
A Discrete Particle Swarm Optimization Algorithm
for the Generalized Traveling Salesman Problem

M. Fatih Tasgetiren
Department of Operations

Management and Business
Statistics, Sultan Qaboos
University, Muscat, Oman

mfatih@squ.edu.om

P. N. Suganthan
School of Electrical and
Electronics Engineering,
Nanyang Technological

University, Singapore 639798

epnsugan@ntu.edu.sg

Quan-Ke Pan
College of Computer Science,

Liaocheng University,
Liaocheng, Shandong Province,

252059, P. R. China
qkpan@lcu.edu.cn

ABSTRACT
Dividing the set of nodes into clusters in the well-known traveling
salesman problem results in the generalized traveling salesman
problem which seeking a tour with minimum cost passing through
only a single node from each cluster. In this paper, a discrete
particle swarm optimization is presented to solve the problem on a
set of benchmark instances. The discrete particle swarm
optimization algorithm exploits the basic features of its
continuous counterpart. It is also hybridized with a local search,
variable neighborhood descend algorithm, to further improve the
solution quality. In addition, some speed-up methods for greedy
node insertions are presented. The discrete particle swarm
optimization algorithm is tested on a set of benchmark instances
with symmetric distances up to 442 nodes from the literature.
Computational results show that the discrete particle optimization
algorithm is very promising to solve the generalized traveling
salesman problem.

Categories and Subject Descriptors
I.2.8 [Computing Methodology]: Problem Solving, Control
Methods, and Search – heuristic methods

General Terms
Algorithms

Keywords
Generalized traveling salesman problem, discrete particle swarm
optimization problem, iterated greedy algorithm, variable
neighborhood descend algorithm.

1. INTRODUCTION
A variant of a well-known traveling salesman problem where a
tour does not necessarily visit all nodes is so called the
generalized traveling salesman problem (GTSP). More
specifically, the set of N nodes is divided into m sets or clusters

such that { }mNNN ,..,1= with { }mNNN ∪∪= ..1 and
φ=∩ kj NN where the objective is to find a minimum tour

length containing exactly one node from each cluster jN .There
exist several applications of the GTSP such as postal routing in
[1], computer file processing in [2], order picking in warehouses
in [3], process planning for rotational parts in [4], and the routing
of clients through welfare agencies in [5]. Furthermore, many
other combinatorial optimization problems can be reduced to the
GTSP problem [6]. The GTSP is NP-hard since it is a special case
of the TSP which is partitioned into m clusters with each
containing only one node. Regarding the literature for the GTSP,
exact algorithms can be found in Laporte et al.[7, 8, 9], Fischetti
et al. [10, 11], and others in [12, 13] whereas heuristic approaches
are applied in Noon [3], Fischetti et al. [11], Renaud and Boctor
[14, 15]. Genetic algorithm applied to the GTSP is the recent
random key genetic algorithm (GA) by Snyder and Daskin [16].
The GSTP may deal with both symmetric and asymmetric
distances. In this paper, a discrete particle swarm optimization
algorithm is presented to solve the GTSP on a standard set of
benchmark instances with symmetric distances.

The remaining paper is organized as follows. Section 2
introduces the discrete particle swarm optimization (DPSO)
algorithm. Computational results are discussed in Section 3.
Finally, Section 4 summarizes the concluding remarks.

2. DPSO ALGORITHM
In the standard PSO algorithm, all particles have their position,
velocity, and fitness values. Particles fly through the m-
dimensional space by learning from the historical information
emerged from the swarm population. For this reason, particles are
inclined to fly towards better search area over the course of
evolution. Let NP denote the swarm population size represented
as []t

NP
ttt XXXX ,..,, 21= . Then each particle in the swarm

population has the following attributes: A current position
represented as []t

im
t
i

t
i

t
i xxxX ,..,, 21= ; a current velocity represented

as []t
in

t
i

t
i

t
i vvvV ,..,, 21= ; a current personal best position

represented as []t
im

t
i

t
i

t
i pppP ,..,, 21= ; and a current global best

position represented as []t
m

ttt gggG ,..,, 21= . Assuming that the
function f is to be minimized, the current velocity of the jth
dimension of the ith particle is updated as follows.

() ()11
22

11
11

11 −−−−−− −+−+= t
ij

t
j

t
ij

t
ij

t
ij

tt
ij xgrcxprcvwv (2)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

158

where tw is the inertia weight which is a parameter to control the
impact of the previous velocities on the current velocity; c1 and c2
are acceleration coefficients and r1 and r2 are uniform random
numbers between [0,1]. The current position of the jth dimension
of the ith particle is updated using the previous position and
current velocity of the particle as follows:

t
ij

t
ij

t
ij vxx += −1 (3)

The personal best position of each particle is updated using

() ()
() ()⎪⎩

⎪
⎨
⎧

≤
>

= −

−−

1

11

t
i

t
i

t
i

t
i

t
i

t
it

i PfXfifX
PfXfifPP (4)

Finally, the global best position found so far in the swarm
population is obtained for NPi ≤≤1 as

() () ()
⎪⎩

⎪
⎨
⎧ ≤

=
−

−

elseG

GfPfifPf
G

t

tt
i

t
i

Pt t
i

1

1minminarg
 (5)

Standard PSO equations cannot be used to generate
binary/discrete values since positions are real-valued. Pan et al.
[17] have presented a DPSO optimization algorithm to tackle the
discrete spaces, where particles are updated as follows:

()()()111
11122 ,, −−−⊕⊕⊕= tt

i
t
i

t
i GPXDCwCRcCRcX (6)

Given that iλ , and iδ are two temporary particles, the update
equation (6) consists of three operators: The first operator is

()1
1

−⊗= t
i

t
i XDCwλ , where 1DC represents the destruction and

construction operator with the probability of w . In other words, a
uniform random number r is generated between 0 and 1. If r is
less than w then the destruction and construction operator is
applied to generate a perturbed particle by ()1

1
−= t

i
t
i XDCλ ,

otherwise current particle is kept as 1−= t
i

t
i Xλ . Note that the

destruction size and perturbation strength are taken as 4=ds and
4=ps , respectively in carrying out the destruction and

construction procedure. The second operator is
()1

11 , −⊕= t
i

t
i

t
i PCRc λδ , where 1CR represents the crossover

operator with the probability of 1c . Note that t
iλ and 1−t

iP will be
the first and second parents for the crossover operator,
respectively. It results either in ()1

1 , −= t
i

t
i

t
i PCR λδ or in t

i
t
i λδ =

depending on the choice of a uniform random number. The third
operator is ()tt

i
t
i GCRcX ,22 δ⊗= , where 2CR represents the

crossover operator with the probability of 2c . Note that t
iδ and

1−tG will be the first and second parents for the crossover
operator, respectively. It results either in ()1

2 , −= tt
i

t
i GCRX δ or

in t
i

t
iX δ= depending on the choice of a uniform random

number. For the DPSO algorithm, the gbest (global
neighborhood) model of Kennedy et al. [22] was followed. The
pseudo code of the DPSO algorithm for the GTSP is given in
Figure 1.
Procedure DPSO
initialize parameters
initialize particles of population

evaluate particles of population
apply two_opt local search to personal best population
apply VND local search to personal best population
while (not termination) do
 find the personal best
 find the global best
 update particles of population
 evaluate particles of population
 apply two_opt local search to personal best population
 apply VND local search to personal best population
endwhile
return Global best
end

Figure 1. DPSO Algorithm for GTSP

2.1 Solution Representation
In order to handle the GTSP properly, we present a unique
solution representation where it includes both permutation of
clusters (jn) and tour containing the nodes (jπ) to be visited in
m dimensions/clusters. Solution representation along with the
distance information is given in Figure 2 where

1+jj
d ππ shows the

corresponding distance from node jπ to 1+jπ . A random
solution is constructed in a way that first a permutation of clusters
is determined randomly. Then since each cluster contains one or
more nodes, the tour is established by randomly choosing a single
node from each corresponding cluster. For simplicity, we omit
the index i of particle iX from the representation.

 j 1 2 . m-1 m 1
jπ 1π 2π . mπ 1π

jn 1n 2n . mn 1n

X

1+jj
d ππ

21ππd
32ππd .

mm
d ππ 1−

1ππm

d

Figure2. Solution Representation.

Then, the fitness function of the particle is the total tour length
and given by

() ∑
−

=
+=

+

1

1
11

m

j
mii

ddXF ππππ (7)

For example, consider a GTSP instance with { }25,..,1=N where
the clusters are { }5,..,11 =N , { }10,..,62 =N , { }15,..,113 =N ,

{ }20,..,164 =N , and { }25,..,215 =N . Figure 3 illustrates the
example solution in detail:
 j 1 2 3 4 5 1

jπ 14 5 22 8 16 14

jn 3 1 5 2 4 3

X

1+jj
d ππ 5,14d 22,5d 8,22d 16,8d 14,16d

Figure 3. Example Instance.

So, the fitness function of the particle is given by
() 14,1616,88,2222,55,14 dddddXF ++++=

2.2 Iterated Greedy Algorithm
Iterated greedy (IG) algorithm has been successfully applied to

the Set Covering problem (SCP) in Jacobs and Brusco [18], and

159

Marchiory and Steenbeek [19], and the permutation flowshop
scheduling problem in Ruiz and Stutzle [20]. In the context of the
GTSP, the destruction and construction procedure is applied to
the particle. d nodes with corresponding clusters are randomly
chosen from the solution to be removed and a partial solution
()jDjDn ,, ,π for dmj −= ,..,1 is established. At the same time, the

set of d nodes and clusters ()kRkRn ,, ,π for dk ,..,1= is also

established to be reinserted into the partial solution ()jDjDn ,, ,π .
The construction phase requires a heuristic procedure to reinsert
the set ()kRkRn ,, ,π onto the partial solution ()jDjDn ,, ,π in a

greedy manner. In other words, the first pair in the set ()kRkRn ,, ,π

is reinserted into all possible 1+− dm positions in the partial
solution ()jDjDn ,, ,π . Among these 1+− dm insertions, the best
solution with the minimum partial tour length is chosen as the
current partial solution for the next insertion. Then the second pair
in the set ()kRkRn ,, ,π is considered and so on until the set

()kRkRn ,, ,π is empty.

The destruction and construction procedure for the GTSP is
illustrated in the following example. Note that the destruction size
is 2=d and the perturbation strength is 1=p in this example.
Perturbation strength 1=p indicates replacing only a single node
with another one from the same cluster.

CURRENT PARTICLE
j 1 2 3 4 5 1

jπ 14 5 22 8 16 14

jn 3 1 5 2 4 3

DESTRUCTION PHASE
Step 1.a. Choose 2=d nodes with corresponding clusters,
randomly.

j 1 2 3 4 5 1
jπ 14 5 22 8 16 14

jn 3 1 5 2 4 3

Step 1.b. Establish { }16,22,14, =jDπ , { }4,5,3, =jDn , { }8,5, =kRπ

and { }2,1, =kRn .
j 1 2 3 4 k 1 2
Dπ 14 22 16 14 Rπ 5 8

Dn 3 5 4 3 Rn 1 2
Step 1.c. Perturb { }8,5, =kRπ to { }9,5, =kRπ by randomly

choosing 22, =Rn in the set { }2,1, =kRn , and randomly replacing

82, =Rx with 92, =Rx from the cluster 2N .
j 1 2 3 4 k 1 2

jD,π 14 22 16 14 kRx , 5 9

jDn , 3 5 4 3 kRn , 1 2

CONSTRUCTION PHASE

Step2.a. After the best insertion of the pair () ()1,5, 1,1, =RR nπ .
j 1 2 3 4 5 k 1

jD,π 14 22 5 16 14 Rx 9

jDn , 3 5 1 4 3 Rn 2

Step2.b. After the best insertion of the pair () ()2,9, 2,2, =RR nπ .
j 1 2 3 4 5 1

jx 14 9 22 5 16 14

jn 3 2 5 1 4 3

2.3 Insertion Methods
In order to accelerate the search process during both the mutation
phase of the DPSO algorithm and the VND local search, we
present the following speed-up methods based on the insertion of
the pair ()kRkRn ,, ,π into 1+− dm possible slots of a partial

solution ()jDjDn ,, ,π . Note that insertion of the node kR,π into

1−m possible slots is given in Snyder and Daskin [16], i.e.,
basically an insertion of the node kR,π in between an edge

()vDuD ,, ,ππ in a partial solution. However, it avoids the insertion

of the node kR,π on the first and last slots of any given tour.

Supposing that the node kR,π will be inserted on a tour of a

particle with 4=m nodes, we illustrate these three possible
insertions with the examples below:

CURRENT PARTICLE
j 1 2 3 4 1 k 1

jD,π 14 5 22 16 14 kRx , 8

jDn , 3 1 5 4 3 kRn , 2

1,, +jDjD
d ππ 5,14d 22,5d 16,22d 14,16d

A. Insertion of the node kR,π in the first slot in a particle.

a.
1,,

Re
DmD

dmove ππ=
kRmDDkR

ddAdd
,,1,, ππππ +=

b. () () moveAddXFXF D Re−+=

Example A. Insertion of the node 8, =kRπ in the first slot

j 1 2 3 4 5 1
jπ 8 14 5 22 16 8

jn 2 3 1 5 4 2

1+jj
d ππ 14,8d 5,14d 22,5d 16,22d 8,16d

4,161,4,1,,
Re dddmove

DDDmD
=== ππππ

8,1614,8,,1,,
ddddAdd

kRmDDkR
+=+= ππππ

() () moveAddXFXF D Re−+=
() 14,168,1614,814,1616,2222,55,14 dddddddXF −+++++=

() 8,1614,816,2222,55,14 dddddXF ++++=

B. Insertion of the node kR,π in the last slot in a particle

a.
1,,

Re
DmD

dmove ππ=
1,,,, DkRkRmD

ddAdd ππππ +=

b. () () moveAddXFXF D Re−+=

Example B. Insertion of the node 8, =kRπ in the last slot

j 1 2 3 4 5 1
jx 14 5 22 16 8 14

jn 3 1 5 4 2 3

1+jj
d ππ 5,14d 22,5d 16,22d 8,16d 14,8d

160

14,161,4,1,,
Re dddmove

DDDmD
=== ππππ

14,88,161,,,,
ddddAdd

DkRkRmD
+=+= ππππ

() () moveAddXFXF D Re−+=
() 14,1614,88,1614,1616,2222,55,14 dddddddXF −+++++=

() 14,88,1616,2222,55,14 dddddXF ++++=

Note that the insertion of the node kR,π into the first and last slot
of a tour is equivalent to each other even though the tours are
different.

C. Insertion of the node kR,π in between the edge ()vDuD ,, ,ππ ,
See Snyder and Daskin [16].

a.
vDuD

dmove
,,

Re ππ=
vDkRkRuD

ddAdd
,,,, ππππ +=

b. () () moveAddXFXF D Re−+=

Example C. Insertion of the node 8, =kRπ in between

() ()5,14, ,, =vDuD ππ .

j 1 2 3 4 5 1
jπ 14 8 5 22 16 14

jn 3 2 1 5 4 3

1+jj
d ππ 8,14d 5,8d 22,5d 16,22d 14,16d

5,14,,
Re ddmove

vDuD
== ππ

5,88,14,,,,
ddddAdd

vDkRkRuD
+=+= ππππ

() () moveAddXFXF D Re−+=
() 5,145,88,1414,1616,2222,55,14 dddddddXF −+++++=

() 5,88,1414,1616,2222,5 dddddXF ++++=

2.4 VND Local Search
VND is a recent meta-heuristic proposed by Mladenovic &
Hansen [21] systematically exploiting the idea of neighborhood
change, both in descent to local minima and in escape from the
valleys containing them. We apply the VND local search to the
personal best t

iP population at each generation t . For the GTSP,
the following neighborhood structures were considered:

()t
iPDC21 =Ψ , ()t

iPDC32 =Ψ . The neighborhood

()t
iPDC21 =ψ is basically concerned with removing a single

node and cluster from the particle t
iP , replacing that particular

node with another node randomly chosen from the same cluster,
and finally inserting the randomly chosen node into 1+− dm
slots of the particle t

iP ’s tour with its corresponding cluster. It
implies that 1=d and 1=p . On the other hand, the

neighborhood ()t
iPDC32 =Ψ is basically related to first

destructing the particle t
iP with the size of 2=d , perturbing

those nodes with the size of 2=p , and finally inserting the kR,π

into jD,π in a greedy manner with the cheapest insertion method.
It implies that two nodes are randomly selected and both of them
perturbed with some other nodes from the same cluster.

The implementation sequence of the VND neighborhood
structures is chosen as 21 Ψ+Ψ . The size of the VND local
search was the number of cluster for each problem instance. The
pseudo code of the VND local search is given in Figure 4.

Procedure VND
s0:=Pi
Choose ψh, h=1,..,hmax
While (Not Termination) Do
 h:=1
 While (h<hmax) Do
 s1:= ψh(s0)
 If f(s1)<f(s0) then
 s0:=s1
 h:=1
 Else
 h:=h+1
 Endwhile
Enwhile
 Update Pi and G
 Return Pi and G
End

Figure 4. VND Local Search

2.5 PTL Crossover
Two-cut PTL crossover operator presented in [17] is used to
update the particles of the DPSO algorithm. Two-cut PTL
crossover operator is able to produce a pair of distinct offspring
even from two identical parents. An illustration of two-cut PTL
crossover operator is shown in Figure 5.

 j 1 2 3 4 5
jπ 24 3 19 8 14

P1
jn 5 1 4 2 3

jπ 24 3 19 8 14
P2

jn 5 1 4 2 3

jπ 19 8 24 3 14
O1

jn 4 2 5 1 3

jπ 24 3 14 19 8
O2

jn 5 1 3 4 2

Figure 5. Two-Cut PTL Crossover Operator.

3. COMPUTATIONAL RESULTS
Fischetti et al. [11] developed a branch-and-cut algorithm to solve
the symmetric GTSP. The benchmark set is derived by applying a
partitioning method to 46 standard TSP instances from the
TSPLIB library [23]. The benchmark set with optimal objective
function values for each of the problems is obtained through a
personal communication with Dr. Lawrence V. Snyder. We apply
our DPSO algorithm to the same benchmark set except for the 10
problems to make a fair comparison with all the best performing
algorithms in the literature. The benchmark set we tested contains
between 51 and 442 nodes with Euclidean distances. The DPSO
algorithm was coded in Borland C and run on an Intel Centrino
Duo 1.83 GHz Laptop with 512MB memory.

161

Regarding the parameters of the DPSO, they were determined
experimentally through inexpensive runs of a few instances
collected from the benchmark set. Population size is taken as 100
and the maximum number of generation is set carefully to 100
generations to have very fair comparisons with the current
literature. Destruction and construction probability, w , crossover
probabilities, 1CR and 2CR are all taken as 1.0. Five runs (R=5)
were carried out for each problem instance to report the statistics
based on the percentage relative deviations as follows:

()∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−
=Δ

R

i

i
avg R

OPT
OPTF

1

/
100

 (8)

where iF , OPT , and R were the fitness function value generated
by the DPSO algorithm in each run, the optimal objective
function value, and the number of runs, respectively. For
convenience, minΔ and maxΔ denote the minimum, and maximum
percentage relative deviations from the optimal values,
respectively. For the computational effort consideration, mint ,

maxt and avgt denote the minimum, maximum, average CPU time
in seconds to reach the best solution found so far during the run,
i.e., the point of time that the global best solution does not change
after that time.
The computational results for the benchmark set are given in
Table 2 and 3. We first compare the performance of the DPSO
algorithm to a very recent random key genetic algorithm
developed by Snyder and Daskin [16]. From Table 2, the GA
found optimal solutions in at least one of the five runs for 30 out
of 36 problems tested whereas the DPSO algorithm was able to
find optimal solutions in at least one of the five runs for 35 out of
36 problems tested. It is important to note that those five optimal
solutions belong to the larger instances ranging from 299 to 442
nodes. The overall performance of hit ratio for the DPSO
algorithm was 4.50 whereas it is 4.03 for the GA. It can be
interpreted that the DPSO algorithm was able to find the 90
percent of the optimal solutions whereas the GA was only able to
find 81 percent of the optimal solutions. In addition, it is
worthwhile observing that the DPSO algorithm was able to solve
the most difficult problems to optimality except for the instance
89PCB442. Again, from Table 2, the DSPO algorithm was superior
to the GA algorithms in terms of percent deviations from the
optimal solutions. All three statistics were lower than those
generated by the GA. Especially in terms of worst case analysis,
the DPSO algorithm generated solutions no worst than 2.05%
above optimal .

The CPU time requirements are difficult to compare, however,
we carefully set the maximum number of generation to 100 so
that a fair comparison should be made. Snyder and Daskin [16]
used a machine with PIV 3.2 GHz processor and 1.0 GB RAM
memory. We feel that we employed a machine, which is faster
than the one in Snyder and Daskin [16]. In fact, the mean CPU
requirement of the DPSO algorithm was 2.62 seconds on overall
average whereas GA needed 1.72 seconds. It is also important to
note that the GA was not able to improve the results after 10
generations as reported in Snyder & Daskin [16] whereas the
DPSO algorithm was able to improve the results in even further
generations leading to the necessity of some more CPU times
during its search process without getting trapped at the local
minima. This is to say that especially, DPSO generated so much

better results than the RKGA that its relatively higher CPU times
can be tolerated.
We compare the DPSO algorithm to several other algorithms
(four heuristics, one exact algorithms and one meta-heuristic) on
the same TSPLIB problems. The first one is the GI3 heuristic
presented by Renaud & Boctor [14]; the second is the NN
heuristic which is developed by Noon [3]; the heuristics called
“FST-Lagr” and “FST-Root” are the Lagrangian procedure and
the root procedure, as well as the branch and cut procedure
(B&C) described in Fishetti et al. [11]. Note that B&C is an exact
algorithm and provided the optimal solutions in Fishetti et al.
[11]. Note that we do not report the CPU times of other heuristics
except for the GA since the CPU time of the GA was comparable
to them as indicated and analyzed in Snyder & Daskin [16].
Table 3 gives the comparison of the DPSO algorithm with the
best performing algorithms in the literature. In Snyder & Daskin
[16], the first trial of the five runs is taken for comparison
purposes. However, we feel that taking the average values would
be much more suitable since the GA and DPSO are stochastic
algorithms for which the average performance is meaningful
when compared to deterministic algorithms making a single run.
For this reason, we report the average percentage relative
deviations for the GA and DPSO algorithms for comparisons to
the best performing algorithms in the literature.
In order to statistically test the performance of the DPSO
algorithms with the best performing algorithms in the literature, a
series of the paired t-test at the 95% significance level was carried
out based on the results in Table 2.. In the paired t-test,

21 μμμ −=D denotes the true average difference between the
percentage relative deviations generated by two different
algorithms, the null hypothesis is given by

0: 210 =−= μμμDH saying that there is no difference between
the average percentage relative deviations generated by two
algorithms compared. On the other hand, the alternative
hypothesis is given by 0: 211 ≠−= μμμDH saying that there is
a difference between the average percentage relative deviations
generated by two algorithms compared. As a reminder, the null
hypothesis is rejected if p values are less than 0.05. The paired t-
test results are given in Table 3.

Table 3 indicates the poor performance of the GI3, NN and FST-
Lagr algorithms compared since the null hypothesis was rejected
on the behalf of the GA and DPSO algorithms. It means that the
differences were meaningful at the significance level of 0.95.
When comparing the GA and DPSO with the FST-Root
algorithm, the null hypothesis was failed to reject indicating that
the differences were not meaningful and those three algorithms
were equivalent. However, the null hypothesis was rejected on the
behalf of the DPSO algorithm compared to GA indicating the
differences were meaningful.

4. CONCLUSIONS
A DPSO is presented to solve the GTSP on a set of benchmark
instances ranging from 51 to 442 nodes. The statistical analysis
showed that the DPSO algorithm is one of the best performing
algorithms together with the GA and FST-Root algorithms for the
GTSP. Hence, the DPSO is promising in applying it to the other
combinatorial optimization algorithms. The authors have already
developed a discrete differential evolution (DDE) algorithm for

162

the GTSP too. Detailed results of both DPSO and DDE
algorithms will be presented in the literature in the near future.

Table 3. Paired t-test at Significance Level of 0.95
H0 H1 t p H0
DPSO=GA DPSO#GA -2.11 0.042 R
GA=GI3 GA#GI3 -3.35 0.002 R
GA=NN GA#NN -3.53 0.001 R
GA=FST-Lagr GA#FST-Lagr -2.58 0.014 R
GA=FST-Root GA#FST-Root 0.05 0.963 FR
DPSO=GI3 DPSO#GI3 -3.35 0.002 R
DPSO=NN DPSO#NN -3.69 0.001 R
DPSO=FST-Lagr DPSO#FST-Lagr -2.58 0.014 R
DPSO=FST-Root DPSO#Root -0.89 0.379 FR
R/FR=Reject/Fail to Reject

5. ACKNOWLEDGMENTS
We would like to thank to Dr. Lawrence Snyder for providing the
benchmark suite. Dr P. N. Suganthan acknowledges the financial
support offered by the A*Star (Agency for Science, Technology
and Research) under the grant # 052 101 0020. Dr. Tasgetiren is
grateful to Dr. Thomas Stutzle for his generosity in providing his
IG code. Even though we developed our own code in C, it was
substantially helpful in grasping the components of the IG
algorithm in a great detail. We also appreciate his endless support
and invaluable suggestions whenever needed.

6. REFERENCES
[1] G. Laporte, A. Asef-Vaziri, C. Sriskandarajah, Some

applications of the generalized travelling salesman problem,
Journal of the Operational Research Society 47 (12) (1996)
461–1467.

[2] A. Henry-Labordere, The record balancing problem—A
dynamic programming solution of a generalized travelling
salesman problem, Revue Francaise D Informatique
DeRecherche Operationnelle 3 (NB2) (1969) 43–49.

[3] C.E. Noon, The generalized traveling salesman problem,
PhD thesis, University of Michigan, 1988.

[4] D. Ben-Arieh, G. Gutin, M. Penn, A. Yeo, A. Zverovitch,
Process planning for rotational parts using the
generalizedtraveling salesman problem, International Journal
of Production Research 41 (11) (2003) 2581–2596.

[5] J.P. Saskena, Mathematical model of scheduling clients
through welfare agencies, Journal of the Canadian
Operational Research Society 8 (1970) 185–200.

[6] G. Laporte, A. Asef-Vaziri, C. Sriskandarajah, Some
applications of the generalized travelling salesman problem,
Journal of the Operational Research Society 47 (12) (1996)
1461–1467.

[7] G. Laporte, H. Mercure, Y. Nobert, Finding the shortest
Hamiltonian circuit through n clusters: A Lagrangian
approach, Congressus Numerantium 48 (1985) 277–290.

[8] G. Laporte, H. Mercure, Y. Nobert, Generalized travelling
salesman problem through n-sets of nodes—The
asymmetrical case, Discrete Applied Mathematics 18 (2)
(1987) 185–197.

[9] G. Laporte, Y. Nobert, Generalized traveling salesman
problem through n-sets of nodes—An integer programming
approach, INFOR 21 (1) (1983) 61–75.

[10] M. Fischetti, J.J. Salazar-Gonzalez, P. Toth, The
symmetrical generalized traveling salesman polytope,
Networks 26(2) (1995) 113–123.

[11] M. Fischetti, J.J. Salazar-Gonza´lez, P. Toth, A branch-and-
cut algorithm for the symmetric generalized travelling
salesman problem, Operations Research 45 (3) (1997) 378–
394.

[12] A.G. Chentsov, L.N. Korotayeva, The dynamic
programming method in the generalized traveling salesman
problem, Mathematical and Computer Modelling 25 (1)
(1997) 93–105.

[13] C.E. Noon, J.C. Bean, A Lagrangian based approach for the
asymmetric generalized traveling salesman problem,
Operations Research 39 (4) (1991) 623–632.

[14] J. Renaud, F.F. Boctor, An efficient composite heuristic for
the symmetric generalized traveling salesman problem,
European Journal of Operational Research 108 (3) (1998)
571–584.

[15] J. Renaud, F.F. Boctor, G. Laporte, A fast composite
heuristic for the symmetric traveling salesman problem,
INFORMS Journal on Computing 4 (1996) 134–143.

[16] L. V. Snyder and M. S. Daskin, A random-key genetic
algorithm for the generalized traveling salesman problem.
European Journal of Operational research 174 (2006)38-53.

[17] Pan Q-K, Tasgetiren M. F, Liang Y-C, A Discrete Particle
Swarm Optimization Algorithm for the No-Wait Flowshop
Scheduling Problem with Makespan and Total Flowtime
Criteria, Accepted to Bio-inspired metaheuristics for
combinatorial optimization problems, Special issue of
Computers & Operations Research, 2005.

[18] Jacobs, L.W., Brusco, M.J., 1995. A local search heuristic
for large set-covering problems. Naval Research Logistics
Quarterly 42 (7), 1129–1140.

[19] Marchiori, E., Steenbeek, A., 2000. An evolutionary
algorithm for large set covering problems with applications
to airline crew scheduling. In: Cagnoni, S. et al. (Eds.), Real-
World Applications of Evolutionary Computing,
EvoWorkshops 2000, Lecture Notes in Computer Science,
vol. 1803. Springer-Verlag, Berlin, pp. 367–381.

[20] R. Ruiz and T. Stutzle, A simple and effective iterated
greedy algorithm for the permutation flowshop scheduling
problem, European Journal of Operational research 174
(2006)38-53.

[21] Mladenovic N, Hansen P, Variable neighborhood search,
Computers and Operations Research 24 (1997) 1097-1100.

[22] Kennedy J, Eberhart RC, Shi Y. Swarm intelligence, San
Mateo, Morgan Kaufmann, CA, USA, 2001.

[23] G. Reinelt, TSPLIB—A traveling salesman problem library,
ORSA Journal on Computing 4 (1996) 134–143.

163

Table 2. Comparison of Results for GA and DPSO Algorithms
 Random Key GA DPSO with VND Local Search

Problem OPT optn avgΔ minΔ maxΔ avgt mint maxt optn avgΔ minΔ maxΔ avgt mint maxt

11EIL51 174 5 0.00 0.00 0.00 0.20 0.10 0.30 5 0.00 0.00 0.00 0.03 0.01 0.05

14ST70 316 5 0.00 0.00 0.00 0.20 0.20 0.30 5 0.00 0.00 0.00 0.03 0.02 0.05

16EIL76 209 5 0.00 0.00 0.00 0.20 0.20 0.20 5 0.00 0.00 0.00 0.03 0.02 0.05

16PR76 64925 5 0.00 0.00 0.00 0.20 0.20 0.30 5 0.00 0.00 0.00 0.05 0.03 0.06

20KROA100 9711 5 0.00 0.00 0.00 0.40 0.30 0.50 5 0.00 0.00 0.00 0.09 0.05 0.11

20KROB100 10328 5 0.00 0.00 0.00 0.40 0.20 0.50 5 0.00 0.00 0.00 0.10 0.09 0.11

20KROC100 9554 5 0.00 0.00 0.00 0.30 0.20 0.40 5 0.00 0.00 0.00 0.12 0.09 0.14

20KROD100 9450 5 0.00 0.00 0.00 0.40 0.20 0.80 5 0.00 0.00 0.00 0.09 0.05 0.12

20KROE100 9523 5 0.00 0.00 0.00 0.60 0.30 0.80 5 0.00 0.00 0.00 0.12 0.09 0.16

20RAT99 497 5 0.00 0.00 0.00 0.50 0.30 0.70 5 0.00 0.00 0.00 0.08 0.06 0.11

20RD100 3650 5 0.00 0.00 0.00 0.50 0.30 1.00 5 0.00 0.00 0.00 0.11 0.05 0.17

21EIL101 249 5 0.00 0.00 0.00 0.40 0.20 0.50 5 0.00 0.00 0.00 0.08 0.06 0.12

21LIN105 8213 5 0.00 0.00 0.00 0.50 0.30 0.70 5 0.00 0.00 0.00 0.08 0.05 0.12

22PR107 27898 5 0.00 0.00 0.00 0.40 0.30 0.50 5 0.00 0.00 0.00 0.12 0.06 0.17

25PR124 36605 5 0.00 0.00 0.00 0.80 0.60 1.5 5 0.00 0.00 0.00 0.17 0.14 0.22

26BIER127 72418 5 0.00 0.00 0.00 0.40 0.40 0.50 5 0.00 0.00 0.00 0.20 0.11 0.28

28PR136 42570 5 0.00 0.00 0.00 0.50 0.30 0.70 5 0.00 0.00 0.00 0.26 0.19 0.33

29PR144 45886 5 0.00 0.00 0.00 1.00 0.30 2.10 5 0.00 0.00 0.00 0.29 0.19 0.41

30KROA150 11018 5 0.00 0.00 0.00 0.70 0.30 1.30 5 0.00 0.00 0.00 0.37 0.22 0.45

30KROB150 12196 5 0.00 0.00 0.00 0.90 0.30 1.20 5 0.00 0.00 0.00 0.35 0.26 0.52

31PR152 51576 5 0.00 0.00 0.00 1.20 0.90 1.50 5 0.00 0.00 0.00 0.71 0.42 0.98

32U159 22664 5 0.00 0.00 0.00 0.80 0.40 1.30 5 0.00 0.00 0.00 0.42 0.34 0.55

39RAT195 854 5 0.00 0.00 0.00 1.00 0.70 1.40 5 0.00 0.00 0.00 2.21 0.62 4.51

40D198 10557 5 0.00 0.00 0.00 1.60 1.10 2.70 5 0.00 0.00 0.00 1.22 0.62 1.98

40KROA200 13406 5 0.00 0.00 0.00 1.80 1.10 2.70 5 0.00 0.00 0.00 0.79 0.64 0.95

40KROB200 13111 4 0.00 0.00 0.02 1.90 1.40 2.90 5 0.00 0.00 0.00 2.70 0.95 5.77

45TS225 68340 4 0.02 0.00 0.09 2.10 1.40 2.60 3 0.04 0.00 0.09 1.42 0.70 2.88

46PR226 64007 5 0.00 0.00 0.00 1.50 0.80 2.40 5 0.00 0.00 0.00 0.46 0.45 0.47

53GIL262 1013 0 0.75 0.10 1.18 1.90 0.70 3.10 3 0.32 0.00 0.89 4.51 1.34 7.25

53PR264 29549 5 0.00 0.00 0.00 2.10 1.30 3.50 5 0.00 0.00 0.00 1.10 0.76 1.30

60PR299 22615 0 0.11 0.02 0.27 3.20 1.60 6.10 3 0.03 0.00 0.09 3.08 1.84 4.20

64LIN318 20765 2 0.62 0.00 1.26 3.50 2.40 4.90 3 0.46 0.00 1.38 8.49 2.98 13.30

80RD400 6361 0 1.19 0.86 1.37 5.90 3.50 8.90 1 0.91 0.00 1.97 13.55 7.80 21.05

84FL417 9651 0 0.05 0.03 0.07 5.30 2.40 8.60 5 0.00 0.00 0.00 6.74 5.03 9.44

88PR439 60099 0 0.27 0.00 0.65 9.50 5.30 12.90 4 0.00 0.00 0.01 20.87 13.22 30.69

89PCB442 21657 0 1.70 1.31 2.19 9.00 4.50 14.50 0 0.86 0.07 2.05 23.14 13.81 28.72

Mean 4.03 0.13 0.06 0.20 1.72 0.97 2.63 4.50 0.07 0.00 0.18 2.62 1.48 3.83

164

Table 3. Comparison of Results for Best Performing Algorithms
 GA DPSO GI3 NN FST-Lagr FST-Root B&C

Problem avgΔ avgt avgΔ avgt Δ t Δ t Δ t Δ t t
11EIL51 0.00 0.20 0.00 0.03 0.00 0.30 0.00 0.40 0.00 0.40 0.00 2.90 2.90

14ST70 0.00 0.20 0.00 0.03 0.00 1.70 0.00 0.80 0.00 1.20 0.00 7.30 7.30

16EIL76 0.00 0.20 0.00 0.03 0.00 2.20 0.00 1.10 0.00 1.40 0.00 9.40 9.40

16PR76 0.00 0.20 0.00 0.05 0.00 2.50 0.00 1.90 0.00 0.60 0.00 12.9 12.90

20KROA100 0.00 0.40 0.00 0.09 0.00 6.80 0.00 3.80 0.00 2.40 0.00 18.30 18.40

20KROB100 0.00 0.40 0.00 0.10 0.00 6.4 0.00 2.40 0.00 3.10 0.00 22.10 22.20

20KROC100 0.00 0.30 0.00 0.12 0.00 6.50 0.00 6.30 0.00 2.20 0.00 14.30 14.40

20KROD100 0.00 0.40 0.00 0.09 0.00 8.60 0.00 5.60 0.00 2.50 0.00 14.20 14.30

20KROE100 0.00 0.60 0.00 0.12 0.00 6.70 0.00 2.80 0.00 0.90 0.00 12.90 13.00

20RAT99 0.00 0.50 0.00 0.08 0.00 5.00 0.00 7.30 0.00 3.10 0.00 51.4 51.5

20RD100 0.00 0.50 0.00 0.11 0.08 7.30 0.08 8.30 0.08 2.60 0.00 16.5 16.6

21EIL101 0.00 0.40 0.00 0.08 0.40 5.20 0.40 3.00 0.00 1.70 0.00 25.50 25.60

21LIN105 0.00 0.50 0.00 0.08 0.00 14.40 0.00 3.70 0.00 2.00 0.00 16.20 16.40

22PR107 0.00 0.40 0.00 0.12 0.00 8.70 0.00 5.20 0.00 2.10 0.00 7.30 7.40

25PR124 0.00 0.80 0.00 0.17 0.43 12.20 0.00 12.00 0.00 3.70 0.00 25.70 25.90

26BIER127 0.00 0.40 0.00 0.20 5.55 36.10 9.68 7.80 0.00 11.20 0.00 23.30 23.60

28PR136 0.00 0.50 0.00 0.26 1.28 12.5 5.54 9.60 0.82 7.20 0.00 42.80 43.00

29PR144 0.00 1.00 0.00 0.29 0.00 16.30 0.00 11.8 0.00 2.30 0.00 8.00 8.20

30KROA150 0.00 0.70 0.00 0.37 0.00 17.80 0.00 22.90 0.00 7.60 0.00 100.00 100.30

30KROB150 0.00 0.90 0.00 0.35 0.00 14.20 0.00 20.10 0.00 9.90 0.00 60.30 60.60

31PR152 0.00 1.20 0.00 0.71 0.47 17.60 1.80 10.30 0.00 9.60 0.00 51.40 94.80

32U159 0.00 0.80 0.00 0.42 2.60 18.50 2.79 26.50 0.00 10.90 0.00 139.60 146.40

39RAT195 0.00 1.00 0.00 2.21 0.00 37.2 1.29 86.00 1.87 8.20 0.00 245.50 245.90

40D198 0.00 1.60 0.00 1.22 0.60 60.40 0.60 118.80 0.48 12.00 0.00 762.50 763.10

40KROA200 0.00 1.80 0.00 0.79 0.00 29.70 5.25 53.00 0.00 15.30 0.00 183.30 187.40

40KROB200 0.00 1.90 0.00 2.70 0.00 35.80 0.00 135.20 0.05 19.10 0.00 268.00 268.50

45TS225 0.02 2.10 0.04 1.42 0.61 89.00 0.00 117.80 0.09 19.40 0.09 1298.40 37875.90

46PR226 0.00 1.50 0.00 0.46 0.00 25.50 2.17 67.60 0.00 14.60 0.00 106.20 106.90

53GIL262 0.75 1.90 0.32 4.51 5.03 115.40 1.88 122.7 3.75 15.80 0.89 1443.50 6624.10

53PR264 0.00 2.10 0.00 1.10 0.36 64.40 5.73 147.20 0.33 24.30 0.00 336.00 337.00

60PR299 0.11 3.20 0.03 3.08 2.23 90.30 2.01 281.80 0.00 33.20 0.00 811.40 812.80

64LIN318 0.62 3.50 0.46 8.49 4.59 206.80 4.92 317.00 0.36 52.50 0.36 847.80 1671.90

80RD400 1.19 5.90 0.91 13.55 1.23 403.50 3.98 1137.10 3.16 59.80 2.97 5031.50 7021.40

84FL417 0.05 5.30 0.00 6.74 0.48 427.10 1.07 1341.00 0.13 77.20 0.00 16714.40 16719.40

88PR439 0.27 9.50 0.00 20.87 3.52 611.00 4.02 1238.90 1.42 146.6 0.00 5418.90 5422.80

89PCB442 1.70 9.00 0.86 23.14 5.91 567.70 0.22 838.40 4.22 78.80 0.29 5353.90 58770.50

Mean 0.13 1.72 0.07 2.62 0.98 83.09 1.48 171.56 0.47 18.48 0.13 1097.32 3821.19

165

