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ABSTRACT 
Dividing the set of nodes into clusters in the well-known traveling 
salesman problem results in the generalized traveling salesman 
problem which seeking a tour with minimum cost passing through 
only a single node from each cluster. In this paper, a discrete 
particle swarm optimization is presented to solve the problem on a 
set of benchmark instances. The discrete particle swarm 
optimization algorithm exploits the basic features of its 
continuous counterpart. It is also hybridized with a local search, 
variable neighborhood descend algorithm, to further improve the 
solution quality. In addition, some speed-up methods for greedy 
node insertions are presented. The discrete particle swarm 
optimization algorithm is tested on a set of benchmark instances 
with symmetric distances up to 442 nodes from the literature. 
Computational results show that the discrete particle optimization 
algorithm is very promising to solve the generalized traveling 
salesman problem. 

Categories and Subject Descriptors 
I.2.8 [Computing Methodology]: Problem Solving, Control 
Methods, and Search – heuristic methods 

General Terms 
Algorithms 

Keywords 
Generalized traveling salesman problem, discrete particle swarm 
optimization problem, iterated greedy algorithm, variable 
neighborhood descend algorithm. 

1. INTRODUCTION 
A variant of a well-known traveling salesman problem where a 
tour does not necessarily visit all nodes is so called the 
generalized traveling salesman problem (GTSP). More 
specifically, the set of N  nodes is divided into m  sets or clusters 

such that { }mNNN ,..,1=  with { }mNNN ∪∪= ..1  and 
φ=∩ kj NN where the objective is to find a minimum tour 

length containing exactly one node from each cluster jN .There 
exist several applications of the GTSP such as postal routing in 
[1], computer file processing in [2], order picking in warehouses 
in [3], process planning for rotational parts in [4], and the routing 
of clients through welfare agencies in [5]. Furthermore, many 
other combinatorial optimization problems can be reduced to the 
GTSP problem [6]. The GTSP is NP-hard since it is a special case 
of the TSP which is partitioned into m  clusters with each 
containing only one node. Regarding the literature for the GTSP, 
exact algorithms can be found in Laporte et al.[7, 8, 9], Fischetti 
et al. [10, 11], and others in [12, 13] whereas heuristic approaches 
are applied in Noon [3], Fischetti et al. [11], Renaud and Boctor 
[14, 15]. Genetic algorithm applied to the GTSP is the recent 
random key genetic algorithm (GA) by Snyder and Daskin [16]. 
The GSTP may deal with both symmetric and asymmetric 
distances. In this paper, a discrete particle swarm optimization 
algorithm is presented to solve the GTSP on a standard set of 
benchmark instances with symmetric distances. 

The remaining paper is organized as follows. Section 2 
introduces the discrete particle swarm optimization (DPSO) 
algorithm. Computational results are discussed in Section 3. 
Finally, Section 4 summarizes the concluding remarks. 

2. DPSO ALGORITHM 
In the standard PSO algorithm, all particles have their position, 
velocity, and fitness values. Particles fly through the m-
dimensional space by learning from the historical information 
emerged from the swarm population. For this reason, particles are 
inclined to fly towards better search area over the course of 
evolution. Let NP denote the swarm population size represented 
as [ ]t

NP
ttt XXXX ,..,, 21= . Then each particle in the swarm 

population has the following attributes: A current position 
represented as [ ]t

im
t
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i xxxX ,..,, 21= ; a current velocity represented 

as [ ]t
in
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i vvvV ,..,, 21= ; a current personal best position 

represented as [ ]t
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t
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t
i pppP ,..,, 21= ; and a current global best 

position represented as [ ]t
m

ttt gggG ,..,, 21= . Assuming that the 
function f is to be minimized, the current velocity of the jth 
dimension of the ith particle is updated as follows. 
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where tw  is the inertia weight which is a parameter to control the 
impact of the previous velocities on the current velocity; c1 and c2 
are acceleration coefficients and r1 and r2 are uniform random 
numbers between [0,1]. The current position of the jth dimension 
of the ith particle is updated using the previous position and 
current velocity of the particle as follows: 

t
ij

t
ij

t
ij vxx += −1                                    (3) 

The personal best position of each particle is updated using 
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Finally, the global best position found so far in the swarm 
population is obtained for NPi ≤≤1   as 
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Standard PSO equations cannot be used to generate 
binary/discrete values since positions are real-valued. Pan et al. 
[17] have presented a DPSO optimization algorithm to tackle the 
discrete spaces, where particles are updated as follows: 

( )( )( )111
11122 ,, −−−⊕⊕⊕= tt

i
t
i

t
i GPXDCwCRcCRcX    (6) 

Given that iλ , and iδ  are two temporary particles, the update 
equation (6) consists of three operators: The first operator is 

( )1
1

−⊗= t
i

t
i XDCwλ , where 1DC  represents the destruction and 

construction operator with the probability of w . In other words, a 
uniform random number r  is generated between 0 and 1. If r  is 
less than w  then the destruction and construction operator is 
applied to generate a perturbed particle by ( )1

1
−= t

i
t
i XDCλ , 

otherwise current particle is kept as 1−= t
i

t
i Xλ . Note that the 

destruction size and perturbation strength are taken as 4=ds  and 
4=ps , respectively in carrying out the destruction and 

construction procedure. The second operator is 
( )1

11 , −⊕= t
i

t
i

t
i PCRc λδ , where 1CR  represents the crossover 

operator with the probability of 1c . Note that t
iλ  and 1−t

iP  will be 
the first and second parents for the crossover operator, 
respectively. It results either in ( )1

1 , −= t
i

t
i

t
i PCR λδ  or in t

i
t
i λδ =  

depending on the choice of a uniform random number. The third 
operator is ( )tt

i
t
i GCRcX ,22 δ⊗= , where 2CR  represents the 

crossover operator with the probability of 2c . Note that t
iδ  and 

1−tG will be the first and second parents for the crossover 
operator, respectively. It results either in ( )1

2 , −= tt
i

t
i GCRX δ  or 

in t
i

t
iX δ=  depending on the choice of a uniform random 

number. For the DPSO algorithm, the gbest (global 
neighborhood) model of Kennedy et al. [22] was followed. The 
pseudo code of the DPSO algorithm for the GTSP is given in 
Figure 1. 
Procedure DPSO 
initialize parameters 
initialize particles of population 

evaluate particles of population 
apply two_opt local search to personal best population 
apply VND local search to personal best population 
while (not termination) do  
       find the  personal best 
       find the global best 
       update particles of population 
       evaluate particles of population 
       apply two_opt local search to personal best population 
       apply VND local search to personal best population 
endwhile 
return Global best 
end 

Figure 1.  DPSO Algorithm for GTSP 

2.1 Solution Representation 
In order to handle the GTSP properly, we present a unique 
solution representation where it includes both permutation of 
clusters ( jn ) and tour containing the nodes ( jπ ) to be visited in 
m dimensions/clusters. Solution representation along with the 
distance information is given in Figure 2 where 

1+jj
d ππ shows the 

corresponding distance from node jπ  to 1+jπ . A random 
solution is constructed in a way that first a permutation of clusters 
is determined randomly. Then since each cluster contains one or 
more nodes, the tour is established by randomly choosing a single 
node from each corresponding cluster.  For simplicity, we omit 
the index i  of particle iX  from the representation. 

 j 1 2 . m-1 m 1 
jπ  1π  2π  .  mπ  1π  

jn  1n  2n  .  mn  1n  

 
X  

1+jj
d ππ  

21ππd  
32ππd  . 

mm
d ππ 1−

 
1ππm

d   

Figure2. Solution Representation. 

Then, the fitness function of the particle is the total tour length 
and given by 

( ) ∑
−

=
+=

+

1

1
11

m

j
mii

ddXF ππππ           (7) 

For example, consider a GTSP instance with { }25,..,1=N  where 
the clusters are { }5,..,11 =N , { }10,..,62 =N , { }15,..,113 =N , 

{ }20,..,164 =N , and { }25,..,215 =N . Figure 3 illustrates the 
example solution in detail: 
  j 1 2 3 4 5 1 

jπ  14 5 22 8 16 14 

jn  3 1 5 2 4 3 

 
X  

1+jj
d ππ  5,14d  22,5d  8,22d  16,8d  14,16d   

Figure 3. Example Instance. 

So, the fitness function of the particle is given by 
( ) 14,1616,88,2222,55,14 dddddXF ++++=  

2.2 Iterated Greedy Algorithm 
Iterated greedy (IG) algorithm has been successfully applied to 

the Set Covering problem (SCP) in Jacobs and Brusco [18], and 
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Marchiory and Steenbeek [19], and the permutation flowshop 
scheduling problem in Ruiz and Stutzle [20]. In the context of the 
GTSP, the destruction and construction procedure is applied to 
the particle. d  nodes with corresponding clusters are randomly 
chosen from the solution to be removed and a partial solution 
( )jDjDn ,, ,π  for dmj −= ,..,1 is established. At the same time, the 

set of d  nodes and clusters ( )kRkRn ,, ,π  for dk ,..,1=  is also 

established to be reinserted into the partial solution ( )jDjDn ,, ,π . 
The construction phase requires a heuristic procedure to reinsert 
the set ( )kRkRn ,, ,π  onto the partial solution ( )jDjDn ,, ,π  in a 

greedy manner. In other words, the first pair in the set ( )kRkRn ,, ,π  

is reinserted into all possible 1+− dm positions in the partial 
solution ( )jDjDn ,, ,π . Among these 1+− dm  insertions, the best 
solution with the minimum partial tour length is chosen as the 
current partial solution for the next insertion. Then the second pair 
in the set ( )kRkRn ,, ,π  is considered and so on until the set 

( )kRkRn ,, ,π  is empty.  

The destruction and construction procedure for the GTSP is 
illustrated in the following example. Note that the destruction size 
is 2=d  and the perturbation strength is 1=p  in this example. 
Perturbation strength 1=p  indicates replacing only a single node 
with another one from the same cluster.  

CURRENT PARTICLE 
j 1 2 3 4 5 1 

jπ  14 5 22 8 16 14 

jn  3 1 5 2 4 3 

DESTRUCTION PHASE 
Step 1.a. Choose 2=d  nodes with corresponding clusters, 
randomly. 

j 1 2 3 4 5 1 
jπ  14 5 22 8 16 14 

jn  3 1 5 2 4 3 

Step 1.b. Establish { }16,22,14, =jDπ , { }4,5,3, =jDn , { }8,5, =kRπ  

and { }2,1, =kRn .  
j 1 2 3 4 k 1 2 
Dπ  14 22 16 14 Rπ  5 8 

Dn  3 5 4 3 Rn  1 2 
Step 1.c. Perturb { }8,5, =kRπ to { }9,5, =kRπ  by randomly 

choosing 22, =Rn  in the set { }2,1, =kRn , and randomly replacing 

82, =Rx with 92, =Rx  from the cluster 2N .  
j 1 2 3 4 k 1 2 

jD,π  14 22 16 14 kRx ,  5 9 

jDn ,  3 5 4 3 kRn ,  1 2 

CONSTRUCTION PHASE 

Step2.a. After the best insertion of the pair ( ) ( )1,5, 1,1, =RR nπ .  
j 1 2 3 4 5 k 1 

jD,π  14 22 5 16 14 Rx  9 

jDn ,  3 5 1 4 3 Rn  2 

Step2.b. After the best insertion of the pair ( ) ( )2,9, 2,2, =RR nπ .  
j 1 2 3 4 5 1 

jx  14 9 22 5 16 14 

jn  3 2 5 1 4 3 

2.3 Insertion Methods 
In order to accelerate the search process during both the mutation 
phase of the DPSO algorithm and the VND local search, we 
present the following speed-up methods based on the insertion of 
the pair ( )kRkRn ,, ,π  into 1+− dm possible slots of a partial 

solution ( )jDjDn ,, ,π . Note that insertion of the node kR,π  into 

1−m  possible slots is given in Snyder and Daskin [16], i.e., 
basically an insertion of the node kR,π  in between an edge 

( )vDuD ,, ,ππ  in a partial solution. However, it avoids the insertion 

of the node kR,π  on the first and last slots of any given tour. 

Supposing that the node kR,π  will be inserted on a tour of a 

particle with 4=m  nodes, we illustrate these three possible 
insertions with the examples below: 

CURRENT PARTICLE 
j 1 2 3 4 1 k 1 

jD,π  14 5 22 16 14 kRx ,  8 

jDn ,  3 1 5 4 3 kRn ,  2 

1,, +jDjD
d ππ  5,14d  22,5d  16,22d  14,16d     

A. Insertion of the node kR,π  in the first slot in a particle. 

a. 
1,,

Re
DmD

dmove ππ=
kRmDDkR

ddAdd
,,1,, ππππ +=  

b. ( ) ( ) moveAddXFXF D Re−+=  

Example A. Insertion of the node 8, =kRπ in the first slot 

j 1 2 3 4 5 1 
jπ  8 14 5 22 16 8 

jn  2 3 1 5 4 2 

1+jj
d ππ  14,8d  5,14d  22,5d  16,22d  8,16d   

4,161,4,1,,
Re dddmove

DDDmD
=== ππππ  

8,1614,8,,1,,
ddddAdd

kRmDDkR
+=+= ππππ  

( ) ( ) moveAddXFXF D Re−+=  
( ) 14,168,1614,814,1616,2222,55,14 dddddddXF −+++++=  

( ) 8,1614,816,2222,55,14 dddddXF ++++=  

B. Insertion of the node kR,π  in the last slot in a particle 

a. 
1,,

Re
DmD

dmove ππ=
1,,,, DkRkRmD

ddAdd ππππ +=  

b. ( ) ( ) moveAddXFXF D Re−+=  

Example B. Insertion of the node 8, =kRπ  in the last slot 

j 1 2 3 4 5 1 
jx  14 5 22 16 8 14 

jn  3 1 5 4 2 3 

1+jj
d ππ  5,14d  22,5d  16,22d  8,16d  14,8d   
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14,161,4,1,,
Re dddmove

DDDmD
=== ππππ  

14,88,161,,,,
ddddAdd

DkRkRmD
+=+= ππππ  

( ) ( ) moveAddXFXF D Re−+=  
( ) 14,1614,88,1614,1616,2222,55,14 dddddddXF −+++++=  

( ) 14,88,1616,2222,55,14 dddddXF ++++=  

Note that the insertion of the node kR,π  into the first and last slot 
of a tour is equivalent to each other even though the tours are 
different.  

C. Insertion of the node kR,π  in between the edge ( )vDuD ,, ,ππ , 
See Snyder and Daskin [16]. 

a. 
vDuD

dmove
,,

Re ππ=
vDkRkRuD

ddAdd
,,,, ππππ +=  

b. ( ) ( ) moveAddXFXF D Re−+=  

Example C. Insertion of the node 8, =kRπ  in between 

( ) ( )5,14, ,, =vDuD ππ . 

j 1 2 3 4 5 1 
jπ  14 8 5 22 16 14 

jn  3 2 1 5 4 3 

1+jj
d ππ  8,14d  5,8d  22,5d  16,22d  14,16d   

5,14,,
Re ddmove

vDuD
== ππ  

5,88,14,,,,
ddddAdd

vDkRkRuD
+=+= ππππ  

( ) ( ) moveAddXFXF D Re−+=  
( ) 5,145,88,1414,1616,2222,55,14 dddddddXF −+++++=  

( ) 5,88,1414,1616,2222,5 dddddXF ++++=  

2.4 VND Local Search  
VND is a recent meta-heuristic proposed by Mladenovic & 
Hansen [21] systematically exploiting the idea of neighborhood 
change, both in descent to local minima and in escape from the 
valleys containing them. We apply the VND local search to the 
personal best t

iP  population at each generation t . For the GTSP, 
the following neighborhood structures were considered:  

( )t
iPDC21 =Ψ , ( )t

iPDC32 =Ψ . The neighborhood 

( )t
iPDC21 =ψ  is basically concerned with removing a single 

node and cluster from the particle t
iP , replacing that particular 

node with another node randomly chosen from the same cluster, 
and finally inserting the randomly chosen node into 1+− dm  
slots of the particle t

iP ’s tour with its corresponding cluster. It 
implies that 1=d  and 1=p . On the other hand, the 

neighborhood ( )t
iPDC32 =Ψ  is basically related to first 

destructing the particle t
iP  with the size of 2=d , perturbing 

those nodes with the size of 2=p , and finally inserting the kR,π  

into jD,π  in a greedy manner with the cheapest insertion method. 
It implies that two nodes are randomly selected and both of them 
perturbed with some other nodes from the same cluster.  

The implementation sequence of the VND neighborhood 
structures is chosen as 21 Ψ+Ψ . The size of the VND local 
search was the number of cluster for each problem instance. The 
pseudo code of the VND local search is given in Figure 4.   

Procedure VND 
s0:=Pi 
Choose ψh, h=1,..,hmax 
While (Not Termination) Do 
        h:=1 
        While (h<hmax) Do 
               s1:= ψh(s0) 
               If f(s1)<f(s0) then 
                     s0:=s1 
                      h:=1 
               Else 
                      h:=h+1 
         Endwhile 
Enwhile 
         Update Pi and G 
         Return Pi and G 
End 

Figure 4. VND Local Search 

2.5 PTL Crossover 
Two-cut PTL crossover operator presented in [17] is used to 
update the particles of the DPSO algorithm. Two-cut PTL 
crossover operator is able to produce a pair of distinct offspring 
even from two identical parents. An illustration of two-cut PTL 
crossover operator is shown in Figure 5. 

 j 1 2 3 4 5 
jπ  24 3 19 8 14 

P1 
jn  5 1 4 2 3 

jπ  24 3 19 8 14 
P2 

jn  5 1 4 2 3 

jπ  19 8 24 3 14 
O1 

jn  4 2 5 1 3 

jπ  24 3 14 19 8 
O2 

jn  5 1 3 4 2 

Figure 5. Two-Cut PTL Crossover Operator. 

3. COMPUTATIONAL RESULTS 
Fischetti et al. [11] developed a branch-and-cut algorithm to solve 
the symmetric GTSP. The benchmark set is derived by applying a 
partitioning method to 46 standard TSP instances from the 
TSPLIB library [23]. The benchmark set with optimal objective 
function values for each of the problems is obtained through a 
personal communication with Dr. Lawrence V. Snyder. We apply 
our DPSO algorithm to the same benchmark set except for the 10 
problems to make a fair comparison with all the best performing 
algorithms in the literature. The benchmark set we tested contains 
between 51 and 442 nodes with Euclidean distances. The DPSO 
algorithm was coded in Borland C and run on an Intel Centrino 
Duo 1.83 GHz Laptop with 512MB memory.  
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Regarding the parameters of the DPSO, they were determined 
experimentally through inexpensive runs of a few instances 
collected from the benchmark set. Population size is taken as 100 
and the maximum number of generation is set carefully to 100 
generations to have very fair comparisons with the current 
literature. Destruction and construction probability, w , crossover 
probabilities, 1CR  and 2CR  are all taken as 1.0. Five runs (R=5) 
were carried out for each problem instance to report the statistics 
based on the percentage relative deviations as follows:  

( )∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−
=Δ

R

i

i
avg R

OPT
OPTF

1

/
100

   (8) 

where iF , OPT , and R were the fitness function value generated 
by the DPSO algorithm in each run, the optimal objective 
function value, and the number of runs, respectively. For 
convenience, minΔ and maxΔ  denote the minimum, and maximum 
percentage relative deviations from the optimal values, 
respectively. For the computational effort consideration, mint , 

maxt and avgt  denote the minimum, maximum, average CPU time 
in seconds to reach the best solution found so far during the run, 
i.e., the point of time that the global best solution does not change 
after that time.   
The computational results for the benchmark set are given in 
Table 2 and 3. We first compare the performance of the DPSO 
algorithm to a very recent random key genetic algorithm 
developed by Snyder and Daskin [16]. From Table 2, the GA 
found optimal solutions in at least one of the five runs for 30 out 
of 36 problems tested whereas the DPSO algorithm was able to 
find optimal solutions in at least one of the five runs for 35 out of 
36 problems tested. It is important to note that those five optimal 
solutions belong to the larger instances ranging from 299 to 442 
nodes. The overall performance of hit ratio for the DPSO 
algorithm was 4.50 whereas it is 4.03 for the GA. It can be 
interpreted that the DPSO algorithm was able to find the 90 
percent of the optimal solutions whereas the GA was only able to 
find 81 percent of the optimal solutions. In addition, it is 
worthwhile observing that the DPSO algorithm was able to solve 
the most difficult problems to optimality except for the instance 
89PCB442. Again, from Table 2, the DSPO algorithm was superior 
to the GA algorithms in terms of percent deviations from the 
optimal solutions. All three statistics were lower than those 
generated by the GA. Especially in terms of worst case analysis, 
the DPSO algorithm generated solutions no worst than 2.05% 
above optimal . 

The CPU time requirements are difficult to compare, however, 
we carefully set the maximum number of generation to 100 so 
that a fair comparison should be made. Snyder and Daskin [16] 
used a machine with PIV 3.2 GHz processor and 1.0 GB RAM 
memory. We feel that we employed a machine, which is faster 
than the one in Snyder and Daskin [16]. In fact, the mean CPU 
requirement of the DPSO algorithm was 2.62 seconds on overall 
average whereas GA needed 1.72 seconds. It is also important to 
note that the GA was not able to improve the results after 10 
generations as reported in Snyder & Daskin [16] whereas the 
DPSO algorithm was able to improve the results in even further 
generations leading to the necessity of some more CPU times 
during its search process without getting trapped at the local 
minima. This is to say that especially, DPSO generated so much 

better results than the RKGA that its relatively higher CPU times 
can be tolerated. 
We compare the DPSO algorithm to several other algorithms 
(four heuristics, one exact algorithms and one meta-heuristic) on 
the same TSPLIB problems. The first one is the GI3 heuristic 
presented by Renaud & Boctor [14]; the second is the NN 
heuristic which is developed by Noon [3]; the heuristics called 
“FST-Lagr” and “FST-Root” are the Lagrangian procedure and 
the root procedure, as well as the branch and cut procedure 
(B&C) described in Fishetti et al. [11]. Note that B&C is an exact 
algorithm and provided the optimal solutions in Fishetti et al. 
[11]. Note that we do not report the CPU times of other heuristics 
except for the GA since the CPU time of the GA was comparable 
to them as indicated and analyzed in Snyder & Daskin [16].  
Table 3 gives the comparison of the DPSO algorithm with the 
best performing algorithms in the literature. In Snyder & Daskin 
[16], the first trial of the five runs is taken for comparison 
purposes. However, we feel that taking the average values would 
be much more suitable since the GA and DPSO are stochastic 
algorithms for which the average performance is meaningful 
when compared to deterministic algorithms making a single run. 
For this reason, we report the average percentage relative 
deviations for the GA and DPSO algorithms for comparisons to 
the best performing algorithms in the literature. 
In order to statistically test the performance of the DPSO 
algorithms with the best performing algorithms in the literature, a 
series of the paired t-test at the 95% significance level was carried 
out based on the results in Table 2.. In the paired t-test, 

21 μμμ −=D  denotes the true average difference between the 
percentage relative deviations generated by two different 
algorithms, the null hypothesis is given by 

0: 210 =−= μμμDH  saying that there is no difference between 
the average percentage relative deviations generated by two 
algorithms compared. On the other hand, the alternative 
hypothesis is given by 0: 211 ≠−= μμμDH  saying that there is 
a difference between the average percentage relative deviations 
generated by two algorithms compared. As a reminder, the null 
hypothesis is rejected if p values are less than 0.05. The paired t-
test results are given in Table 3.  

Table 3 indicates the poor performance of the GI3, NN and FST-
Lagr algorithms compared since the null hypothesis was rejected 
on the behalf of the GA and DPSO algorithms. It means that the 
differences were meaningful at the significance level of 0.95. 
When comparing the GA and DPSO with the FST-Root 
algorithm, the null hypothesis was failed to reject indicating that 
the differences were not meaningful and those three algorithms 
were equivalent. However, the null hypothesis was rejected on the 
behalf of the DPSO algorithm compared to GA indicating the 
differences were meaningful.   

4. CONCLUSIONS 
A DPSO is presented to solve the GTSP on a set of benchmark 
instances ranging from 51 to 442 nodes. The statistical analysis 
showed that the DPSO algorithm is one of the best performing 
algorithms together with the GA and FST-Root algorithms for the 
GTSP. Hence, the DPSO is promising in applying it to the other 
combinatorial optimization algorithms.  The authors have already 
developed a discrete differential evolution (DDE) algorithm for 
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the GTSP too. Detailed results of both DPSO and DDE 
algorithms will be presented in the literature in the near future.    

Table 3. Paired t-test at Significance Level of 0.95 
H0 H1 t p H0 
DPSO=GA DPSO#GA -2.11 0.042 R 
GA=GI3 GA#GI3 -3.35 0.002 R 
GA=NN GA#NN -3.53 0.001 R 
GA=FST-Lagr GA#FST-Lagr -2.58 0.014 R 
GA=FST-Root GA#FST-Root 0.05 0.963 FR 
DPSO=GI3 DPSO#GI3 -3.35 0.002 R 
DPSO=NN DPSO#NN -3.69 0.001 R 
DPSO=FST-Lagr DPSO#FST-Lagr -2.58 0.014 R 
DPSO=FST-Root DPSO#Root -0.89 0.379 FR 
R/FR=Reject/Fail to Reject 
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Table 2. Comparison of Results for GA and DPSO Algorithms 
  Random Key GA DPSO with VND Local Search 

Problem OPT optn  avgΔ  minΔ  maxΔ  avgt  mint  maxt  optn  avgΔ  minΔ  maxΔ  avgt  mint  maxt  

11EIL51 174 5 0.00 0.00 0.00 0.20 0.10 0.30 5 0.00 0.00 0.00 0.03 0.01 0.05 

14ST70 316 5 0.00 0.00 0.00 0.20 0.20 0.30 5 0.00 0.00 0.00 0.03 0.02 0.05 

16EIL76 209 5 0.00 0.00 0.00 0.20 0.20 0.20 5 0.00 0.00 0.00 0.03 0.02 0.05 

16PR76 64925 5 0.00 0.00 0.00 0.20 0.20 0.30 5 0.00 0.00 0.00 0.05 0.03 0.06 

20KROA100 9711 5 0.00 0.00 0.00 0.40 0.30 0.50 5 0.00 0.00 0.00 0.09 0.05 0.11 

20KROB100 10328 5 0.00 0.00 0.00 0.40 0.20 0.50 5 0.00 0.00 0.00 0.10 0.09 0.11 

20KROC100 9554 5 0.00 0.00 0.00 0.30 0.20 0.40 5 0.00 0.00 0.00 0.12 0.09 0.14 

20KROD100 9450 5 0.00 0.00 0.00 0.40 0.20 0.80 5 0.00 0.00 0.00 0.09 0.05 0.12 

20KROE100 9523 5 0.00 0.00 0.00 0.60 0.30 0.80 5 0.00 0.00 0.00 0.12 0.09 0.16 

20RAT99 497 5 0.00 0.00 0.00 0.50 0.30 0.70 5 0.00 0.00 0.00 0.08 0.06 0.11 

20RD100 3650 5 0.00 0.00 0.00 0.50 0.30 1.00 5 0.00 0.00 0.00 0.11 0.05 0.17 

21EIL101 249 5 0.00 0.00 0.00 0.40 0.20 0.50 5 0.00 0.00 0.00 0.08 0.06 0.12 

21LIN105 8213 5 0.00 0.00 0.00 0.50 0.30 0.70 5 0.00 0.00 0.00 0.08 0.05 0.12 

22PR107 27898 5 0.00 0.00 0.00 0.40 0.30 0.50 5 0.00 0.00 0.00 0.12 0.06 0.17 

25PR124 36605 5 0.00 0.00 0.00 0.80 0.60 1.5 5 0.00 0.00 0.00 0.17 0.14 0.22 

26BIER127 72418 5 0.00 0.00 0.00 0.40 0.40 0.50 5 0.00 0.00 0.00 0.20 0.11 0.28 

28PR136 42570 5 0.00 0.00 0.00 0.50 0.30 0.70 5 0.00 0.00 0.00 0.26 0.19 0.33 

29PR144 45886 5 0.00 0.00 0.00 1.00 0.30 2.10 5 0.00 0.00 0.00 0.29 0.19 0.41 

30KROA150 11018 5 0.00 0.00 0.00 0.70 0.30 1.30 5 0.00 0.00 0.00 0.37 0.22 0.45 

30KROB150 12196 5 0.00 0.00 0.00 0.90 0.30 1.20 5 0.00 0.00 0.00 0.35 0.26 0.52 

31PR152 51576 5 0.00 0.00 0.00 1.20 0.90 1.50 5 0.00 0.00 0.00 0.71 0.42 0.98 

32U159 22664 5 0.00 0.00 0.00 0.80 0.40 1.30 5 0.00 0.00 0.00 0.42 0.34 0.55 

39RAT195 854 5 0.00 0.00 0.00 1.00 0.70 1.40 5 0.00 0.00 0.00 2.21 0.62 4.51 

40D198 10557 5 0.00 0.00 0.00 1.60 1.10 2.70 5 0.00 0.00 0.00 1.22 0.62 1.98 

40KROA200 13406 5 0.00 0.00 0.00 1.80 1.10 2.70 5 0.00 0.00 0.00 0.79 0.64 0.95 

40KROB200 13111 4 0.00 0.00 0.02 1.90 1.40 2.90 5 0.00 0.00 0.00 2.70 0.95 5.77 

45TS225 68340 4 0.02 0.00 0.09 2.10 1.40 2.60 3 0.04 0.00 0.09 1.42 0.70 2.88 

46PR226 64007 5 0.00 0.00 0.00 1.50 0.80 2.40 5 0.00 0.00 0.00 0.46 0.45 0.47 

53GIL262 1013 0 0.75 0.10 1.18 1.90 0.70 3.10 3 0.32 0.00 0.89 4.51 1.34 7.25 

53PR264 29549 5 0.00 0.00 0.00 2.10 1.30 3.50 5 0.00 0.00 0.00 1.10 0.76 1.30 

60PR299 22615 0 0.11 0.02 0.27 3.20 1.60 6.10 3 0.03 0.00 0.09 3.08 1.84 4.20 

64LIN318 20765 2 0.62 0.00 1.26 3.50 2.40 4.90 3 0.46 0.00 1.38 8.49 2.98 13.30 

80RD400 6361 0 1.19 0.86 1.37 5.90 3.50 8.90 1 0.91 0.00 1.97 13.55 7.80 21.05 

84FL417 9651 0 0.05 0.03 0.07 5.30 2.40 8.60 5 0.00 0.00 0.00 6.74 5.03 9.44 

88PR439 60099 0 0.27 0.00 0.65 9.50 5.30 12.90 4 0.00 0.00 0.01 20.87 13.22 30.69 

89PCB442 21657 0 1.70 1.31 2.19 9.00 4.50 14.50 0 0.86 0.07 2.05 23.14 13.81 28.72 

Mean  4.03 0.13 0.06 0.20 1.72 0.97 2.63 4.50 0.07 0.00 0.18 2.62 1.48 3.83 
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Table 3. Comparison of Results for Best Performing Algorithms 
 GA DPSO GI3 NN FST-Lagr FST-Root B&C 

Problem avgΔ  avgt  avgΔ  avgt  Δ  t  Δ  t  Δ  t  Δ  t  t  
11EIL51 0.00 0.20 0.00 0.03 0.00 0.30 0.00 0.40 0.00 0.40 0.00 2.90 2.90 

14ST70 0.00 0.20 0.00 0.03 0.00 1.70 0.00 0.80 0.00 1.20 0.00 7.30 7.30 

16EIL76 0.00 0.20 0.00 0.03 0.00 2.20 0.00 1.10 0.00 1.40 0.00 9.40 9.40 

16PR76 0.00 0.20 0.00 0.05 0.00 2.50 0.00 1.90 0.00 0.60 0.00 12.9 12.90 

20KROA100 0.00 0.40 0.00 0.09 0.00 6.80 0.00 3.80 0.00 2.40 0.00 18.30 18.40 

20KROB100 0.00 0.40 0.00 0.10 0.00 6.4 0.00 2.40 0.00 3.10 0.00 22.10 22.20 

20KROC100 0.00 0.30 0.00 0.12 0.00 6.50 0.00 6.30 0.00 2.20 0.00 14.30 14.40 

20KROD100 0.00 0.40 0.00 0.09 0.00 8.60 0.00 5.60 0.00 2.50 0.00 14.20 14.30 

20KROE100 0.00 0.60 0.00 0.12 0.00 6.70 0.00 2.80 0.00 0.90 0.00 12.90 13.00 

20RAT99 0.00 0.50 0.00 0.08 0.00 5.00 0.00 7.30 0.00 3.10 0.00 51.4 51.5 

20RD100 0.00 0.50 0.00 0.11 0.08 7.30 0.08 8.30 0.08 2.60 0.00 16.5 16.6 

21EIL101 0.00 0.40 0.00 0.08 0.40 5.20 0.40 3.00 0.00 1.70 0.00 25.50 25.60 

21LIN105 0.00 0.50 0.00 0.08 0.00 14.40 0.00 3.70 0.00 2.00 0.00 16.20 16.40 

22PR107 0.00 0.40 0.00 0.12 0.00 8.70 0.00 5.20 0.00 2.10 0.00 7.30 7.40 

25PR124 0.00 0.80 0.00 0.17 0.43 12.20 0.00 12.00 0.00 3.70 0.00 25.70 25.90 

26BIER127 0.00 0.40 0.00 0.20 5.55 36.10 9.68 7.80 0.00 11.20 0.00 23.30 23.60 

28PR136 0.00 0.50 0.00 0.26 1.28 12.5 5.54 9.60 0.82 7.20 0.00 42.80 43.00 

29PR144 0.00 1.00 0.00 0.29 0.00 16.30 0.00 11.8 0.00 2.30 0.00 8.00 8.20 

30KROA150 0.00 0.70 0.00 0.37 0.00 17.80 0.00 22.90 0.00 7.60 0.00 100.00 100.30 

30KROB150 0.00 0.90 0.00 0.35 0.00 14.20 0.00 20.10 0.00 9.90 0.00 60.30 60.60 

31PR152 0.00 1.20 0.00 0.71 0.47 17.60 1.80 10.30 0.00 9.60 0.00 51.40 94.80 

32U159 0.00 0.80 0.00 0.42 2.60 18.50 2.79 26.50 0.00 10.90 0.00 139.60 146.40 

39RAT195 0.00 1.00 0.00 2.21 0.00 37.2 1.29 86.00 1.87 8.20 0.00 245.50 245.90 

40D198 0.00 1.60 0.00 1.22 0.60 60.40 0.60 118.80 0.48 12.00 0.00 762.50 763.10 

40KROA200 0.00 1.80 0.00 0.79 0.00 29.70 5.25 53.00 0.00 15.30 0.00 183.30 187.40 

40KROB200 0.00 1.90 0.00 2.70 0.00 35.80 0.00 135.20 0.05 19.10 0.00 268.00 268.50 

45TS225 0.02 2.10 0.04 1.42 0.61 89.00 0.00 117.80 0.09 19.40 0.09 1298.40 37875.90 

46PR226 0.00 1.50 0.00 0.46 0.00 25.50 2.17 67.60 0.00 14.60 0.00 106.20 106.90 

53GIL262 0.75 1.90 0.32 4.51 5.03 115.40 1.88 122.7 3.75 15.80 0.89 1443.50 6624.10 

53PR264 0.00 2.10 0.00 1.10 0.36 64.40 5.73 147.20 0.33 24.30 0.00 336.00 337.00 

60PR299 0.11 3.20 0.03 3.08 2.23 90.30 2.01 281.80 0.00 33.20 0.00 811.40 812.80 

64LIN318 0.62 3.50 0.46 8.49 4.59 206.80 4.92 317.00 0.36 52.50 0.36 847.80 1671.90 

80RD400 1.19 5.90 0.91 13.55 1.23 403.50 3.98 1137.10 3.16 59.80 2.97 5031.50 7021.40 

84FL417 0.05 5.30 0.00 6.74 0.48 427.10 1.07 1341.00 0.13 77.20 0.00 16714.40 16719.40 

88PR439 0.27 9.50 0.00 20.87 3.52 611.00 4.02 1238.90 1.42 146.6 0.00 5418.90 5422.80 

89PCB442 1.70 9.00 0.86 23.14 5.91 567.70 0.22 838.40 4.22 78.80 0.29 5353.90 58770.50 

Mean 0.13 1.72 0.07 2.62 0.98 83.09 1.48 171.56 0.47 18.48 0.13 1097.32 3821.19 
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