The Roles of Diversity Preservation and Mutation in
Preventing Population Collapse in Multiobjective Genetic
Programming

Khaled M S Badran
Laboratory for Image and Vision Engineering
Department of Electronic and Electrical
Engineering
University of Sheffield, Sheffield S1 3JD, UK
khaled.badran @shef.ac.uk

ABSTRACT

It has been observed previously that genetic programming
populations can collapse to all single node trees when a par-
simony measure (tree node count) is used in a multiobjec-
tive setting. We have investigated the circumstances under
which this can occur for both the 6-parity boolean learn-
ing task and a range of benchmark machine learning prob-
lems. We conclude that mutation is an important — and
we believe a hitherto unrecognized — factor in preventing
population collapse in multiobjective genetic programming;
without mutation we routinely observe population collapse.
From systematic variation of the mutation operator, we con-
clude that a necessary condition to avoid collapse is that mu-
tation produces, on average, an increase in tree sizes (bloat-
ing) at each generation which is then counterbalanced by
the parsimony pressure applied during selection. Finally,
we conclude that the use of a genotype diversity preserving
mechanism is ineffective at preventing population collapse.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; 1.2.6 [Artificial Intelligence]|: Learn-
ing—induction

General Terms
Algorithms

Keywords

Genetic programming, multiobjective optimization, bloat
control, population collapse, diversity preservation.

INTRODUCTION

It is well-established that unless active measures are taken
to prevent it, the trees in a genetic programming population

1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

1551

Peter | Rockett
Laboratory for Image and Vision Engineering
Department of Electronic and Electrical
Engineering
University of Sheffield, Sheffield S1 3JD, UK
p.rockett@shef.ac.uk

will bloat; that is, there is a tendency for tree sizes in the
population to grow without limit. The objections to bloat
are well-rehearsed [3, 9] and considerable effort has been
expended on both analyzing its causes and suppressing un-
necessary tree growth.

Langdon and Poli [9] have summarized the three princi-
pal approaches to preventing bloat: i) Limiting tree depth
to some maximum value, ii) Tailoring genetic operators and
iii) Using parsimony pressure, including the use of multi-
objective (MO) methods. Capping the tree depth is unsat-
isfactory since (paradoxically) it requires knowledge of the
maximum necessary depth in advance of solving the prob-
lem. Tailoring the genetic operators has proved problematic.

A number of authors have used genetic programming (GP)
— for example, [2, 12, 13, 14] — across a range of tasks with
parsimony pressure incorporated in a multiobjective frame-
work, where one of the objectives to be minimized is a mea-
sure of tree size. This approach has been found to be ex-
tremely effective at controlling bloat.

Our motivation for undertaking the present work has been
the frequent comments by anonymous reviewers of our sub-
mitted papers that MO methods are “inappropriate” for
controlling bloat and in one case, we have been told — quite
contrary to all our experience — that MO methods “don’t
work”. These reviewers have typically cited the work of de
Jong and Pollack [3] who concluded that, without an explicit
diversity-preserving mechanism, the population in MO-GP
rapidly degenerates to just trees of a single node. (Hereafter,
we refer to this phenomenon as population collapse or col-
lapse, for short.) In all the MO-GP work we have ever done
over two or three years, which must total many hundreds of
GP runs under a wide range of (often, highly) experimental
conditions, we have never once observed population collapse.
We were thus interested to understand exactly what it is we
(and others) are doing that prevents the population collapse
seen by de Jong and Pollack [3].

The structure of this paper is that in Section 2 we carefully
re-examine the paper of de Jong and Pollack [3] and based
on this, we have conducted a set of systematic experiments
which we report in Section 4; our methodology is set-out in
Section 3. We conclude that mutation has a key — and we

believe, hitherto unrecognized — réle in bloat control by MO
methods which we discuss and expand upon in Section 5.
Finally, we offer concluding remarks in Section 6.

2. DE JONG AND POLLACK REVISITED

De Jong and Pollack [3] concluded that an explicit diver-
sity preserving mechanism is necessary to prevent popula-
tion collapse in MO-GP and without such a modification,
all the trees in the population degenerate to a single node
within around ten generations. The argument developed
by de Jong and Pollack was based principally on examining
the behaviour of a “standard” multiobjective GP procedure
on the even 6-parity benchmark problem; without diver-
sity preservation, population collapse ensued. With a phe-
notypic diversity preserving operation, on the other hand,
good sampling of the Pareto front was obtained. De Jong
and Pollack then employed a second GP setup incorporating
phenotype diversity preservation and mutation on a range
of problems (a harder version of the 6-parity problem, the
11-multiplexer and symbolic regression problems). In this
second series of experiments, no collapse was seen which
they interpreted as evidence of the effectiveness of diversity
preservation. A third series of experiments employed muta-
tion together with both phenotype diversity and a genotype
diversity measure as a third objective; again no collapse was
seen.

Careful analysis of [3], however, reveals a number of points
which are significant for the work reported here. Firstly,
the “standard” MO-GP procedure used in [3] to demon-
strate collapse is not, in our judgement, typical of (MO-)
GP methodologies described in the literature. Most signif-
icantly for what follows, this so-called “standard” MO-GP
setup does not include any mutation operator.

The second series of experiments conducted in [3] on the
set of three problems did, however, employ mutation as well
as a diversity preserving mechanism in phenotype space.

The third series of experiments employed both phenotype
and genotype diversity as well as mutation. It is worth not-
ing that in terms of generality, phenotype diversity is only
readily applicable to discrete problems.

Based on our analysis of the methodology of de Jong and
Pollack,we have carried-out a comprehensive and systematic
series of experiments, focusing especially on the roles of mu-
tation and diversity preservation in population collapse.

3. METHODOLOGY

3.1 Genetic Programming Procedure

We have employed generational GP with a fixed popula-
tion size of 100; the initial population was produced by the
ramped half-and-half method, with 50% of the individuals
having a tree depth of 7 and the other 50% having a random,
uniformly-distributed depth in the range [1...7]. Selection
was by Pareto ranking using the method of Fonseca and
Fleming [6]. The tree function nodes used were:

1552

e AND, OR, NAND and XOR for the boolean 6-parity
problem.

e The basic binary arithmetic operators: +, —, X and =+
for the machine learning experiments.

In order to preserve the best individuals in the population
from one generation to the next, the 34 top ranked individ-
uals were copied, unaltered (This also retains some linkage
to the evolutionary strategy of de Jong and Pollack.) The
remaining 66 members of the new population were produced
by genetic operations on individuals selected (with replace-
ment) from the full population of 100. Crossover, which
was always applied, was implemented using the depth-fair
method of Ito et al. [7].

We have optionally employed mutation; exact details of
when and where are set-out in Section 4. Where mutation
is used, again it is always applied. Like the crossover oper-
ator, the mutation operator used the depth-fair mechanism
of Ito et al. [7] where we first select a depth, in the tree
at which to perform mutation. Then, one of the sub trees
at this depth is selected biased by complexity — that is, we
prefer to mutate the larger subtrees. Having selected a sub-
tree, it is replaced with a new, randomly generated subtree.
Note that as a consequence of using the depth-fair subtree
selection mechanism in mutation, the root node of a tree is
selected 1/2' = 50% of the time. If the root node is selected
for mutation, a whole new tree of fixed depth 7 is generated.
If a proper subtree (as opposed to the root node) is selected,
it is replaced by a new subtree of fixed depth, N+ — see
Section 4 for the various experimental values of Ny,,: inves-
tigated.

The two objectives comprising our MO fitness vector were:
tree node count and a measure of fitness over the training
set. In addition, we have optionally employed a genotypic
diversity preserving mechanism identical to that of de Jong
and Pollack [3]. Two trees were ‘overlaid’ geometrically and
a ‘distance’ between the two trees defined by counting the
number of spatially matching nodes which are dissimilar,
and then normalizing by the size of the smaller tree. This
‘distance’ between the trees is used as a third objective to
modify the ranking of the population - see [3]. See Section 4
for details.

Each GP run was continued for a fixed number of tree
evaluations: 10,000 for the 6-parity problem and 20,000 for
the machine learning tasks.

3.2 Datasets

Two problem domains were considered: Firstly, we report
the results of exploring the 6-parity boolean learning task
studied in [3] where the performance objective was the num-
ber of incorrect outputs over the (exhaustive) training set.

Second, we have investigated the feature extraction prob-
lem on benchmark machine learning tasks. For the machine
learning portion of this work, four well-known datasets were
taken from the UCI Machine Learning Repository [1]: Pima
Indians Diabetes (PID), BUPA Liver Disorders (BUPA),
Glass, reduced to a two-class problem to differentiate be-
tween float and non-float glasses (GLASS) and Wisconsin

Breast Cancer (WBC). Half of each dataset was randomly
selected as the training set and the remaining half used as
an independent validation set.

GP was used to evolve a feature extraction stage for the
above classification problems by projecting each n-dimen-
sional pattern vector into a 1D decision space and select-
ing an optimal threshold in the decision space by separate
search. The resulting classification error (0/1 loss) over the
training set was used as a fitness objective alongside the
tree’s node count.

4. RESULTS
4.1 6-Parity Boolean Problem

As an initial investigation, we have repeated the first ex-
periment of de Jong and Pollack [3] on the 6-parity boolean
problem. Using the GP setup in Section 3.1 but without
mutation or the genotypic diversity mechanism, we always
observed population collapse within five generations. Thus
we were readily able to reproduce the results of de Jong and
Pollack.

Next, we considered the performance of the basic GP
setup but with mutation (Nmu: = 3) but again, without
the genotypic diversity mechanism. The effect of adding
mutation was to prevent population collapse; repeated runs
showed no sign whatsoever of collapse. These initial two
experiments are summarized in Figure 1 which shows the
fraction of population individuals of single node as a func-
tion of the number of tree evaluations. The influence of
mutation is very apparent from this figure. Thus our first
conclusion is that although the phenotypic diversity preser-
vation reported in [3] was indeed able to prevent population
collapse, the more common operation of mutation is able
to achieve exactly the same result. (Furthermore, evolution
with mutation is able to repeatedly find the known optimal
solution of the problem comprising 13 nodes [3].)

N

081 Without Mutation

0.6

0.4 A
With Mutation

/

0.0 T T T
0 2000 4000 6000

Fraction of Single Node Trees

0.2 4

T
8000 10000

Number of Tree Evaluations

Figure 1: Typical fraction of single node trees in
the population as a function of the Number of Tree
Evaluations; 6-parity problem.

1553

4.2 Machine Learning Problems

Although we have examined four datasets in this work,
we show only the results from the BUPA dataset; all four
datasets yield very similar results and exactly the same con-
clusions would be drawn from the results on any of the four.
For brevity, we show only typical results — qualitatively, all
the results are more-or-less identical.

As a first step, we took the GP setup described in Sec-
tion 3.1 with the mutation operator but without any di-
versity preservation mechanism. The N,,,: parameter, the
depth of replacement trees was set to 3; that is, the muta-
tion operator replaced non-root subtrees with a new, ran-
dom subtree of fixed depth, 3. When selected for mutation,
the root node was replaced with a tree of depth 7 — see
Section 3.1. We take this configuration as our baseline GP
setup for the machine learning tasks.

In complete accord with all our previous experience, this
baseline GP procedure converged on every one of ten runs;
we saw absolutely no sign of population collapse. Typical
training and validation errors averaged over the ten indepen-
dent runs are plotted in Figure 2; reassuringly, the validation
error values are quite close to those of the training error,
although as expected, somewhat larger. This implies rea-
sonable generalization performance. (The minimum value
of error in Figure 2 compares to a value of 0.28, the lowest
error obtained by Lim et al. [10] for the BUPA dataset in a
comparative study of thirty three conventional classification
algorithms. The statistical significance of this difference,
however, remains to be established and since it is not cen-
tral to this work, we have ignored such factors. The best
validation errors we observed on the other three datasets
are similarly numerically smaller than the best results re-
ported in [10]. We thus infer that the classification errors
we have obtained are, at very least, proximate to the state-
of-the-art.)

0.32

0.30 +

Validation Error

0.26

Mean Classification Erorr

0.24 4

Training Error

0.22

T
0 5000 10000 15000 20000

Number of Tree Evaluations

Figure 2: Typical mean test and validation classifi-
cation errors as a function of the Number of Tree
Evaluations. BUPA dataset.

We have noted in Section 2 that the “standard” GP algo-
rithm of de Jong and Pollack [3] omitted mutation. We have

therefore repeated our baseline experiments reported above
but this time, without mutation. The result in each of 10
independently initialized runs was rapid and complete pop-
ulation collapse, exactly as observed in [3]. To characterize
this, Figure 3 shows the typical fraction of single node trees
in the population as a function of the cumulative number of
tree evaluations. The curve for the baseline algorithm with
mutation shows that a small — but non-zero — fraction of
the population comprises a single node; this is reasonable if
the MO optimisation is properly sampling the Pareto front.
The upper curve in Figure 3, however, is for the baseline
algorithm without mutation. Under these conditions, there
is rapid and complete population collapse, as reported in [3].

i
,»,.,-f"\""/*'**-/"’\/"w‘/"v""‘pV\ NS

0.8

0.6 Without Mutation

|
|
|
|
,' With Diversity
|
044l
|
|
|

With Mutation

/

10000 15000

Fraction of Single Node Trees

0.2 4

0.0

T
5000 20000

Number of Tree Evaluations

Figure 3: Typical fraction of single node trees in
the population as a function of the Number of Tree
Evaluations; BUPA dataset.

As far as we are aware, this critical réle of mutation in pre-
venting collapse in MO-GP has not previously been identi-
fied. To reinforce this point, Figure 4 shows the average tree
size as a function of the cumulative number of tree evalua-
tions for the baseline algorithm. With mutation, the mean
tree size rapidly settled to a fairly constant value of ~60
nodes. Without mutation, the whole population rapidly
collapses to single node trees. We therefore conclude that
mutation has a vital role in preventing collapse. Further,
we infer that the reason de Jong and Pollack observed col-
lapse in their initial experiments was due to the somewhat
unconventional omission of mutation from their “standard”
algorithm.

To gain greater insight into the means by which mutation
prevents collapse, we have varied the mutation operator in
our baseline algorithm. The results reported above were ob-
tained by replacing non-root subtrees with new, randomly-
generated subtrees of fixed depth, Ny,,: = 3. Initially, we
varied the value of Nyt in the range [1...5] to no effect.
Similarly, replacing a selected subtree with a new subtree of
exactly the same size did not produce collapse. Even replac-
ing the subtrees with a single (obviously, terminal) node did
not trigger collapse. Consequently, we infer the depth of the
non-root mutating subtree is not critical.

1554

100

80

With Mutation

60

40 4

:|<=— Without Mutation

Average Tree Size [in Nodes]

201 With Diversity

T
5000 10000 15000 20000

Number of Tree Evaluations

Figure 4: Typical average population tree size as a
function of the of the Number of Tree Evaluations;
BUPA dataset.

To further vary the mutation operator, if it selected the
the root node of a tree for replacement, we ignored the op-
eration. Under our depth-fair mutation scheme, each level
in a tree of depth, dmaz, is assigned a probability of being
selected, with the root node being selected 50% of the time
[7]. Rejecting the possibility of selecting the root node led
to rapid population collapse, regardless of the value of the
Nyt parameter. This rather surprising observation led us
to further investigate the effects of mutation on the popula-
tion.

Since we have established that i) removing mutation alto-
gether leads to collapse and that ii) disallowing mutation of
the root node also leads to collapse, we have isolated the in-
fluence of mutation on the size of the trees in the population.

Considering the n-th generation, the requisite number of
children are generated to complete the (n + 1)-th gener-
ation by repeatedly selecting pairs of parents, performing
crossover to produce two offspring, Ci and C2, and then
mutating each offspring independently to produce Cf and
C% which are finally added to the (n+ 1)-th generation. We
can define the difference in tree sizes produced by mutation,
A; as:

A; = Size(C}) — Size(C;)

where Size(X;) is the node count of the tree, X; and i €
[1,2]. Note that A; can be either positive or negative. By
averaging A; over all 66 mutation operations which produce
new individuals for the (n 4 1)-th generation, we can assess
the impact of the various mutation schemes on the growth
of the trees between generations.

The results of measuring the mean changes in population
tree size against generation number for a typical GP run
are shown in Figure 5 where mutation is allowed to replace
the root node. Considering the effects of mutation on its

own (upper curve), there is a mean change of 20-30 nodes
at each generation; thus mutation is tending to increase the
size of trees. The lower plot in Figure 5 shows the net mean
change in tree size between successive generations which is
effectively zero. Thus with root node mutation, the mean
size of individuals in the population remains effectively con-
stant: there is neither bloat nor collapse.

50

40 ‘ ’ ’
30-1‘1\"\' ¥ “' “Iﬂ‘ } | \w | Hll ’ |

i | »f / I I 1\1 H‘ "(‘l“ l
'{M”lu ! “M ‘ V) 'M le‘ | h

20-|
i

Mean Change in Tree Size

Overall
-20 T T T T T

0 50 100 150 200 250

300

Number of Generations

Figure 5: Typical mean change per generation in
tree size as a function of the Number of Genera-
tions allowing root node mutation. Upper curve:
Mean change due to mutation alone. Lower curve:
Overall. BUPA dataset.

Repeating the above experiment but ignoring root node
mutations produces the results in Figure 6; this is the sit-
uation that leads to population collapse. (Note the change
in both scales in Figure 6 compared to Figure 5.) It is clear
that here, mutation results in a decrease in mean tree size
which thus falls between successive generations leading to
population collapse. (The mean change in tree size falls to
zero in Figure 6 since if the population has collapsed and all
trees are of minimum size, one, then there can be no further
reduction in tree size.)

We therefore conclude that the maintenance of a legiti-
mate population in MO-GP is achieved by keeping a balance
between the parsimony pressure exerted by the fitness-based
selection, and the tendency of mutation (including mutation
of the root node) to increase tree sizes. (The crossover oper-
ation, of course, conserves total node numbers in the popu-
lation and therefore produces identically zero mean growth
in the trees.) If the mutation operation does not tend to
exert a bloating pressure on the population and therefore
counteract the parsimony pressure, population collapse en-
sues. Conversely, if the mutation operation tends to increase
tree sizes and this is not offset by a suitable parsimony pres-
sure, bloat results. For example, Langdon and Poli [9] have
shown that mutation alone can produce bloat.

Interestingly, although mutation tends to grow trees by a
fixed (average) amount, the multiobjective parsimony pres-
sure is able to adapt to apply sufficient influence to prevent
bloat but not so much as to cause collapse. We suggest this

1555

Mutation Alone

-20 1

-30

Mean Change in Tree Size

-40

-50 T T T T
15 20

25

Number of Generations

Figure 6: Typical mean change per generation in
tree size as a function of the Number of Genera-
tions not allowing root node mutation. Upper curve:
Mean change due to mutation alone. Lower curve:
Overall. BUPA dataset.

is related to the parameter-less nature of the MO parsimony
— it prefers smaller solutions rather than solutions below a
specified size®.

Finally, we have investigated de Jong and Pollack’s use
of genotypic diversity preservation to prevent collapse [3].
Although these authors report no collapse when a pheno-
typic diversity measure is used, this mechanism is only re-
ally appropriate for problems with discrete objectives. For
a continuous objective it is necessary to define some scale
over which two solutions are considered to be ‘identical’ —
this need to have prior knowledge of a suitable scale also
makes crowding/sharing techniques in conventional genetic
algorithms problematic. We have consequently only inves-
tigated genotypic diversity which was added as a third ob-
jective in the form of an ‘edit distance’ between two trees —
see Section 3.1. Including this third diversity objective (and
omitting mutation) resulted in population collapse, as can
be seen from the chained plots in Figures 3 and 4 although
there was some minor but unimportant improvement com-
pared to using crossover alone. We conclude that a geno-
typic diversity objective, at least in the form implemented
in [3], is ineffective at preventing collapse.

S. DISCUSSION

Our starting point in this study was a re-appraisal of the
work of de Jong and Pollack [3]. We have shown that al-
though these authors were able to avoid population collapse
in the 6-parity boolean problem in their first series of exper-
iments by using a phenotypic diversity preservation mecha-
nism, they could probably have achieved exactly the same

In fact, we have data — which will be published elsewhere —
that suggest changing the size of the new tree which replaces
the root node under mutation does affect the mean tree size
in the population. This greatly influences the time required
for a GP run although not, it appears, the quality of the
final solutions.

end by using mutation. De Jong and Pollack then demon-
strated the effectiveness of their diversity preservation ap-
proach for preventing population collapse on a series of other
problems on which they used not only diversity preservation
but mutation as well. Finally, they employed a phenotypic
diversity measure, mutation and a third, genotypic diversity
objective to argue for the effectiveness of diversity preserva-
tion; we have shown the genotypic diversity measure to be of
little use in preventing collapse on any of the machine learn-
ing problems considered here. All our work suggests that
had de Jong and Pollack conducted a series of experiments
which introduced the additional operations one-at-a-time,
they might well have found that mutation alone can preserve
diversity. We therefore have misgivings about the method-
ology of de Jong and Pollack which casts some doubts over
their conclusions.

De Jong and Pollack [3] are not, of course, the only au-
thors to have reported population collapse. Langdon and
Nordin [8] have observed collapse despite using mutation.
Similarly, Ekdrt and Németh [4] have seen population col-
lapse which they suppressed by biasing the Pareto domina-
tion relation to give (arbitrarily) greater preference to bet-
ter performing individuals compared to smaller individuals.
One possible factor could be these authors’ use of tourna-
ment selection rather than proper Pareto ranking [3, 6]. We
have conducted no tests with tournament selection since the
small sample effects of the comparison set are well-known to
produce highly variable selection. A more likely explanation
is the detailed implementations of the mutation operators
used in [8, 4] which may not have provided the necessary
growth tendency in tree size which the present work sug-
gests is key to preventing collapse. It is noteworthy that in
order to obtain useful results, Langdon and Nordin aban-
doned their second, parsimony objective very early in their
work [8], thus, we suggest, obviating the need to maintain
the internal balance mechanism.

The key issue that seems to arise from Section 4 is that
the mutation operator needs to produce (on average) a net
increase in tree complexity which counterbalances the par-
simony objective. (Conversely, for single objective GP with
no parsimony objective, this is highly undesirable since it
will lead to bloat.) Certainly a number of other authors
have noted the importance of mutation in maintaining di-
versity (e.g. Poli and Langdon [11]) although we believe
the present paper is the first report which specifically ad-
dresses the pivotal role of mutation in multiobjective genetic
programming. In this work we have selected the mutation
point in the tree using the depth-fair method of Ito et al.
[7]. A worthy question is: Whether other implementations
of mutation, such as point mutation, give different results?
Certainly other workers such as [4, 8] have seen popula-
tion collapse despite using mutation whereas ourselves and
at least one other group working in MO-GP [5] have never
seen this. This suggests that a more detailed consideration
of the design of mutation operators for multiobjective envi-
ronments should be carried-out; this is currently the subject
of further research.

6. CONCLUSIONS

In this paper we have investigated the factors surround-

1556

ing the collapse to all single node trees of a population in
multiobjective genetic programming. In particular, we have
re-examined the work of de Jong and Pollack [3] on the use
of diversity preservation to prevent population collapse.

We observe that mutation alone is able to prevent collapse,
specifically, a mutation operator which tends to produce a
positive mean increase in tree size per generation. Under
these circumstances, mutation produces a tendency in the
population to bloat which is counterbalanced by the parsi-
mony pressure exerted by the fitness-based selection process.
Further results on this work will be published elsewhere.

We have also explored the use of the genotypic diversity
objective of de Jong and Pollack to prevent collapse; we
find this to be ineffective at preventing population collapse.
Coupled with the failure of genotypic diversity measures, we
have also pointed-out a number of methodological shortcom-
ings in the work of de Jong and Pollack [3] which may cast
doubt on their conclusions.

7. ACKNOWLEDGMENTS

We are indebted to Dr. Yang Zhang for providing much
of the computer code used in this study and for invaluable
discussions.

8. REFERENCES

[1] C. L. Blake and C. J. Merz. UCI Repository of
Machine Learning Databases. http:
//www.ics.uci.edu/~mlearn/MLRepository.html,
1998.
S. Bleuler, M. Brack, L. Theile, and E. Zitzler.
Multiobjective genetic programming: Reducing bloat
using SPEA2. In Congress on Evolutionary
Computation, pages 536-543, Seoul, Korea, 2001.
IEEE.
E. D. de Jong and J. B. Pollack. Multi-objective
methods for tree size control. Genetic Programming
and Evolvable Machines, 4(3):211-233, 2003.
A. Ekért and S. Z. Németh. Selection based on the
Pareto nondomination criterion for controlling code
growth in genetic programming. Genetic Programming
and Evolvable Machines, 2(1):61-73, 2001.
P. J. Fleming. Personal communication, 2007.
C. M. Fonseca and P. J. Fleming. Genetic algorithms
for multiobjective optimization: Formulation,
discussion and generalization. In S. Forrest, editor, 5"
International Conference of Genetic Algorithms, pages
416-423, San Mateo, CA, 1993. Morgan Kaufmann.
T. Ito, H. Iba, and S. Sato. Non-destructive
depth-dependent crossover for genetic programming.
In 1°* European Workshop on Genetic Programming,
pages 14-15, Paris, France, 1998. Springer-Verlag.
W. B. Langdon and J. P. Nordin. Seeding GP
populations. In R. Poli, W. Banzhaf, W. B. Langdon,
J. F. Miller, P. Nordin, and T. C. Fogarty, editors, 3¢
FEuropean Conference on Genetic Programming
(EuroGP’2000), pages 304-315, Edinburgh, 2000.
Springer-Verlag.
W. B. Langdon and R. Poli. Fitness causes bloat:
Mutation. In 1% European Workshop on Genetic

EE

(12]

Programming, pages 37-48, Paris, France, 1998.
Springer-Verlag.

T.-S. Lim, W.-Y. Loh, and Y.-S. Shih. A comparison
of prediction accuracy, complexity, and training time
of thirty-three old and new classification algorithms.
Machine Learning, 40(3):203-229, 2000.

R. Poli and W. B. Langdon. Genetic programming
with one-point crossover and point mutation.
Technical Report CSRP-97-13, Department of
Computer Science, University of Birmingham,
Birmingham, UK, 1997.

K. Rodriguez-Vazquez, C. M. Fonseca, and P. J.
Fleming. Identifying the structure of non-linear
dynamic systems using multiobjective genetic
programming. IEEE Transactions on Systems, Man
and Cybernetics - Part A: Systems and Humans,
34(4):531-547, 2004.

1557

[13]

[14]

Y. Zhang and P. I. Rockett. Evolving optimal feature
extraction using multi-objective genetic programming:
A methodology and preliminary study on edge
detection. In H.-G. Beyer, U.-M. O’Reilly, D. V.
Arnold, W. Banzhaf, C. Blum, E. W. Bonabeaum,

E. Cantu-Paz, D. Dasgupta, K. Deb, J. A. Foster,

E. D. de Jong, H. Lipson, X. Llora, S. Mancoridis,

M. Pelikan, G. R. Raidl, T. Soule, A. M. Tyrrell, J.-P.
Watson, and E. Zitzler, editors, Genetic and
Evolutionary Computation Conference (GECCO
2005), pages 795-802, Washington, DC, 2005. ACM
Press.

Y. Zhang and P. I. Rockett. Feature extraction using
multi-objective genetic programming. In Y. Jin,
editor, Multi-Objective Machine Learning. Springer,
Heidelberg, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

