important 
problems such as the p-center (facility location) problem, which is 
NP complete, as well as some other network logistics problems 
where it is important that the number of “active genes” remain 
fixed.  For such problems, the homogeneous GAs have obtained 
significantly improved results over traditional GAs.   We point 
out that in such comparisons, the parameters and time allowances 
of the GAs were made as similar as was possible (and indeed, the 
fitness functions that were employed were ones developed in the 
literature for traditional GAs) so as to make the comparisons fair.   
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