
Comparison of Tree and Graph Encodings as Function
of Problem Complexity

Michael Schmidt
Computational Synthesis Laboratory

Cornell University
Ithaca, NY 14853, USA

mds47@cornell.edu

Hod Lipson
Computational Synthesis Laboratory

Cornell University
Ithaca, NY 14853, USA

hod.lipson@cornell.edu

ABSTRACT
In this paper, we analyze two general-purpose encoding types,
trees and graphs systematically, focusing on trends over
increasingly complex problems. Tree and graph encodings are
similar in application but offer distinct advantages and
disadvantages in genetic programming. We describe two
implementations and discuss their evolvability. We then compare
performance using symbolic regression on hundreds of random
nonlinear target functions of both 1-dimensional and 8-
dimensional cases. Results show the graph encoding has less bias
for bloating solutions but is slower to converge and deleterious
crossovers are more frequent. The graph encoding however is
found to have computational benefits, suggesting it to be an
advantageous trade-off between regression performance and
computational effort.

Categories and Subject Descriptors
I.1.1 [Symbolic and Algebraic Manipulation]: Expressions and
their representations – representations (general and polynomial),
simplifications of expressions

General Terms
Algorithms, Performance, Design

Keywords
Symbolic Regression, Expression Trees, Expression Graphs

1. INTRODUCTION
In this paper, we analyze the differences between a tree and graph
encoding in genetic programming. The choice of solution
encoding in genetic programming can have dramatic impacts on
the evolvability, convergence, and overall success of the
algorithm [7]. Algorithms and encodings are often described by
their bias-variance trade-off – error introduced by predisposed
structure (bias), and error introduced by representative power and
accommodation (variance) [9,10,11,12]. In this paper, we
examine such trade-offs more precisely, considering their

representations, solution bloat, overfitting, and convergence over
a range of complexity problems. In contrast with previous
research, we examine these performance trends across problems
with a systematically-generated range of complexities.

Tree encodings are well-known for their representative power and
used heavily in genetic programming [1]. Tree encodings are
generally rooted with each branch describing a unique or isolated
sub-structure. In contrast, graph (or network) encodings describe
groups of interacting or re-used structures.

Graph encodings allow direct re-use of subcomponents
components, and can thus promote modularity and regularity in
solutions. Graphs can also have a computational advantage by
reducing the evaluation frequency of commonly reused structure
within the solutions. However, the inherent tradeoff between
modularity and regularity [14] suggest that reuse of modular
substructures also creates internal coupling that may sometimes
hinder evolvability. As a special case of graphs, tree encodings
can often be adapted to graph encodings which may be more
natural to the problem being solved when latent features are
commonly reused.

We compare these two encoding approaches systematically using
the symbolic regression problem [1,3]. Symbolic regression is a
well-known genetic programming benchmark problem with
precise definitions of performance and convergence. Additionally,
symbolic regression provides a natural measurement of problem
complexity and difficulty, allowing us to explore performance
trends as problem complexity increases,

2. BACKGROUND
2.1 Symbolic Regression
Symbolic Regression is the problem of identifying the exact
mathematical (analytical) description of a hidden system from
experimental data [1,2,3,8]. Unlike polynomial regression or
related machine learning methods which also fit data, symbolic
regression is a system identification method which explicates
behavior. Symbolic regression is an important problem because it
is related to general machine learning problems but is an open-
ended discrete problem that cannot be solved greedily, thus
requiring non-standard methods.

2.1.1 Evolutionary Operations
For experiments in this paper, we represent algebraic expressions
(candidate solutions) as both tree and graph encodings (we
describe these encodings explicitly later). Both variants consist of
connected operations, input variables, constant values, and output
root.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

1674

Operations can be unary operations such as abs, exp, and log, or
binary operations such as add, mult, and div. If some a priori
knowledge of the problem is known, the types of operations
available can be narrowed ahead of time [2,3]. The terminal
values (leave nodes) available consist of the function's input
variables and the function's evolved constant values.
Mutation in a symbolic expression can change an operation type
(eg. change add to sub), change the arguments of an operation
(eg. change x+1 to x+x), delete an operation (eg. change x+x to x),
or add an operation (eg. change x+x to x + (x*x)).
Crossover of a symbolic expression exchanges sub-trees or sub-
graphs from two parents. For example, crossing f1(x) = x2 + 1 and
f2(x) = x4 + sin(x) + x could produce a child f3(x) = x2 + sin(x). In
this example, the leaf node +1 was exchanged with the sin(x)
term.

2.1.2 Fitness
The fitness objective in symbolic regression, traditionally, is to
minimize error [1,2,3,8] or to maximize correlation [13] on the
training set. For experiments in this paper we use correlation
fitness since it is a naturally normalized metric that translates well
between multiple experiments.

3. THE TREE ENCODING
3.1 Structure
The tree encoding is a popular structure in genetic programming
[1], particularly in symbolic regression. Tree encodings typically
define a root node that represents the final output or prediction of
a candidate solution. Each node can have one or more child nodes
that are used to evaluate its value or behavior. Nodes without
children are called leaf nodes (or terminals) that evaluate
immediately from an input, constant, or state modeled within the
system.

Tree encodings in symbolic regression [1,13] are termed
expression trees. Nodes represent algebraic operations on
children, such as add, sub, mult, div. Leaf nodes represent input
values (eg. x1 = 1) or evolved constant values (eg. c1 = 3.14). An
example expression tree is shown in Figure 1(a).

Evaluating an expression tree is a recursive procedure. Evaluation
is invoked by calling the root node, which in turn evaluates its

children nodes, and so on. Recursion stops at the leaf nodes and
evaluation collapses back to the root. Recursion can be
computationally expensive, particularly in deep trees

3.2 Evolutionary Considerations
Crossover of expression trees swaps two sub-trees from two
parent individuals. The crossover points are typically chosen at
random in each parent [3,13].

An immediate consequence of this procedure is that offspring can
become extremely large by chance. For example a leaf node
swapped with the root node of another parent could double the
depth of the child’s tree. Therefore, it is common practice to crop
children or avoid crossovers that produce trees over some
threshold depth.

A second consequence is repeated or duplicate structure. For
example if the individual encodes the function f(x) = (x – 1)4, the
sub-expression (x – 1) must exist four times in the tree. The
duplicate expressions can dominate the crossover point selection
focusing recombination on (x – 1) sub-trees.

Along the same line from the previous example, duplicate
expressions make mutation more difficult. To produce f(x) = (x –
1.23)4 (from the previous example), the constant must be mutated
4 times.

4. THE GRAPH ENCODING
4.1 Structure
The graph encoding is similar to the tree, but child nodes are no
longer unique – multiple nodes may reference the same node as
its child.
Graph encodings in symbolic regression are termed expression
graphs, or operation lists. Each node in the graph can represent
algebraic operations, constant values, or input variables. An
example graph expression is shown in Figure 1(b).
A useful feature of graph encodings is that they lend well to
efficient non-recursive representations. For experiments in this
paper, we use a list of operations that modify a set of internal
variables, R. Local variable represent internal nodes in the graph
and are necessary to build-up non-trivial expressions
In the list encoding, each operation in the list can reference one or

Tree: f(x) = (x + 1)4

(a)

Graph: f(x) = (x + 1)4

(b)

Figure 1. Example expressions of f(x) = (x + 1)4 in the tree encoding (a) and graph encoding (b). The graph encoding reuses
redundant sub-expressions but is more susceptible to deleterious variation.

1675

more input variables, evolved constants, or internal variables. The
result from each operation is then stored in an internal variable.
After all operations are completed, the final local variable is
returned as output.
Avoiding recursion, without the need to cache or compile a tree
expression, provides significant speed up computationally. We
will analyze this improvement later in the paper.

4.2 Evolutionary Considerations
Crossover in the graph encoding exchanges two sections of the
operator list to form a child. For experiments in this paper we use
single point crossover that is chosen randomly.

The graph encoding reuses sub-expressions (multiple operations
can reference the same sub-expression). Unlike the tree,
crossovers in the graph are less likely to focus on redundant
structure since it can be represented in a single operation (or
internal variable).

For the same reason, crossover and mutation can be significantly
more deleterious. An alteration to an operation producing a reused
internal variable will effect all other operations which reference it.
In contrast, variation in the tree encoding is localized to
individual branches.

5. EXPERIMENTS
5.1 Experimental Setup
The symbolic regression algorithm and past experiments on
scaling complexity can be found in [3]. For experiments in this
paper, we have simply swap out the tree and graph encodings
described earlier and hold all evolutionary parameters fixed.

Table I. Summary of Experiment Setup

Solution Population Size 64
Selection Method Deterministic Crowding
P(mutation) 0.05
P(crossover) 0.75

Inputs 1
Operator Set { +, -. *, /, sin, cos }
Terminal Set { x, c1, c2, c3, c4 }

Graph Encoding
List Operations 16
Internal Variables 4
Evolved Constants 4
Crossover variable, single point

Tree Encoding
Initial Depths 1-5
Crossover single branch swap

Parameters for all experiments are summarized in Table I. In
deterministic crowding, offspring replace their most similar parent
if they have equal or higher fitness and are discarded otherwise.
Population size, mutation probability, and crossover probability
are the same used in [3].

For experiments in this paper we use correlation fitness [13] since
it is a naturally normalized metric that translates well between
multiple experiments and different target functions.
Evolution is stopped after the best candidate solution has
converged on the training set (convergence defined later), or after
a maximum of one million generations.

5.2 Target Complexity
We define complexity as the number of nodes in a binary tree
needed to represent the function [3,8]. Target functions are
generated randomly, and then simplified algebraically (eg.
collecting terms, canceling quotients, and evaluating constants) to
give a more accurate representation of the targets minimum size.
This metric for complexity does not perfectly match problem
difficulty. For example, f(x) = x1*x2*x3 is most likely more
difficult to regress than f(x) = x1 + x2 + x3 + x4 for combinatorial
reasons. However, as seen in Section 7, the correlation with
problem difficulty is strong and larger target functions take longer
to regress symbolically on average for random functions. Random

5.3 Random Target Functions
A key focus of this paper is to examine performance trends
between the two encoding schemes over a range of different
complexity problems. We collect results on randomly generated
functions to get sufficient samples over several complexity
targets.
Random targets are generated by randomizing a tree encoding.
The target first simplified algebraically before measuring its
complexity. Each encoding is then run on the same target
functions.
The training data is generated by sampling the target function
randomly over the range Rn ∈ [0, 2] for all input variables 200
times. The test set is generated similarly by sampling over the
range Rn ∈ [0, 4].
Results are collected over 500 randomly generated target
functions, divided evenly among complexities { 1, 3, 5, …, 19 },
or 50 random targets per complexity. Additionally we test on two
input feature sizes: single variable and 8-variable.

5.4 Convergence Testing
Convergence is defined as having greater than 0.9999 correlation
on the training set. Evolution is stopped if the best candidate
solution reaches this correlation.
Note that convergence on the training set may not mean the target
function has converged; the solutions may have overfit to the
training data. For this reason we report convergence on the test set
(test set correlation greater than 0.9999) in experimental results.

6. SOLUTION COMPLEXITY AND BLOAT
A challenging problem in many genetic programming domains is
dealing with bloat. Bloated solutions are those which are
excessively complicated. In machine learning, bloat is
synonymous with “overfitting” where solutions contain complex
structures that do not exist in the target function to explain the
fitness objective.

We measure bloat as the complexity of the regressed solution
minus the complexity of the target function:

Bloat = (# nodes in solution) – (# of nodes in target)

1676

This definition of bloat will be zero if the evolved solution is the
exact same size as the target (perfect case) or positive it is larger.
In rare cases, converged solutions may use fewer nodes if further
simplification on the target function is possible but not caught by
our algebra library.

We measure the effective number of nodes in the graph encoding
by converting it to a binary tree. This always increases the
number of nodes but allows better comparison with the tree
encoding results.
The mean bloat of each encoding type is shown in Figure 2 at
each target function complexity. In the 1-variable case, the tree
encoding has higher average bloat over all complexities. The
amount of bloat (for both encodings) tends to increase with target
complexity. Bloat is also higher on average in the 8-variable
targets than the single variable targets.

7. CONVERGENCE
In this experiment we measure the convergence rate for each
encoding over target function complexity – the percent of runs
where the best solution achieves greater than 0.9999 correlation
on the withheld test set.

Figure 3 shows the test set convergence for each complexity
target function. Both encodings drop in convergence with higher
complexity target functions. Each encoding is run on the same
target functions.

The tree encoding achieves slightly higher convergence than the
graph encoding over medium sized targets. However, their
general trends in both the 1-variable and 8-variable cases appear
to be comparable.

8. EVALUATIONS
 In this experiment we measure the number of point evaluations

(a) 1-variable

(b) 8-variable

Figure 2. Bloat of converged solutions for 1-variable functions (a), and 8-variable functions (b). Each point is averaged over
50 randomly generated target functions. Error bars show the standard error.

(a) 1-variable

(b) 8-variable

Figure 3. Test set convergence versus target function complexity for 1-variable functions (a), and 8-variable functions (b).
Each point is corresponds to 50 randomly generated target functions.

1677

before convergence on the training set. A point evaluation is a
single execution of a candidate solution on a given input.
Therefore, this is a metric of the total computational effort
required for convergence.
Figure 4 shows the mean number of point evaluations to
convergence for each encoding where the runs had converged on
the training set. In the single variable case, the graph encoding
always takes more evaluations on averaged to converge than the
tree encoding. This suggests that the graph encoding is less
evolvable, or perhaps more conservative considering it is less
likely to bloat.
In the 8-variable case however, the difference in point evaluations
decreases for higher complexity targets. At complexity ten and
higher both encodings perform roughly the same. These figures
show only runs where both encodings converged on the training
set. In the 8-variable case the effort appears to require less

computation, but fewer runs were able to converge before a
million generations.

9. BENEFICIAL CROSSOVERS
In this experiment we measure the number of beneficial crossover
occurring during evolution. A beneficial crossover occurs when a
child achieves higher fitness than its most similar parent.
Figure 5 shows the rate of beneficial crossovers for both
encodings over the range of complexity target functions. In the
single variable case, the tree encoding experiences more
beneficial crossovers than the graph encoding, particularly at low
complexities.

10. COMPUTATIONAL PERFORMANCE
In addition to evolvability, bloat, and convergence, the efficiency
of encodings can have a large impact on the difficulty of problems

(a) 1-variable

(b) 8-variable

Figure 4. The number of point evaluations before convergence on the training set versus the target function complexity for 1-
variable functions (a), and 8-variable functions (b). Each point is averaged over 50 randomly generated target functions.
Error bars show the standard error.

(a) 1-variable

(b) 8-variable

Figure 5. The rate of beneficial crossovers versus target function complexity for 1-variable functions (a), and 8-variable
functions (b). Each point is averaged over 50 randomly generated target functions. Error bars show the standard error.

1678

that can be solved in practice. In this section we benchmark the
tree and graph encodings.
Figure 6 shows the computational performance, measured in point
evaluations per second over a range of complexities. The graph
encoding remains roughly constant because it has a fixed
encoding size. Variation still exists because it still executes
operations in its list that do not affect the output.
The tree encoding is efficient on simple functions of less than five
nodes. Performance drops significantly with complexity however
as recursion deepens with complexity. The computational
performance result indicates the tree encoding does not scale as
well with complexity. At five nodes and higher, the graph
encoding using an operator list more than triples the performance
of the tree encoding.

Figure 6. The point evaluations per second versus the function
complexity.

11. CONCLUSIONS
We have compared two encoding schemes in increasingly
complex problems using symbolic regression. While the tree and
graph encodings are similar in application, they offer distinct
advantages and disadvantages in genetic programming.

We have tested these two encodings on randomly generated
nonlinear target functions, for both single variable and 8-variable
input spaces.

Results show that the tree encoding solutions exhibit consistently
higher bloat over all complexity targets. The tree encoding
however offers slightly higher convergence rate (finding an exact
fit) and time to converge, but there was no large trend difference
over complexity. The tree encoding experiences more beneficial
crossovers (offspring more fit than most similar parent) on single
variable targets. Beneficial crossovers decrease with complexity.
On 8-varible targets both encodings experienced similar trends in
beneficial crossover trends. Finally, the computational
comparison shows that the graph encoding to be significantly
more efficient than the graph for high complexities.

From these results we conclude the graph encoding to be a
attractive alternative to traditional tree based problems (eg.
symbolic regression). Graph encodings provide similar
performance in convergence over a range of complex target

functions and different input sizes, and do so with less bloat. The
graph encoding experiences fewer beneficial crossovers and
converges slightly slower, however the computational
performance outweighs this drawback.

12. ACKNOWLEDGEMENTS
This research was supported in part by the U.S. National Science
Foundation grant number CMMI-0547376.

13. REFERENCES
[1] Koza, J.R. Genetic Programming: On the Programming of

Computers by Means of Natural Selection. Cambridge, MA:
The MIT Press, 1992.

[2] Augusto D. A. and Barbosa H. J. C. "Symbolic Regression
via Genetic Programming," VI Brazilian Symposium on
Neural Networks (SBRN'00), 01: 22-01, 2000.

[3] Schmidt, M., and Lipson, H. "Coevolution of Fitness
Maximizers and Fitness Predictors", GECCO Late Breaking
Paper, 2005.

[4] Rafal Kicinger, Tomasz Arciszewski and Kenneth De Jong,
“Evolutionary computation and structural design: A survey
of the state-of-the-art,” Computers & Structures, Volume 83,
Issues 23-24, Pages 1943-1978, 2005.

[5] Duffy, J., and Engle-Warnick J., "Using Symbolic
Regression to Infer Strategies from Experimental Data,"
S-H. Chen eds., Evolutionary Computation in Economics
and Finance, Physica-Verlag. New York, 2002.

[6] Hoai, N. McKay R., Essam D., and Chau R., "Solving the
symbolic regression problem with tree-adjunct grammar
guided genetic programming: comparative results,"
Evolutionary Computation, Vol 2. pp. 1326-1331, 2002.

[7] Rothlauf, F. "Representations for Genetic and Evolutionary
Algorithms." Physica, Heidelberg 2002.

[8] Morales, C.O. "Symbolic Regression Problems by Genetic
Programming with Multi-branches," MICAI 2004: Advances
in Artificial Intelligence, pp.717-726, 2004.

[9] Caruana, Rich, Schaffer, J. David, "Representation and
Hidden Bias: Gray vs. Binary Coding for Genetic
Algorithms." Fifth International Conference on Machine
Learning, 1988.

[10] Breiman, L. “Bias, variance, and arcing classifiers,”
Technical Report 460, Statistics Department, University of
California Berkeley, 2996.

[11] Domingos, P. “A unified bias-variance decomposition and its
applications,” In Proceedings of the 17th International
Conference on Machine Learning, 2002.

[12] Wolpert, D. “On bias plus variance,” Neural Computation, 9,
pp. 1211–1243, 1997.

[13] McKay, B., Willis, M., Barton, G. "Using a tree structured
genetic algorithm to perform symbolic regression," First
International Conference on Genetic Algorithms in
Engineering Systems, vol. 414, pp. 487–492, 1995.

[14] Lipson H. "Principles of Modularity, Regularity, and
Hierarchy for Scalable Systems," Genetic and Evolutionary
Computation Conference (GECCO'04), 2004.

1679

