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ABSTRACT 
In this paper, we analyze two general-purpose encoding types, 
trees and graphs systematically, focusing on trends over 
increasingly complex problems. Tree and graph encodings are 
similar in application but offer distinct advantages and 
disadvantages in genetic programming. We describe two 
implementations and discuss their evolvability. We then compare 
performance using symbolic regression on hundreds of random 
nonlinear target functions of both 1-dimensional and 8-
dimensional cases. Results show the graph encoding has less bias 
for bloating solutions but is slower to converge and deleterious 
crossovers are more frequent. The graph encoding however is 
found to have computational benefits, suggesting it to be an 
advantageous trade-off between regression performance and 
computational effort.  

Categories and Subject Descriptors 
I.1.1 [Symbolic and Algebraic Manipulation]: Expressions and 
their representations – representations (general and polynomial), 
simplifications of expressions 

General Terms 
Algorithms, Performance, Design 

Keywords 
Symbolic Regression, Expression Trees, Expression Graphs 

1. INTRODUCTION 
In this paper, we analyze the differences between a tree and graph 
encoding in genetic programming. The choice of solution 
encoding in genetic programming can have dramatic impacts on 
the evolvability, convergence, and overall success of the 
algorithm [7]. Algorithms and encodings are often described by 
their bias-variance trade-off – error introduced by predisposed 
structure (bias), and error introduced by representative power and 
accommodation (variance) [9,10,11,12]. In this paper, we 
examine such trade-offs more precisely, considering their 

representations, solution bloat, overfitting, and convergence over 
a range of complexity problems. In contrast with previous 
research, we examine these performance trends across problems 
with a systematically-generated range of complexities. 

Tree encodings are well-known for their representative power and 
used heavily in genetic programming [1]. Tree encodings are 
generally rooted with each branch describing a unique or isolated 
sub-structure. In contrast, graph (or network) encodings describe 
groups of interacting or re-used structures.  

Graph encodings allow direct re-use of subcomponents 
components, and can thus promote modularity and regularity in 
solutions. Graphs can also have a computational advantage by 
reducing the evaluation frequency of commonly reused structure 
within the solutions. However, the inherent tradeoff between 
modularity and regularity [14] suggest that reuse of modular 
substructures also creates internal coupling that may sometimes 
hinder evolvability. As a special case of graphs, tree encodings 
can often be adapted to graph encodings which may be more 
natural to the problem being solved when latent features are 
commonly reused.  

We compare these two encoding approaches systematically using 
the symbolic regression problem [1,3]. Symbolic regression is a 
well-known genetic programming benchmark problem with 
precise definitions of performance and convergence. Additionally, 
symbolic regression provides a natural measurement of problem 
complexity and difficulty, allowing us to explore performance 
trends as problem complexity increases, 

2. BACKGROUND 
2.1 Symbolic Regression 
Symbolic Regression is the problem of identifying the exact 
mathematical (analytical) description of a hidden system from 
experimental data [1,2,3,8]. Unlike polynomial regression or 
related machine learning methods which also fit data, symbolic 
regression is a system identification method which explicates 
behavior. Symbolic regression is an important problem because it 
is related to general machine learning problems but is an open-
ended discrete problem that cannot be solved greedily, thus 
requiring non-standard methods. 

2.1.1 Evolutionary Operations 
For experiments in this paper, we represent algebraic expressions 
(candidate solutions) as both tree and graph encodings (we 
describe these encodings explicitly later). Both variants consist of 
connected operations, input variables, constant values, and output 
root.  
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Operations can be unary operations such as abs, exp, and log, or 
binary operations such as add, mult, and div. If some a priori 
knowledge of the problem is known, the types of operations 
available can be narrowed ahead of time [2,3]. The terminal 
values (leave nodes) available consist of the function's input 
variables and the function's evolved constant values.  
Mutation in a symbolic expression can change an operation type 
(eg. change add to sub), change the arguments of an operation 
(eg. change x+1 to x+x), delete an operation (eg. change x+x to x), 
or add an operation (eg. change x+x to x + (x*x)). 
Crossover of a symbolic expression exchanges sub-trees or sub-
graphs from two parents. For example, crossing f1(x) = x2 + 1 and 
f2(x) = x4 + sin(x) + x could produce a child f3(x) = x2 + sin(x). In 
this example, the leaf node +1 was exchanged with the sin(x) 
term. 

2.1.2 Fitness 
The fitness objective in symbolic regression, traditionally, is to 
minimize error [1,2,3,8] or to maximize correlation [13] on the 
training set. For experiments in this paper we use correlation 
fitness since it is a naturally normalized metric that translates well 
between multiple experiments. 

3. THE TREE ENCODING 
3.1 Structure 
The tree encoding is a popular structure in genetic programming 
[1], particularly in symbolic regression. Tree encodings typically 
define a root node that represents the final output or prediction of 
a candidate solution. Each node can have one or more child nodes 
that are used to evaluate its value or behavior. Nodes without 
children are called leaf nodes (or terminals) that evaluate 
immediately from an input, constant, or state modeled within the 
system. 

Tree encodings in symbolic regression [1,13] are termed 
expression trees. Nodes represent algebraic operations on 
children, such as add, sub, mult, div. Leaf nodes represent input 
values (eg. x1 = 1) or evolved constant values (eg. c1 = 3.14).  An 
example expression tree is shown in Figure 1(a). 

Evaluating an expression tree is a recursive procedure. Evaluation 
is invoked by calling the root node, which in turn evaluates its 

children nodes, and so on. Recursion stops at the leaf nodes and 
evaluation collapses back to the root. Recursion can be 
computationally expensive, particularly in deep trees 

3.2 Evolutionary Considerations 
Crossover of expression trees swaps two sub-trees from two 
parent individuals. The crossover points are typically chosen at 
random in each parent [3,13]. 

An immediate consequence of this procedure is that offspring can 
become extremely large by chance.  For example a leaf node 
swapped with the root node of another parent could double the 
depth of the child’s tree. Therefore, it is common practice to crop 
children or avoid crossovers that produce trees over some 
threshold depth. 

A second consequence is repeated or duplicate structure. For 
example if the individual encodes the function f(x) = (x – 1)4, the 
sub-expression (x – 1) must exist four times in the tree. The 
duplicate expressions can dominate the crossover point selection 
focusing recombination on (x – 1) sub-trees. 

Along the same line from the previous example, duplicate 
expressions make mutation more difficult. To produce f(x) = (x – 
1.23)4 (from the previous example), the constant must be mutated 
4 times. 

4. THE GRAPH ENCODING 
4.1 Structure 
The graph encoding is similar to the tree, but child nodes are no 
longer unique – multiple nodes may reference the same node as 
its child.  
Graph encodings in symbolic regression are termed expression 
graphs, or operation lists. Each node in the graph can represent 
algebraic operations, constant values, or input variables. An 
example graph expression is shown in Figure 1(b). 
A useful feature of graph encodings is that they lend well to 
efficient non-recursive representations. For experiments in this 
paper, we use a list of operations that modify a set of internal 
variables, R. Local variable represent internal nodes in the graph 
and are necessary to build-up non-trivial expressions 
In the list encoding, each operation in the list can reference one or 

Tree: f(x) = (x + 1)4 

 
(a) 

Graph: f(x) = (x + 1)4 

 
(b) 

Figure 1. Example expressions of f(x) = (x + 1)4 in the tree encoding (a) and graph encoding (b). The graph encoding reuses 
redundant sub-expressions but is more susceptible to deleterious variation. 
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more input variables, evolved constants, or internal variables. The 
result from each operation is then stored in an internal variable. 
After all operations are completed, the final local variable is 
returned as output. 
Avoiding recursion, without the need to cache or compile a tree 
expression, provides significant speed up computationally. We 
will analyze this improvement later in the paper. 

4.2 Evolutionary Considerations 
Crossover in the graph encoding exchanges two sections of the 
operator list to form a child. For experiments in this paper we use 
single point crossover that is chosen randomly. 

The graph encoding reuses sub-expressions (multiple operations 
can reference the same sub-expression). Unlike the tree, 
crossovers in the graph are less likely to focus on redundant 
structure since it can be represented in a single operation (or 
internal variable). 

For the same reason, crossover and mutation can be significantly 
more deleterious. An alteration to an operation producing a reused 
internal variable will effect all other operations which reference it. 
In contrast, variation in the tree encoding is localized to 
individual branches. 

5. EXPERIMENTS 
5.1 Experimental Setup 
The symbolic regression algorithm and past experiments on 
scaling complexity can be found in [3].  For experiments in this 
paper, we have simply swap out the tree and graph encodings 
described earlier and hold all evolutionary parameters fixed.  

Table I. Summary of Experiment Setup 

Solution Population Size 64 
Selection Method Deterministic Crowding 
P(mutation) 0.05 
P(crossover) 0.75 
  
Inputs 1 
Operator Set { +, -. *, /, sin, cos } 
Terminal Set { x, c1, c2, c3, c4 } 
  
Graph Encoding  
List Operations 16 
Internal Variables 4 
Evolved Constants 4 
Crossover variable, single point 
  
Tree Encoding  
Initial Depths 1-5 
Crossover single branch swap 

 
Parameters for all experiments are summarized in Table I. In 
deterministic crowding, offspring replace their most similar parent 
if they have equal or higher fitness and are discarded otherwise. 
Population size, mutation probability, and crossover probability 
are the same used in [3].  

For experiments in this paper we use correlation fitness [13] since 
it is a naturally normalized metric that translates well between 
multiple experiments and different target functions. 
Evolution is stopped after the best candidate solution has 
converged on the training set (convergence defined later), or after 
a maximum of one million generations. 

5.2 Target Complexity 
We define complexity as the number of nodes in a binary tree 
needed to represent the function [3,8]. Target functions are 
generated randomly, and then simplified algebraically (eg. 
collecting terms, canceling quotients, and evaluating constants) to 
give a more accurate representation of the targets minimum size. 
This metric for complexity does not perfectly match problem 
difficulty. For example, f(x) = x1*x2*x3 is most likely more 
difficult to regress than f(x) = x1 + x2 + x3 + x4 for combinatorial 
reasons. However, as seen in Section 7, the correlation with 
problem difficulty is strong and larger target functions take longer 
to regress symbolically on average for random functions. Random  

5.3 Random Target Functions 
A key focus of this paper is to examine performance trends 
between the two encoding schemes over a range of different 
complexity problems. We collect results on randomly generated 
functions to get sufficient samples over several complexity 
targets. 
Random targets are generated by randomizing a tree encoding. 
The target first simplified algebraically before measuring its 
complexity. Each encoding is then run on the same target 
functions. 
The training data is generated by sampling the target function 
randomly over the range Rn ∈ [0, 2] for all input variables 200 
times. The test set is generated similarly by sampling over the 
range Rn ∈ [0, 4].  
Results are collected over 500 randomly generated target 
functions, divided evenly among complexities { 1, 3, 5, …, 19 }, 
or 50 random targets per complexity. Additionally we test on two 
input feature sizes: single variable and 8-variable. 

5.4 Convergence Testing 
Convergence is defined as having greater than 0.9999 correlation 
on the training set. Evolution is stopped if the best candidate 
solution reaches this correlation. 
Note that convergence on the training set may not mean the target 
function has converged; the solutions may have overfit to the 
training data. For this reason we report convergence on the test set 
(test set correlation greater than 0.9999) in experimental results. 

6. SOLUTION COMPLEXITY AND BLOAT 
A challenging problem in many genetic programming domains is 
dealing with bloat. Bloated solutions are those which are 
excessively complicated. In machine learning, bloat is 
synonymous with “overfitting” where solutions contain complex 
structures that do not exist in the target function to explain the 
fitness objective.  

We measure bloat as the complexity of the regressed solution 
minus the complexity of the target function: 

Bloat = (# nodes in solution) – (# of nodes in target) 
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This definition of bloat will be zero if the evolved solution is the 
exact same size as the target (perfect case) or positive it is larger.  
In rare cases, converged solutions may use fewer nodes if further 
simplification on the target function is possible but not caught by 
our algebra library.  

We measure the effective number of nodes in the graph encoding 
by converting it to a binary tree. This always increases the 
number of nodes but allows better comparison with the tree 
encoding results. 
The mean bloat of each encoding type is shown in Figure 2 at 
each target function complexity. In the 1-variable case, the tree 
encoding has higher average bloat over all complexities. The 
amount of bloat (for both encodings) tends to increase with target 
complexity.  Bloat is also higher on average in the 8-variable 
targets than the single variable targets. 

7. CONVERGENCE 
In this experiment we measure the convergence rate for each 
encoding over target function complexity – the percent of runs 
where the best solution achieves greater than 0.9999 correlation 
on the withheld test set.  

Figure 3 shows the test set convergence for each complexity 
target function. Both encodings drop in convergence with higher 
complexity target functions. Each encoding is run on the same 
target functions. 

The tree encoding achieves slightly higher convergence than the 
graph encoding over medium sized targets. However, their 
general trends in both the 1-variable and 8-variable cases appear 
to be comparable. 

8. EVALUATIONS 
 In this experiment we measure the number of point evaluations 

 
(a) 1-variable 

 
(b) 8-variable 

Figure 2. Bloat of converged solutions for 1-variable functions (a), and 8-variable functions (b). Each point is averaged over 
50 randomly generated target functions. Error bars show the standard error. 

 
(a) 1-variable 

 
(b) 8-variable 

Figure 3. Test set convergence versus target function complexity for 1-variable functions (a), and 8-variable functions (b).  
Each point is corresponds to 50 randomly generated target functions. 
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before convergence on the training set. A point evaluation is a 
single execution of a candidate solution on a given input. 
Therefore, this is a metric of the total computational effort 
required for convergence. 
Figure 4 shows the mean number of point evaluations to 
convergence for each encoding where the runs had converged on 
the training set.  In the single variable case, the graph encoding 
always takes more evaluations on averaged to converge than the 
tree encoding. This suggests that the graph encoding is less 
evolvable, or perhaps more conservative considering it is less 
likely to bloat. 
In the 8-variable case however, the difference in point evaluations 
decreases for higher complexity targets. At complexity ten and 
higher both encodings perform roughly the same. These figures 
show only runs where both encodings converged on the training 
set. In the 8-variable case the effort appears to require less 

computation, but fewer runs were able to converge before a 
million generations. 

9. BENEFICIAL CROSSOVERS 
In this experiment we measure the number of beneficial crossover 
occurring during evolution. A beneficial crossover occurs when a 
child achieves higher fitness than its most similar parent. 
Figure 5 shows the rate of beneficial crossovers for both 
encodings over the range of complexity target functions. In the 
single variable case, the tree encoding experiences more 
beneficial crossovers than the graph encoding, particularly at low 
complexities.  

10. COMPUTATIONAL PERFORMANCE 
In addition to evolvability, bloat, and convergence, the efficiency 
of encodings can have a large impact on the difficulty of problems 

 
(a) 1-variable 

 
(b) 8-variable 

Figure 4. The number of point evaluations before convergence on the training set versus the target function complexity for 1-
variable functions (a), and 8-variable functions (b).  Each point is averaged over 50 randomly generated target functions. 
Error bars show the standard error. 

 
(a) 1-variable 

 
(b) 8-variable 

Figure 5. The rate of beneficial crossovers versus target function complexity for 1-variable functions (a), and 8-variable 
functions (b).  Each point is averaged over 50 randomly generated target functions. Error bars show the standard error. 
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that can be solved in practice. In this section we benchmark the 
tree and graph encodings. 
Figure 6 shows the computational performance, measured in point 
evaluations per second over a range of complexities. The graph 
encoding remains roughly constant because it has a fixed 
encoding size. Variation still exists because it still executes 
operations in its list that do not affect the output. 
The tree encoding is efficient on simple functions of less than five 
nodes. Performance drops significantly with complexity however 
as recursion deepens with complexity. The computational 
performance result indicates the tree encoding does not scale as 
well with complexity. At five nodes and higher, the graph 
encoding using an operator list more than triples the performance 
of the tree encoding. 

 
Figure 6. The point evaluations per second versus the function 
complexity. 

11. CONCLUSIONS 
We have compared two encoding schemes in increasingly 
complex problems using symbolic regression. While the tree and 
graph encodings are similar in application, they offer distinct 
advantages and disadvantages in genetic programming. 

We have tested these two encodings on randomly generated 
nonlinear target functions, for both single variable and 8-variable 
input spaces. 

Results show that the tree encoding solutions exhibit consistently 
higher bloat over all complexity targets. The tree encoding 
however offers slightly higher convergence rate (finding an exact 
fit) and time to converge, but there was no large trend difference 
over complexity. The tree encoding experiences more beneficial 
crossovers (offspring more fit than most similar parent) on single 
variable targets. Beneficial crossovers decrease with complexity. 
On 8-varible targets both encodings experienced similar trends in 
beneficial crossover trends. Finally, the computational 
comparison shows that the graph encoding to be significantly 
more efficient than the graph for high complexities. 

From these results we conclude the graph encoding to be a 
attractive alternative to traditional tree based problems (eg. 
symbolic regression). Graph encodings provide similar 
performance in convergence over a range of complex target 

functions and different input sizes, and do so with less bloat. The 
graph encoding experiences fewer beneficial crossovers and 
converges slightly slower, however the computational 
performance outweighs this drawback. 
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