Graph Structured Program Evolution

Shinichi Shirakawa
Graduate School of
Environment and Information
Sciences
Yokohama National University
79-7, Tokiwadai,
Hodogaya-ku, Yokohama
Kanagawa, 240-8501, Japan
shirakawa @nlab.sogo1-
.ynu.ac.jp

ABSTRACT

In recent years a lot of Automatic Programming techniques
have developed. A typical example of Automatic Program-
ming is Genetic Programming (GP), and various extensions
and representations for GP have been proposed so far. How-
ever, it seems that more improvements are necessary to ob-
tain complex programs automatically. In this paper we pro-
posed a new method called Graph Structured Program Evo-
lution (GRAPE). The representation of GRAPE is graph
structure, therefore it can represent complex programs (e.g.
branches and loops) using its graph structure. Each pro-
gram is constructed as an arbitrary directed graph of nodes
and data set. The GRAPE program handles multiple data
types using the data set for each type, and the genotype
of GRAPE is the form of a linear string of integers. We
apply GRAPE to four test problems, factorial, Fibonacci
sequence, exponentiation and reversing a list, and demon-
strate that the optimum solution in each problem is obtained
by the GRAPE system.

Categories and Subject Descriptors

1.2.2 [Artificial Intelligence|: Automatic Programming—
program synthesis; 1.2.8 [Artificial Intelligence]: Problem
Solving, Control Methods, and Search

General Terms

Algorithms, Experimentation, Performance

Keywords

Shintaro Ogino
Venture Business Laboratory
Yokohama National University

79-7, Tokiwadai,
Hodogaya-ku, Yokohama
Kanagawa, 240-8501, Japan
ogino@nlab.sogo1-

.ynu.ac.jp

Automatic Programming, Genetic Programming, Graph-based
Genetic Programming, Genetic Algorithm, factorial, Fibonacci

sequence, exponentiation, reversing a list

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’07, July 7-11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

1686

Tomoharu Nagao
Graduate School of
Environment and Information
Sciences
Yokohama National University
79-7, Tokiwadai,
Hodogaya-ku, Yokohama
Kanagawa, 240-8501, Japan

nagao@ynu.ac.jp

1. INTRODUCTION

This paper introduces a new method for Automatic Pro-
gramming. This new method, named GRAph structured
Program Evolution (GRAPE), uses graph structure as a
representation of programs.

In standard Genetic Programming (GP), programs are
represented as trees containing terminal and non-terminal
nodes. Complex programs and hand written programs, how-
ever, may contain several branches and loops. We think that
graph representation is the nearest representation of hand
written programs. Therefore, we adopt the graph structure
as a representation of programs. In GRAPE programs each
program is constructed as an arbitrary directed graph of
nodes and data set. The GRAPE program handles multiple
data types using the data set for each type, and the genotype
of GRAPE is the form of a linear string of integers.

The next section of this paper is an overview of several re-
lated works. In section 3, we describe our proposed method,
Graph Structured Program Evolution (GRAPE). Several ex-
periments are shown in section 4. Section 5 provides some
discussion of the results. Finally, in section 6, we describe
conclusions and future works.

2. RELATED WORKS

Automatic Programming is the method of generating com-
puter programs automatically. Genetic Programming (GP)
[9, 10] is a typical example of Automatic Programming,
which was proposed by Koza. GP evolves computer pro-
grams, which are usually tree structure, and searches a de-
sired program using Genetic Algorithm (GA). A lot of exten-
sions and improvements of GP were introduced. Automat-
ically Defined Function (ADFs)[10], Module Acquisition[2]
and Automatically Defined Macros[19] were attempted to
integrate modularity into the GP paradigm. Montana devel-
oped a strategy for incorporating multiple data types called
Strongly Typed Genetic Programming[14]. In Strongly Typed
Genetic Programming the user is required to specify the
types of all values, function inputs, and function outputs,
and the program generation, mutation and crossover algo-
rithms are modified to obey these type restrictions. It affects
the shape of the program search space (e.g. by restricting
crossover points).

Various representations for GP have been proposed so far.
GP with index memory [23, 24] was introduced by Teller
and was proven that the system is Turing complete. This

means that, in theory, GP with indexed memory can be
used to evolve any algorithm. Linear Genetic Programming
(LGP) [3] uses a specific linear representation of computer
programs. Instead of the tree-based GP expressions of a
functional programming language (like LISP), programs of
an imperative language (like C) are evolved. A LGP indi-
vidual is represented by a variable-length sequence of sim-
ple C language instructions. Instructions operate on one or
two indexed variables (registers) r or on constants ¢ from
predefined sets. The result is assigned to a destination reg-
ister, e.g. r; = rj * ¢. Grammatical Evolution (GE) [15,
16] is an evolutionary algorithm that can evolve computer
programs in any language, and can be considered a form of
grammar-based genetic programming. GE uses a chromo-
some of numbers encoded using eight bits to indicate which
rule from the BNF (Backus Naur Form) grammar to ap-
ply at each state of the derivation sequence, starting from a
defined start symbol.

Recently two interesting Automatic Programming tech-
niques were proposed, PushGP [20, 21, 22] and Object Ori-
ented Genetic Programming (OOGP) [11, 1]. PushGP evolves
programs using a Push language proposed by Spector, et
al. Push is a stack-based programming language. OOGP
evolves Object Oriented Programs instead of the form of
LISP parse tree. The both method tackled the problems
of generating recursive programs (e.g. factorial, Fibonacci
sequence, exponentiation, sorting a list and so on) and ob-
tained these programs automatically.

There are various representations using a graph. Parallel
Algorithm Discovery and Orchestration (PADO) [25, 26]is
one of the graph based GPs instead of the tree structure.
PADO uses stack memory and index memory, and there are
action and branch-decision nodes. The execution of PADO
is carried out from the start node to the end node in the
network. PADO was applied to the object recognition prob-
lems. Another graph based GP is the Parallel Distributed
Genetic Programming (PDGP)[17]. In this approach the
tree is represented as a graph with functions and terminals
nodes located over a grid. In this way it is possible straight-
forward to execute several nodes concurrently. Cartesian
Genetic Programming (CGP)[12, 13] was developed from
a representation that was used for the evolution of digital
circuits and represents a programs as a graph. In certain
respects, it is similar to the graph-based technique PDGP.
However, PDGP were evolved without the use of a genotype-
phenotype mapping and various sophisticated crossover op-
erators were defined. In CGP, the genotype is an integer
string which denotes a list of node connections and func-
tions. This string is mapped into phenotype of an index
graph. Linear-Graph GP [6] is the extension of Linear GP
and Linear-Tree GP [5]. In Linear-Graph GP each program
is represented as a graph. Each node in the graph has two
parts, a linear program and a branching node. Recently,
Genetic Network Programming (GNP) [4, 7] which has a
directed graph structure is proposed. GNP is applied to
make the behavior sequences of agents and shows better
performances compared with GP.

1687

3. GRAPH STRUCTURED PROGRAM
EVOLUTION (GRAPE)

3.1 Overview

Various extensions and representations for GP have been
proposed so far. However, it seems that more improve-
ments is necessary to obtain more complex programs auto-
matically. Graph Structured Program Evolution (GRAPE)
constructs graph structured programs automatically. The
graph structured programs is composed of arbitrary directed
graph of nodes and data set.

GRAPE has different representation from PDGP, CGP
and Linear-Graph GP. These methods have some restric-
tion of connections (e.g. restrict loops and allow only feed-
forward connectivity). The representation of GRAPE is ar-
bitrary directed graph of nodes. PADO is one of the similar
methods to GRAPE. PADO has stack memory and index
memory, and the execution of PADO is carried out from
the start node to the end node in the network. GRAPE is
different from PADO in the fact that GRAPE handles mul-
tiple data types using the data set for each type and adopts
genotype-phenotype mapping.

The features of GRAPE are summarized as follows:

e Arbitrary directed graph structures.
e Handle multiple data types using the data set.

e Genotype of integer string.

3.2 Structure of GRAPE

The representation of GRAPE is graph structure. Each
program is constructed as an arbitrary directed graph of
nodes and data set. The data set flows the directed graph
and is processed at each node. Figure 1 illustrates an exam-
ple of structure of GRAPE. Each node in GRAPE program
has two parts, a processing and branching. The process-
ing executes several kind of processing using the data set,
for instance, arithmetic calculation and boolean calculation.
After the processing is executed, a next node is selected.
The branching decides the next node according to the data
set.

Examples of node in GRAPE are shown in Figure 2. “No.1
node” add data[0] to data[l] and substitute for data[0] using
integer data type, and select next node “No.2”. “No.2 node”
decides next node using integer data[0] and data[l], if data[0]
is grater than data[l], connection 1 is chosen, else connection
2 is chosen. There are special nodes shown in Figure 1.
“No.0 node” is the start node which is the equivalent of
root node of GP. It is the first node to be executed when
a GRAPE program runs. “No.7 node” is the output node.
When this node is reached, the GRAPE program outputs
data and then the program halts. In Figure 1 “No.7 node”
outputs integer data[0]. Although the GRAPE program has
only one start node, it has several output nodes.

The representation of GRAPE is graph structure, there-
fore it can represent complex programs (e.g. branches and
loops) using its graph structure. There are several data
types in GRAPE program, integer data type, boolean data
type, list data type and so on. The GRAPE program han-
dles multiple data types using the data set for each type.

To adopt evolutionary method, genotype-phenotype map-
ping is used in GRAPE system. This genotype-phenotype

Phenotype (Structure of GRAPE)

r

No. 0

data Set -------

int bool list
0] x 0 list 0
1LX 0 list 1
21 x 0 list 2
31 1 list 3

1 1 list 4
.f. .. - Ii, No. 5

.

output

No. 3
type connection[] argc[]
No.O | S 1 - — - -
No. 1 1 2 & 0 1 0
No. 2 2 3 4 0 1 3
No. 3 1 6 0 0 3 2
No.4| O 5 4 1 0 2
No. 5 2 1 7 0 3 1
No. 6 1 5 5 1 2 0
No. 7 3 2 6 0 0 5
|:| © not appear in phenotype

J

Genotype (integer string)

I1II112I3IOI1IOII213I4IOI1I3II116I0I01312|—|

|‘|015|4|11012||211|71013|1||1l5l5|1|2]0||3|2|6|0|0|5|

Figure 1: Structure of GRAPE (phenotype) and the genotype which denotes a list of node types, connections

and arguments.

Examples of node

s

type connection(] argel]

N2[23TaToT 137

type connection[] argc(]
Nt [T T2T8To1To]
- Add data[0] to data[1] and write data[0]
+ Go to node 2

- Decide next node
using data[0] and data[1]

~Qc

if(data[0] > data[1])

int

[]

data[]

0
1

data[]

data[]

.

Figure 2: Examples of node in GRAPE.

mapping method is similar to Cartesian Genetic Program-
ming (CGP). The GRAPE program is encoded in the form
of a linear string of integers. The genotype is an integer
string which denotes a list of node types, connections and
arguments. The connections of nodes are arbitrary, that is
different from CGP. The length of the genotype is fixed and
equals to N % (ne +nq + 1) + 1, where N is the number of
nodes, n. is the maximum number of connections and n, is
the maximum number of arguments.

3.3 Genetic Operators of GRAPE

To obtain the optimum structure of GRAPE, an evolu-
tionary method is adopted. The genotype of GRAPE is a
linear string of integers. Therefore, GRAPE is able to use a
usual Genetic Algorithm (GA). In this paper we use uniform
crossover and mutation as the genetic operators. The uni-
form crossover operator effects two individuals, as follows:

e Select several genes randomly according to the crossover
rate P, for each gene.

e The selected genes are swapped between two parents,
and generate offspring.

The mutation operator effects one individual, as follows:

1688

Table 1: The parameters of GRAPE algorithm.

Parameter Value
The number of evaluations | 2500000
Population size 500
Crossover rate P. 0.9
Mutation rate P, 0.02

The number of nodes 10, 30, 50
Execution step limits 500

e Select several genes randomly according to the muta-
tion rate P,, for each gene.

e The selected genes are randomly changed.

4. EXPERIMENTS AND RESULTS

Several different problems have been tackled in order to
verify the effectiveness of GRAPE. The problems include
the computations of factorial, Fibonacci sequence, exponen-
tiation and reversing a list. Evolution of these programs is
difficult for standard GP. It needs to prepare iteration or
recursion mechanisms.

The parameters of GRAPE are given in Table 1, and the
node functions are shown in Table 2. We prepare sufficient
data set size to compute the problems. Initially, we set
input values and constant values on the data set. Therefore,
GRAPE handles or creates constants within its programs.
We used three different search strategies which are Simple
Genetic Algorithm (SGA), Minimal Generation Gap (MGG)
and Random Search (RS), using the number of nodes of 10,
30, and 50. Tournament selection (a tournament size of 2)
along with elitist strategy (an elite size of 5) was used as the
selection mechanism in SGA. We use tournament size of 2
to prevent the early convergence and maintain the diversity
of the population. The MGG model [18, 8, 27] is a steady

state model proposed by Satoh et al. The MGG model has
a desirable convergence property maintaining the diversity
of the population, and shows higher performance than the
other conventional models in a wide range of applications.
We used the MGG model in these experiments as follows:

1. Set generation counter ¢ = 0. Generate N individuals

randomly as the initial population P(t).

. Select a set of two parents M by random sampling
from the population P(t).

and the mutation operation to M.

. Select two individuals from set M + C. One is the
elitist individual and the other is the individual by
the roulette-wheel selection. Then replace M with the
two individuals in population P(t) to get population
P(t+1).

. Stop if a certain specified condition is satisfied, other-
wise set t =t + 1 and go to step 2.

In these experiments we used m = 50. All individuals gen-
erate randomly in RS (i.e. no selection pressure and the
genetic operators).

In order to avoid the problem caused by non-terminating
structures we limited the execution step to 500. When a pro-
gram reaches the execution limit, the individual is assigned
the fitness 0.0.

4.1 Factorial

In this problem we seek to evolve a implementation of
the factorial function. We used integers from 0 to 5 as the
training set, with the following input/output pairs (a, b): (0,
1) (1,1) (2,2) (3,6) (4, 24) (5, 120). We used the normalized
absolute mean error on the training set as a fitness function.
The fitness function used in these experiments is:

i |Correct; — Estimate;|
= |Correct;| + |Correct; — Estimate;|

fitness =1 —
n

(1)

. Generate a set of m offspring C by applying the crossover

where Correct; is correct value for the training data i, E'stimate;

is the value returned by the generated program for the train-
ing data ¢, and n is the size of the training set. The range
of this fitness function is [0.0, 1.0]. The higher the numeri-
cal value indicates the better performance. If the fitness in
Equation 1 is reached 1.0, the fitness function is calculated
as follows:

1
SE(L'E (2)

where Se;e is the total number of execution steps of the
generated program. This fitness function means the less
execution step is the better solution.

In this experiment integer data type is used, and the size of
integer data in GRAPE is 10. Initially, we set input value a
on the data[0] to datal4] and constant value 1 on the data[5]
to data[9]. The node functions used in this experiment are
{+, —, x,=,>, <, OutputInt} in Table 2.

Results are given for 100 different runs with the same
parameter set. Figure 3 (a) shows transition of success rate.
The success rate is computed as:

fitness = 1.0 +

Number of successful runs

3)

Success rate =
Total number of runs

1689

We apply the elitist individual generated by GRAPE to
the test data set for each run. The integers from 6 to 12
are used as the test set inputs. The success rate for the
test set appear in Table 3. The “MGG node 50” shows best
performance (training set:69% , test set:59%).

Figure 4 (a) is an example of obtained structure for fac-
torial. This GRAPE program has loop structure, and cal-
culates completely factorial.

4.2 Fibonacci Sequence

We used the first 12 elements of the sequence as the train-
ing set, with the following input/output pairs (a,b): (1, 1)
(2, 1) (3,2) (4, 3) (5, 5) (6, 8) (7, 13) (8, 21) (9, 34) (10,
55) (11, 89) (12, 144). We also used the fitness function in
Equation 1 and 2 on the training set.

In this experiment integer data type is used, and the size of
integer data in GRAPE is 10. Initially, we set input value a
on the data[0] to data[4] and constant value 1 on the datal[5]
to data[9]. The node functions used in this experiment are
{+, —, x,=,>, <, OutputInt} in Table 2.

Results are given for 100 different runs with the same
parameter set. Figure 3 (b) shows transition of success rate.

We apply the elitist individual generated by GRAPE to
the test data set for each run. The integers from 13 to 30
are used as the test set inputs. The success rate for the
test set appear in Table 3. The “MGG node 30” shows best
performance (training set:8% , test set:6%).

Figure 4 (b) is an example of obtained structure for Fi-
bonacci sequence. This GRAPE program also has loop
structure, and calculates completely Fibonacci sequence.

4.3 Exponentiation

In this problem we seek to evolve a implementation of the
integer exponential a®. There are two inputs in this problem.
The training set (a, b, c) used in this experiment are (2, 0,
1) (2,1,2) (2,2, 4) (3, 3,9) (3,4, 27) (3, 5, 81) (4, 6, 4096)
(4, 7,16384) (4, 8, 65536). We also used the fitness function
in Equation 1 and 2 on the training set.

In this experiment integer data type is used, and the size
of integer data in GRAPE is 9. Initially, we set input value
a on the data[0] to data[2], input value b on the datal3] to
data[5] and constant value 1 on the data[6] to data[8]. The
node functions used in this experiment are {+, —, *,=,>, <
, OutputInt} in Table 2.

Results are given for 100 different runs with the same
parameter set. Figure 3 (c¢) shows transition of success rate.

We apply the elitist individual generated by GRAPE to
the test data set for each run. The test set inputs (a,b)
are (5, 9) (5, 10) (5, 11) (4, 12) (4, 13) (4, 14) (3, 15) (3,
16) (3, 17) (2, 18) (2, 19) (2, 20). The success rate for the
test set appear in Table 3. The “MGG node 30” shows best
performance (training set:45% , test set:44%).

Figure 4 (c) is an example of obtained structure for ex-
ponentiation. This GRAPE program also calculates com-
pletely exponentiation.

4.4 Reversing a List

For this problem we provide a list of integers as input. A
correct program returns a reverse input list, of any length
(e.g. input: (1 2 3 4), output: (4 3 2 1)). We use the
length of list between 5 and 10 as the training set. The
fitness function used in this experiment is given in Equation
4. The range of this fitness function is [0.0, 1.0]. The higher

Table 2: GRAPE node functions for each experiment.

Name # Connections | # Args. | Argument(s) | Description
+ 1 3 X, Y, Z Use integer data type.
Add data[x] to dataly] and substitute for data[z].
— 1 3 X, VY, Z Use integer data type.
Subtract data[x] from data[y] and substitute for data[z].
* 1 3 X, Y, Z Use integer data type.
Multiply data[x] by data[y] and substitute for datalz].
/ 1 3 X, Y, Z Use integer data type.
Divide data[x] by data[y] and substitute for data[z].
= 2 2 X,y If data[x] is equal data[y] connection 1 is chosen
else connection 2 is chosen.
> 2 2 X,y If data[x] is greater than data[y] connection 1 is chosen
else connection 2 is chosen.
< 2 2 X,y If data[x] is less than dataly] connection 1 is chosen
else connection 2 is chosen.
SwapList 1 2 X,y Use integer type and a list data.
Swap list[data[x]] for list[data[y]].
OutputInt 0 1 X Output integer data[x] and then the program halts.
OutputList 0 0 - Output a list data and then the program halts.

the numerical value indicates the better performance.

DL

l;
fitness =1 -~

n

(4)

where d;; is the distance between the correct position and
the return value position for the training data ¢ for the el-
ement j. l; is the length of the list for the training data ¢
and n is the size of the training set. If the fitness in Equa-
tion 4 is reached 1.0, the fitness function is calculated using
Equation 2.

In this experiment a list of integers and integer data type
are used, and the size of integer data in GRAPE is 9. Ini-
tially, we set the size of input list (the list length) on the
datal0] to data[2], constant value 0 on the data[3] to data[5]
and constant value 1 on the data[6] to data[8]. The node
functions used in this experiment are { +,—,%,/,=,>,<
, SwapList, OutputList } in Table 2.

Results are given for 100 different runs with the same
parameter set. Figure 3 (d) shows transition of success rate.

We apply the elitist individual generated by GRAPE to
the test data set for each run. The length of list between
11 and 15 are used as the test set. The success rate for the
test set appear in Table 3. The “MGG node 50” shows best
performance (training set:71% , test set:65%).

Figure 4 (d) is an example of obtained structure for revers-
ing a list. This GRAPE program also calculates completely
reversing a list. The obtained graph structured program
handles multiple data types, integer and list data types.

S. DISCUSSION

GRAPE successfully generates solution to four problems
automatically, and obtained structure is unique and solves
each problem completely. GRAPE generates easily the pro-
grams including the branches and loops using its graph rep-
resentation and handles multiple data types through data

1690

set. The evolution of the GRAPE programs is efficient with-
out bloat through the genotype of fixed integer string.

Table 3 provides a summary and comparison of the per-
formance of GRAPE on each of the problem domains tack-
led. In all problems MGG model outperforms the other
strategies, while random search is the worst performance.
Therefore, it shows that the evolutionary method is func-
tionally effective. As a result of the experiments, the num-
ber of nodes 30 or 50 shows the better performance than the
number of node 10. Therefore, we should prepare sufficient
nodes to representing the programs. The almost GRAPE
programs which succeed the training set are also solve the
test set.

The programs of these four problems can represent simply
using recursion. Although we have not prepared recursion
function in this paper, the GRAPE system has constructed
the optimum programs using the branches, the loops and
the multiple data types. If we introduce recursion functions
or modularity mechanisms (like ADFs) to GRAPE, the per-
formance of GRAPE may improve.

6. CONCLUSIONS AND FUTURE WORKS

In this paper we propose a new method for Automatic

Programming, Graph Structured Program Evolution (GRAPE).

The representation of GRAPE is graph structure. Each pro-
gram is constructed as an arbitrary directed graph of nodes
and data set. The data set flows the directed graph and
is processed at each node. GRAPE adopts the genotype-
phenotype mapping. The genotype is an integer string which
denotes a list of node types, connections and arguments.

We applied GRAPE to four different problems, factorial,
Fibonacci sequence, exponentiation and reversing a list, and
confirmed that the optimum solution in each problem was
obtained by the GRAPE system. We used several search
strategies, Minimal Generation Gap (MGG), Simple GA
(SGA) and Random Search (RS), and compared the per-
formance of these methods. As a result we showed that the
evolutionary method is functionally effective.

In future works we will introduce recursion functions or

modularity mechanisms to solve more complex problems.
Moreover, we will plan to apply GRAPE to the problems
which are more large scale and require more complex struc-
ture, for example, sorting a list, signal processing and so

on.

7.
(1]

(2]

(3]

(4]

[6]

[7]

(10]

(11]

(12]

(13]

REFERENCES

A. Agapitos and S. M. Lucas. Learning recursive functions
with object oriented genetic programming. In P. Collet,
M. Tomassini, M. Ebner, S. Gustafson, and A. Ekart,
editors, Proceedings of the 9th FEuropean Conference on
Genetic Programming, volume 3905 of Lecture Notes in
Computer Science, pages 166—177, Budapest, Hungary, 10 -
12 Apr. 2006. Springer.

P. J. Angeline and J. B. Pollack. Evolutionary module
acquisition. In D. Fogel and W. Atmar, editors,
Proceedings of the Second Annual Conference on
Evolutionary Programming, pages 154—163, La Jolla, CA,
USA, 25-26 1993.

M. Brameier and W. Banzhaf. A comparison of linear
genetic programming and neural networks in medical data
mining. IEEE Transactions on Evolutionary Computation,
5(1):17-26, Feb. 2001.

T. Eguchi, K. Hirasawa, J. Hu, and N. Ota. A study of
evolutionary multiagent models based on symbiosis. IEEE
Transactions on Systems, Man and Cybernetics Part B,
36(1):179-193, 2006.

W. Kantschik and W. Banzhaf. Linear-tree GP and its
comparison with other GP structures. In J. F. Miller,

M. Tomassini, P. L. Lanzi, C. Ryan, A. G. B. Tettamanzi,
and W. B. Langdon, editors, Genetic Programming,
Proceedings of EuroGP’2001, volume 2038 of LNCS, pages
302-312, Lake Como, Italy, 18-20 Apr. 2001.
Springer-Verlag.

W. Kantschik and W. Banzhaf. Linear-graph GP—A new
GP structure. In J. A. Foster, E. Lutton, J. Miller,

C. Ryan, and A. G. B. Tettamanzi, editors, Genetic
Programming, Proceedings of the 5th European
Conference, EuroGP 2002, volume 2278 of LNCS, pages
83-92, Kinsale, Ireland, 3-5 Apr. 2002. Springer-Verlag.

H. Katagiri, K. Hirasawa, J. Hu, and J. Murata. Network
structure oriented evolutionary model-genetic network
programming-and its comparison with genetic
programming. In E. D. Goodman, editor, 2001 Genetic
and Evolutionary Computation Conference Late Breaking
Papers, pages 219-226, San Francisco, California, USA,
9-11 July 2001.

H. Kita, I. Ono, and S. Kobayashi. Multi-parental
extension of the unimodal normal distribution crossover for
real-coded genetic algorithms. In Proceedings of the 1999
Congress on Evolutionary Computation (CEC99),

volume 2, pages 1581-1587, 1999.

J. R. Koza. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, USA, 1992.

J. R. Koza. Genetic Programming II: Automatic Discovery
of Reusable Programs. MIT Press, Cambridge, MA, USA,
1994.

S. Lucas. Exploiting reflection in object oriented genetic
programming. In M. Keijzer, U.-M. O’Reilly, S. M. Lucas,
E. Costa, and T. Soule, editors, Genetic Programming 7th
European Conference, FuroGP 2004, Proceedings, volume
3003 of LNCS, pages 369-378, Coimbra, Portugal, 5-7 Apr.
2004. Springer-Verlag.

J. F. Miller and S. L. Smith. Redundancy and
computational efficiency in cartesian genetic programming.
IEEE Transactions on FEvolutionary Computation,
10(2):167-174, Apr. 2006.

J. F. Miller and P. Thomson. Cartesian genetic
programming. In R. Poli, W. Banzhaf, W. B. Langdon,

J. F. Miller, P. Nordin, and T. C. Fogarty, editors, Genetic

1691

(14]

(15]

(16]

(17]

(18]

19]

20]

(21]

(22]

23]

(24]

25]

[26]

27]

Programming, Proceedings of EuroGP’2000, volume 1802
of LNCS, pages 121-132, Edinburgh, 15-16 Apr. 2000.
Springer-Verlag.

D. J. Montana. Strongly typed genetic programming.
Evolutionary Computation, 3(2):199-230, 1995.

M. O’Neill and C. Ryan. Grammatical evolution. IEEE
Transactions on Evolutionary Computation, 5(4):349-358,
Aug. 2001.

M. O’Neill and C. Ryan. Grammatical Evolution:
Evolutionary Automatic Programming in a Arbitrary
Language, volume 4 of Genetic programming. Kluwer
Academic Publishers, 2003.

R. Poli. Evolution of graph-like programs with parallel
distributed genetic programming. In T. Back, editor,
Genetic Algorithms: Proceedings of the Seventh
International Conference, pages 346353, Michigan State
University, East Lansing, MI, USA, 19-23 July 1997.
Morgan Kaufmann.

H. Satoh, M. Yamamura, and S. Kobayashi. Minimal
generation gap model for considering both exploration and
exploitations. In Proceedings of the IIZUKA 96, pages
494-497, 1996.

L. Spector. Simultaneous evolution of programs and their
control structures. In P. J. Angeline and K. E. Kinnear,
Jr., editors, Advances in Genetic Programming 2, pages
137-154. MIT Press, Cambridge, MA, USA, 1996.

L. Spector. Autoconstructive evolution: Push, pushGP,
and pushpop. In L. Spector, E. D. Goodman, A. Wu,

W. B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo,
S. Pezeshk, M. H. Garzon, and E. Burke, editors,
Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO-2001), pages 137-146, San Francisco,
California, USA, 7-11 July 2001. Morgan Kaufmann.

L. Spector, J. Klein, and M. Keijzer. The push3 execution
stack and the evolution of control. In H.-G. Beyer, U.-M.
O’Reilly, D. V. Arnold, W. Banzhaf, C. Blum, E. W.
Bonabeau, E. Cantu-Paz, D. Dasgupta, K. Deb, J. A.
Foster, E. D. de Jong, H. Lipson, X. Llora, S. Mancoridis,
M. Pelikan, G. R. Raidl, T. Soule, A. M. Tyrrell, J.-P.
Watson, and E. Zitzler, editors, GECCO 2005: Proceedings
of the 2005 conference on Genetic and evolutionary
computation, volume 2, pages 1689-1696, Washington DC,
USA, 25-29 June 2005. ACM Press.

L. Spector and A. Robinson. Genetic programming and
autoconstructive evolution with the push programming
language. Genetic Programming and Evolvable Machines,
3(1):7-40, Mar. 2002.

A. Teller. Learning mental models. In Proceedings of the
Fifth Workshop on Neural Networks: An International
Conference on Computational Intelligence: Neural
Networks, Fuzzy Systems, FEvolutionary Programming, and
Virtual Reality, 1993.

A. Teller. Turing completeness in the language of genetic
programming with indexed memory. In Proceedings of the
1994 IEEE World Congress on Computational
Intelligence, volume 1, pages 136—141, Orlando, Florida,
USA, 27-29 June 1994. IEEE Press.

A. Teller and M. Veloso. Program evolution for data
mining. The International Journal of Expert Systems,
8(3):216-236, 1995.

A. Teller and M. Veloso. PADO: A new learning
architecture for object recognition. In K. Ikeuchi and

M. Veloso, editors, Symbolic Visual Learning, pages
81-116. Oxford University Press, 1996.

S. Tsutsui, M. Yamamura, and T. Higuchi. Multi-parent
re-combination with simplex crossover in real coded genetic
algorithms. In In Proceedings of Genetic and Evolutionary
Computation Conference (GECCO’99), pages 657664,
1999.

Table 3: The success rate on each of the problem domains tackled.

Factorial Fibonacci Sequence Exponentiation Reversing a List
Training set | Test set | Training set | Test set | Training set | Test set | Training set | Test set
SGA nodel0 13% 12% 0% 0% 9% 9% 22% 20%
SGA node30 25% 23% 0% 0% 7% ™% 41% 30%
SGA nodeb50 16% 16% 0% 0% 5% 5% 37% 34%
MGG nodel0 3% 3% 2% 2% 34% 34% 22% 21%
MGG node30 63% 57% 8% 6% 45% 44% 63% 56%
MGG node50 69% 59% 3% 2% 41% 40% 71% 65%
RS nodel0 0% 0% 0% 0% 0% 0% 0% 0%
RS node30 1% 1% 0% 0% 0% 0% 0% 0%
RS node50 15% 13% 0% 0% 6% 1% 0% 0%
70 T T T T 8 T T T T
SGA node10 —+—] C e.0-© SGA node10 —+— ‘ P
SGA node30 ---x--- : o’ - SGA node30 ---%--- : i
60 | SGAnode50 ------ : O] 7 |- SGAnode50 ---#--- H 1
MGG nodel10 &~ i el MGG node10 g !
MGG node30 ---m- ‘ e MGG node30 ---m- ‘ i
so | MGGnodes0 ---e-- A~ ‘ i 6 [MGG node50 ---@-- B
RS nodel0 ----e--- M RS nodel0Q ----e--- i
RS node30 ----4 o4 RS node30 ----4&-- ‘ i
o RSnode50 ——p o /" @ >[RSnodeso —— RS N
g g
o o
A A
J b
0 500000 1e+006 1.5e+006 2e+006 2.5e+006 0 500000 1e+006 1.5e+006 2e+006 2.5e+006
Number of evaluations Number of evaluations
(a) Factorial. (b) Fibonacci Sequence.
45 T T T T i 70 T T T T @
SGA node10 —+—] s SGA node10 —+—] P
40 | SGAnode30 --o--- - SGA node30 ---X--- : 0-0°
SGA node50 ---%:--- : 60 - SGAnode50 --- e e
MGG nodel10 - - MGG nodel10 - . ; 0 g-m
35 MGG node30 ---m- MGG node30 --m-- :
MGG node50 -:--- P > 5o |. MGGnodes0 - c.#@ |
RS node10 ----e-- ; " - RS nodel10 ---e - go. e i
30 - RSnode30 ---a T 8 S RS node30 - A@ .
% , RS noideSVOV +, ~ 7,53,, - % 20 L RS nodeSO ?*—- o
v o " -
2 2 .
o S
=] >
(%] (%]
3

500000 1e+006

Number of evaluations

(c) Exponentiation.

1.5e+006 2e+006 2.5e+006

500000

1e+006 1.5e+006 2e+006 2.5e+006
Number of evaluations

(d) Reversing a list.

Figure 3: This graphs show the comparison of the success rate of the various runs.

1692

data[1]=data[3]=a
data[5]=data[6]=data[8]=data[9]=1

data[0]=data[3]=data[4]=a
data[8]=data[9]=1

data[3]=data[1]-data[8]

data[3] > data[6] ?

Output data[8]
data[8]=data[5]+data[8]

data[5]=data[8]-data[5]

data[3] > data[8] ?

yes 0
Output data[9]
data[4] > data[8] ?

0
Output data[0]

(a) Factorial. (b) Fibonacci Sequence.

data[4]=data[4]-data[9]

data[6]=data[6]+data[9]

data[0]=data[0]*data[4]

data[0]=ListLength
data[4]=0
data[6]=data[7]=data[8]=1

[0]=data[0]-data[7]

data[0]=a, data[3]=data[4]=b
data[6]=data[7]=data[8]=1

List(data[0],data[4])

data[8] > data[4]
no
data[7]=data[7] *data[0]

data[4]=data[4]+data[6]

data[0]=data[0]-data[8]

es

data[6] < data[3] ? ta[4] < data[0] ?

data[6]=data[8]+data[6] Output data[7]

(c) Exponentiation. (d) Reversing a list.

Figure 4: Examples of obtained structure of GRAPE.

1693

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

