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ABSTRACT

A common problem in genetic programming search algo-
rithms is destructive crossover in which the offspring of good
parents generally has worse performance than the parents.
Designing constructive crossover operators and integrating
some local search techniques into the breeding process have
been suggested as solutions. This paper reports on experi-
ments demonstrating that premature convergence may hap-
pen more often when using these techniques in combination
with standard parent selection. It shows that modifying the
selection pressure in the parent selection process is necessary
to obtain a significant performance improvement.

Categories and Subject Descriptors

I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search

General Terms

Performance

Keywords

Genetic Programming, Crossover, Stochastic Elements, Se-
lection Pressure

1. INTRODUCTION
Crossover (sexual recombination) is considered to be the

primary genetic operator for modifying program structures
in Genetic Programming (GP) [6]. It plays a critical role in
deriving optimal solutions as shown by the large number of
attempts since the 1990s to develop new crossover operators,
especially constructive crossover operators.

Selection pressure in the selection of parent programs is in-
tended to improve the average problem solving quality of the
population. It gives individuals of higher quality a higher
probability of being used to create the next generation so
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that the search algorithm focuses on promising regions in
the search space [1].

In the standard breeding process of the GP algorithm,
crossover operators produce two offspring from a pair of par-
ents programs. With the standard breeding process, explor-
ing new states in the neighbourhood search space of current
states can be viewed as a set of random walks. If parents are
randomly selected for mating, the GP algorithm will effec-
tively act like a random (beam) search algorithm. Therefore
selection pressure is applied to the parent selection process
to reduce the stochastic element of the search and to pro-
vide individuals having good fitness with more chances to
be chosen than others. Good genetic material in the chosen
individuals is expected to be propagated along evolution in
order to speed up population convergence.

With the standard breeding process, applying selection
pressure on the parent selection has been recognised as more
effective than selecting parents randomly. Individuals with
good fitness are used with increased frequency to produce
offspring. However, the number of possible offspring in the
immediate neighbourhood of any chosen pair of parents is
very large, and a very large fraction of these offspring will
not constitute improvement over the parents. Therefore,
even an increased number of matings of good parents is
still insufficient to provide a good chance of finding good
offspring. For example, Nordin, et al. reported that most
crossover events in the standard breeding process produce
offspring with less than half of the fitness of their parents
[11, 12].

One approach to overcoming this problem is to increase
the chance of generating improved offspring from a pair of
parents by using a customised constructive crossover opera-
tor that avoids generating worse offspring altogether. How-
ever, designing such operators can be difficult and is likely
to be very domain dependent. An open question is whether
this approach would result in more effective GP — it is pos-
sible that reducing the stochastic element of GP in this way
may result in premature convergence or other undesirable
restrictions on the GP search.

An alternative, simpler, and domain independent approach
is to integrate variants of local search techniques into the
breeding process to search for good offspring. This can
achieve the same effect as constructive crossover operators,
though at the cost of a possibly expensive local search. We
use this approach to explore the consequences for GP of us-
ing constructive crossover operators, and also explore the
technique in its own right as modification of the standard
GP search.
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The next section reviews related work that integrates local
search techniques into GP, and the following section presents
our research questions in detail.

1.1 Related Work on Crossover
Tackett [14] deliberately increased the amount of genetic

material used from a selected individual regardless of the
frequency of the individual being selected during the pro-
cess of generating the next generation. He designed a brood
recombination operator. The operator is inspired by the fact
that animal species produce far more offspring than are ex-
pected to live. It randomly applies crossover N times to two
chosen programs to produce 2N offspring. After evaluating
all offspring, it puts the best two into the next generation
and discards rest of the offspring.

The brood recombination operator can be categorised as
a partial local search operator because it looks for the best
state in available states but only looks at 2N possible succes-
sor states. Tackett asked whether the brood recombination
operator reduces the diversity of subtrees, eliminating ones
which are unfit in the current generation but which might
be useful at a later time. He compared brood recombination
using a tournament size of 6 with a random parent selection
using the same set of initial populations. The results suggest
that the brood recombination operator is effective. However,
a difficulty with his conclusion is that the number of ran-
dom crossover operations (the brood size factor) is chosen
without sufficient regard to parent program sizes so that the
degree of intensive search within all possible successor states
of chosen parents has not been well investigated with regard
to the population diversity concern.

Lang [8] introduced a headless chicken crossover operator
which is applied to a chosen program P and a newly (and
randomly) generated program R. The operator repeatedly
produces offspring from P by replacing a sub-tree of P with
a replaced sub-tree from R until it finds an offspring with
greater or equal fitness (problem solving quality) to P ’s.

The headless chicken crossover operator can be categorised
as a hill-climbing local search [13]. It is only a partial local
search because it randomly looks for a state better than or
equal to the current state and stops once it finds such a state
rather than looking at all possible successors. Note that
Lang’s method is really a mutation rather than crossover,
since only one “parent” is chosen from the current genera-
tion[7].

Majeed and Ryan [10] introduced a context-aware crossover
operator which identifies all possible contexts in one par-
ent for a randomly-chosen sub-tree from the other parent,
then evaluates each of them. The context that generates an
offspring with the highest fitness is used and the offspring
generated is then passed into the next generation. Fitness
proportionate selection and tournament selection with size 7
are used to select parents in different problems. The authors
claimed that the operator improves both mean best fitness
and mean average fitness, reduces bloat in most of their ex-
periments, and produces significantly smaller individuals in
most cases.

The context-aware crossover operator can be also cate-
gorised as a partial local search operator. From their dis-
cussion of future work, it seems that they experienced a fast
population convergence problem and their temporary solu-
tion was to permit only one offspring per crossover.

Harries and Smith [5] evaluated more children but only ac-

cept new programs whose fitness values are greater than or
equal to their parents in a study of depth-based crossovers.
Their search algorithm is a type of stochastic hill-climbing
algorithm because not all possible children are evaluated and
the fittest child is not necessarily chosen. Mahfoud [9] illus-
trated the interaction between directed crossover operators
and selection pressure in a context of genetic algorithms.
Terrio and Heywood [15] investigated a family of directed
crossover operators under a steady state selection model.

1.2 Research Questions and Goals
A common feature of the related work is the integration

of variants of local search techniques in the breeding pro-
cess, done by allowing parents to produce many offspring
and applying a selection pressure to choose high perform-
ing offspring. The effect of the modification is to create a
constructive or at least “less destructive” crossover operator
[10]. The more intensive the local search, the more construc-
tive the operator: a very intensive search can generate the
best possible offspring of two parents; a less intensive search
that only considers part of the neighbourhood will have a
greater stochastic element and may generate offspring that
are good but not the best possible.

The use of constructive operators in the breeding pro-
cess alters the standard GP search algorithm by reducing
the stochastic element in the process of generating the next
generation. The more intensive the local search, and the
greater the selection pressure in the choice of offspring, the
smaller the stochastic element in the breeding process.

An important question is how intensive the local search
should be. The approaches in the previous section use par-
tial local searches that consider only subsets of the immedi-
ate neighbourhood of the chosen parents. It would be possi-
ble to extend this to a complete local search that considers
all possible offspring. Our experiments explore the effect of
different intensities of the local search.

A second question concerns the effect of reducing the
stochastic nature of the GP search by increasing the se-
lection pressure towards high fitness offspring. In the stan-
dard GP, selection pressure is only applied in the selection of
parents — the offspring produced are put into the next gen-
eration without selection. With a many-offspring breeding
process performance or with constructive operators, selec-
tion pressure will be applied to the selection of offspring
as well. In general, increasing selection pressure tends to
confine the search process, speed up the loss of population
diversity, and lead the search to premature convergence. It
is important to explore the effect of this increasing selection
pressure. Our experiments explore the appropriate balance
between selection pressure in the parent selection process
and selection pressure in the breeding process.

For both of these questions, we are considering a many-
offspring local search merely as a means of simulating a con-
structive crossover operator, so that the cost of the perform-
ing the local search is ignored. Our goal is to determine
whether it is worth trying to design constructive operators,
and how they should be used in a GP system.

A third question concerns the effectiveness of a many-
offspring local search as a technique in its own right as part
of the GP process. There is no question that an intensive
local search for good offspring of two parents is expensive
and will take resources away from exploring more possible
pairs of parents and more generations of programs. Our ex-
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periments explore whether the cost of this local search can
be worthwhile in the context of a resource-limited GP pro-
cess, and our goal is to determine the appropriate intensity
of a local search in the breeding process to maximise the
performance of a GP system.

2. SIMULATIONS OF CONSTRUCTIVE

CROSSOVER OPERATORS
In the literature, the key point of differentiation between

a constructive and a destructive operator is purely based
on the performance-based fitness value. Nordin, et al. [12]
define a destructive crossover operation as one in which the
offspring have fitness values at least 2.5% worse than those
of the parents, and a constructive crossover operation as one
in which the offspring have fitness values better than those
of the parents. Given these definitions, the conventional
crossover operator has been shown to be more destructive
than constructive [11, 12].

A many-offspring breeding process is not strictly a con-
structive crossover operator. At most it can be viewed as
a simulated constructive crossover operator that produces
the same results as a constructive crossover operator but
will have to generate a large number of poor offspring in the
search for good offspring in successor states.

Investigating the research questions given in Section 1.2
requires building at least two simulations of a constructive
crossover operator. One simulation mimics an ideal con-
structive crossover operator (Ideal Xover). It considers all
possible ways of recombining two chosen parents to produce
all possible offspring, then evaluates them, and keeps two
offspring with the best fitness values but throws the others
away. The other simulation mimics a partial constructive
crossover operator (Partial Xover). It chooses a crossover
point randomly in one parent P1 but considers all nodes
in the other parent P2 to produce offspring. Both simula-
tions focus on optimising the offspring’s fitness — problem
solving quality, but Partial Xover contains some stochas-
tic elements while Ideal Xover completely eliminates them.
Partial Xover is very similar to the context-aware crossover
operator [10] but has no depth constraint on choosing the
possible crossover points in program P2.

3. EXPERIMENT DESIGN
To investigate the effect of including selection pressure

from constructive crossover operators in the GP process, our
experiments consider the four combinations illustrated in
Figure 1. The selection of parent programs can either have
no selection pressure by using a random parent selection
process, or can apply selection pressure, as in the standard
GP algorithm. The selection of offspring in the breeding
process can either have no selection pressure as in the stan-
dard breeding process, or can apply selection pressure using
a many-offspring breeding process. We consider two levels of
selection pressure in the many-offspring breeding process by
using Ideal Xover to represent strong selection pressure, and
using Partial Xover to represent weaker selection pressure.

The experiments explore the consequences of the six dif-
ferent combinations of selection pressure on three different
domains: an Even-n-Parity problem (EvePar), a Symbolic
Regression problem (SymReg), and a Binary Classification
problem (BinCla).
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Figure 1: Four groups of GP systems according to
configurations of selection pressure on parent selec-
tion and offspring selection.
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Figure 2: The symbolic regression problem.

3.1 Data Sets
EvePar takes an input of a string of n boolean values and

outputs true if there are an even number of true’s, and oth-
erwise false. The most characteristic aspects of this problem
are the low number of fitness cases, and the requirement to
use all inputs in an optimal solution. In this study, the case
of n = 6 is considered. Therefore, there are 26 combinations
of unique 6-bit length strings as fitness cases.

SymReg is shown in Equation 1 and visualised in Figure
2. We generated 100 fitness cases by choosing 100 values for
x from [-5,5] with equal steps.

f(x) = exp(1 − x) × sin(2πx) + 50sin(x) (1)

BinCla involves determining whether examples represent
a malignant or a benign breast cancer. The dataset is the
Wisconsin Diagnostic Breast Cancer dataset chosen from the
UCI Machine Learning repository [2]. The BinCla consists
of 569 data examples, where 357 are benign and 212 are
malignant.

3.2 Function Sets and Terminal Sets
The function set used for EvePar consists of the standard
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Boolean operators { and, or, not } and if function. The if
function takes three arguments and returns its second argu-
ment if the first argument is true (1), and otherwise returns
its third argument. In order to increase the problem dif-
ficulty, we do not include the xor function in the function
set.

The function set used for SymReg includes the standard
arithmetic binary operators {+, -, *, / } and unary opera-
tors { abs, exp }. The / function returns zero if it is given
invalid arguments. Note that for the purpose of simulating
a real world problem, we intentionally do not include the
sin function so that the GP algorithm needs to generate an
approximation of it.

The function set used for BinCla includes the standard
arithmetic binary operators {+, -, *, / }, unary operators
{ abs, sqrt, sin } and if function. The sqrt function automat-
ically converts a negative argument to a positive one before
operating on it. The if function takes three arguments and
returns its second argument if the first argument is positive,
and otherwise returns its third argument.

The terminal set for EvePar and SymReg consists of n
boolean variables and a single variable x respectively. The
terminal set for BinCla consists of 10 numeric features (see
Table 1) computed from a digitised image of a fine needle
aspirate of a breast mass and are designed to describe char-
acteristics of the cell nuclei present in the image. The mean,
standard error, and “worst” of these features are computed,
resulting in 30 terminals [2].

Table 1: Ten features in the dataset of BinCla
a radius f compactness
b texture g concavity
c perimeter h concave points
d area i symmetry
e smoothness j fractal dimension

Real valued constants in the range [-5.0, 5.0] are also in-
cluded in the terminal sets for SymReg and BinCla. The
probability mass assigned to the whole range of constants
when constructing programs, is set to 5%.

3.3 Fitness Function
The fitness function in EvePar is the number of wrong

outputs (misses) for the 64 combinations of 6-bit length
strings. The fitness function in SymReg is the root-mean-
square (RMS) error of the outputs of a program relative to
the expected outputs. The fitness function for the classifica-
tion problem is the classification error rate on the training
data set (the fraction of fitness cases that are incorrectly
classified by a program as a proportion of the total number
of fitness cases in the training data set). A program classi-
fies the fitness case as benign if the output of the program is
positive, and malignant otherwise. All three problems have
an ideal fitness of zero. Note that for EvePar, most random
programs will have a fitness of about 32 misses due to the
special characteristic of the problem [4].

3.4 Genetic Parameters
The genetic parameters are the same for all three prob-

lems. The ramped half and half method is used to create
new programs and the minimum depth of creation is three
and the maximum is five. The maximum size of a program

is 50 nodes. The population size is 100. The crossover rate
and the reproduction rate are 95% and 5%. For ease of
analysis, the mutation operator is not used.

Selection pressure on the parent selection is switched on
or off by setting the tournament size to 4 or 1 respectively.
Tournament size of 4 is chosen based on empirical search.
We expect the setting to provide a neutral environment
when conducting performance comparisons. We also apply
a multi-objective selection policy for selecting parents and
offspring in Partial and Ideal Xover. The multi-objective se-
lection policy consists of three measures. These are fitness
value, number of nodes, and depth of tree. The three objec-
tives are applied sequentially in order to select a program
with a shallower tree depth and a smaller number of nodes
if its fitness value is the same as its competitors.

3.5 Experiment Configuration
We performed two sets of experiments with different ter-

mination criteria. The first set of experiments (Exp1) treats
the simulated constructive crossover operators as if they
were real constructive operators, so that the cost of per-
forming the local search for the best offspring is ignored.
The runs are terminated when the number of generations
reaches the pre-defined maximum of 51 (including the ini-
tial generation), or the problem has been solved.

The second set of experiments (Exp2), takes into account
the cost of the local search, and terminates the runs when
the total CPU time (seconds) exceeds a pre-defined limit, or
the problem has been solved. The time limits were deter-
mined from analysis of the results in Exp1.

We ran experiments comparing GP systems with and with-
out parent selection pressure using the standard crossover
operator, the simulated partial crossover operator and the
simulated ideal crossover operator respectively for each of
the three problems. In each experiment, we repeated the
whole evolutionary process 100 times independently.

The BinCla dataset represents a harder task than the
other two, and was subject to overfitting. We therefore
added additional strategies to deal with this problem. In
Exp1, an additional termination criterion is applied to Bin-
Cla as an overfitting prevention strategy. We split the orig-
inal BinCla data randomly and equally into a training data
set, a validation data set and a test data set. We select
the best program in a population based on its fitness on the
training data set as the fittest program in the corresponding
generation. We then monitor the fitness values of the best
program on the training data set and the validation data
set within a moving window of size 15. The window moves
along evolution and its size of 15 is chosen based on empiri-
cal search. A run will terminate when the training fitness of
the latest generation in the window has not been improved
over the window. The run will also terminate when the val-
idation fitness of the latest generation in the window is not
better than that of the earliest generation in the window.
For a run which stops according to the strategy, we examine
the window and select a generation where the fitness on the
validation set is the best in the window. The corresponding
test fitness value is used as the performance measure of the
run.

For Exp2, we used a different strategy, using 10-fold cross
validation for BinCla with attempts to ensure class labels
are evenly distributed. A log system records the detailed
evolutionary information of each fold in a run, including the
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Table 2: Performance of systems using 3 different crossover modes with/without selection pressure in Exp1.
GP Parent Xover EvePar SymReg BinCla

Systems Selection Pressure Mode Completion RMS Error Test Error Rate (%)

Sys1 standard 0% 62.5 ± 3.5 16.4 ± 7.3
Sys2 On partial 12% 58.5 ± 3.3 10.9 ± 4.7
Sys3 ideal 23% 58.8 ± 5.7 9.7 ± 4.3
Sys4 standard 0% 65.4 ± 1.0 16.2 ± 6.3
Sys5 Off partial 9% 55.4 ± 2.9 8.5 ± 2.6
Sys6 ideal 100% 37.2 ± 5.7 6.7 ± 2.4

training and test fitness values of the fittest program at each
generation. We also base on the training fitness to select the
fittest program in a generation. As overfitting may occur,
in order to obtain accurate fitness measures for performance
comparison purposes, a simple “pruning” algorithm is used
to remove some overfitting noise from the detailed log. The
simple pruning algorithm consists of two steps. For each
fold in a run, in order to minimise the side effect of the per-
formance fluctuation during the early stage of the search,
the algorithm firstly filters out records where the fitness on
the test data set is worse than a threshold (determined from
analysis of Exp1). Then the algorithm selects the best fit-
ness on the test data set as the performance measure of the
fold. The performance measure of a run is the average of
the best test fitness value over 10 folds.

4. RESULTS AND DISCUSSIONS: EXP1

4.1 Effectiveness
Table 2 shows the performance measures of the first set

of experiments. The measure for EvePar is the completion
rate, measuring the fraction of runs that successfully re-
turned an optimal solution. The best value is 100%. The
measures for SymReg and BinCla are the averages of the
RMS error and the classification error rate on test data over
100 runs respectively, thus the smaller the value, the better
the performance. Note that the standard deviation follows
the ± sign.

When parent selection pressure is switched on, GP sys-
tems using Partial and Ideal Xover (Sys2 and Sys3) outper-
form the GP system using the standard crossover operator
(Sys1). The performances in Sys2 and Sys3 are noticeably
different in EvePar but very similar in SymReg and BinCla.

When parent selection pressure is switched off, there are
significant differences between the performances of GP sys-
tems using different crossover modes. Sys6 provides the best
performance.

From the results, it seems overall that reducing stochas-
tic elements in the breeding process does not have any side
effects. A constructive crossover operator is very effective,
especially an ideal constructive crossover operator. This ob-
servation matches those made by proponents of a many-
offspring breeding process.

When comparing the performances of GP systems with
and without parent selection pressure, we realised that Sys1
and Sys4 using the standard crossover operator both per-
form badly. But we could not draw any sound conclusion
about whether Sys4 is worse based on the small performance
differences. We also realised that:

• For EvePar, Sys2 and Sys5 have the similar completion
rates, but Sys2 is slightly higher than Sys5. Sys6 using

Ideal Xover without parent selection pressure is much
better than Sys3. All 100 runs successfully found the
optimal solution in Sys6.

• For SymReg and BinCla, Sys5 and Sys6 are better
than Sys2 and Sys3 respectively.

• Overall, the best performance is obtained by Sys6 us-
ing the simulated ideal constructive crossover operator
without parent selection pressure.

These results suggest that premature convergence occurred
in Sys3 more often than that in Sys6. To confirm this, we
examined the index of the generation where the best-of-run
appeared for the first time for Sys3 and Sys6. The results
are illustrated in Table 3. We realised that, for instance in
EvePar, the index in Sys3 (µ = 14, σ = 7) is much ear-
lier than that in Sys6 (µ = 21, σ = 6), indicating that the
GP system with parent selection pressure causes the search
end up with premature convergence more often if stochas-
tic elements are completely removed in the breeding process.
Similar phenomena occurred in SymReg and BinCla as well.

Table 3: The average index of generation where the
best-of-run appeared first time in Sys3 and Sys6 in
Exp1.

GP Systems EvePar SymReg BinCla

Sys3 14 ± 7 12 ± 6 6 ± 4
Sys6 21 ± 6 47 ± 4 16 ± 6

The maximum number of generations stopping criterion
in Exp1 can be seen as setting a limited number of move-
ments in a search process. In this situation, it is better to
carefully make a wise movement for each step. The problem
solving quality can be improved significantly generation by
generation by always moving to the fittest status, indicat-
ing that the hill-climbing metaphor can be applied in the
GP search algorithm to improve its performance. If we can
develop an ideal constructive crossover operator (not a simu-
lated one), we should certainly use it to replace the standard
blind random crossover operator and we should certainly re-
move selection pressure from the parent selection.

4.2 Efficiency
Figure 3 shows the boxplots of CPU time consumed by

100 runs in each of the GP systems for the three problems.
It is clear that systems using Ideal Xover required much
more CPU time than others as they need to evaluate a huge
number of offspring.

In EvePar, 77 runs in Sys3 using the Ideal Xover with
parent selection pressure switched on have to keep search-
ing until the 51st generation, while all runs in Sys6 with
parent selection pressure switched off stop early as optimal
solutions are found. Therefore it is not surprising that runs
in Sys3 consumed much more time than those in Sys6.
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Figure 3: Boxplot of CPU time consumed in systems in Exp1.

In SymReg, as all runs stop at the 51st generation, we
expected a similar amount of CPU time consumed for runs
in corresponding systems. However, runs in Sys3 surpris-
ingly consumed less time than those in Sys6. We then cal-
culated the number of evaluations during evolution in Sys3
and Sys6. We realised that the number of evaluations in
Sys3 (µ = 1.00×106, σ = 0.58×106) is much less than that
in Sys6 (µ = 2.14 × 106, σ = 0.27 × 106). This indicates
that parent selection pressure forces the search to focus on
fit and smaller size programs. The positive effect is that
the system controls the code bloat by effectively filtering
out programs containing introns. Therefore, in Sys3, with
smaller program size, the number of offspring evaluated is
also smaller than that in Sys6, resulting in less CPU time
used. However, a side effect is that the system also aban-
dons currently unfit sub-trees that are possibly useful later
and reduces the population diversity.

In BinCla, due to the use of the overfitting preventing
strategy, runs often stop before the 51st generation. We then
calculated the average total number of generations used over
100 runs in Sys3 and Sys6. We realised that the average total
number of generations used in Sys3 (µ = 19, σ = 3) is much
smaller than that in Sys6 (µ = 29, σ = 6). When considering
the problem solving quality of Sys3, the smaller number of
generations used is possibly due to the early occurrences of
local optima. Therefore it is not surprising that runs in Sys3
consumed less CPU time than those in Sys6.

4.3 Determining Time Limits
The comparisons and suggestions in terms of the effective-

ness made above are based on the assumption that we have a
constructive crossover operator which can directly find a bet-
ter or the best offspring without extra computational cost,
and the actual computational resources required by the sim-
ulated constructive operators were irrelevant. The second
set of experiments are intended to investigate the value of
the many-offspring local search, and have to take this cost
into account.

Sys6 took the greatest amount of CPU time in Exp1. To
determine appropriate time limits for the runs in the second
set of experiments, we identified the maximum CPU time
taken by Sys6 for each of the problems in the first set of
experiments, ignoring the outlier runs. On the basis, the
CPU time limits in Exp2 are 400, 1200, and 2000 seconds
for each run in EvePar, SymReg, and BinCla, respectively.
For BinCla, as 10-fold cross validation is used, each fold is
assigned an equal amount of CPU time (200 seconds). As a

16.40% classification error rate is the worst performance on
average in Exp1, the value is used as the threshold in the
pruning algorithm in Exp2.

5. RESULTS AND DISCUSSIONS: EXP2
Table 4 shows the performance measures of the second set

of experiments. For EvePar, many runs may terminate be-
fore completely consuming the given upper bound CPU time
as a result of finding optimal solutions. Therefore, an addi-
tional measure, actual time, is used for EvePar to measure
the actual CPU time consumed in total. For SymReg and
BinCla, there is no optimal solution found and all runs ter-
minate when exceeding the allowed CPU time, so the actual
time measure is omitted.

5.1 Parent Selection Pressure: On
When selection pressure is applied to the parent selec-

tion, surprisingly, the standard crossover operator is bet-
ter than the simulated constructive crossover operators in
EvePar and SymReg, and only has a slightly lower perfor-
mance in BinCla. This observation suggests that, if suffi-
cient search time is given, when selection pressure is applied
to the parent selection for crossover, there is no advantage
in using a many-offspring crossover to replace the standard
blind random crossover operator. In other words, the stan-
dard crossover operator works quite well in comparison to a
simulated constructive crossover operator using local search.

This observation is different from observation in Exp1 in
the case of a real constructive crossover operator. A possi-
ble explanation is that the selection pressure on the parent
selection removes some stochastic elements and then forces
the search focusing on a smaller region. When stochastic el-
ements, which are necessary in order to find global optima,
are further removed in the many-offspring breeding process,
the search will eventually end up at local optima. Contrar-
ily, the standard breeding process keeps some stochastic ele-
ments which help the search escape local optima in a certain
amount of searching time.

5.2 Parent Selection Pressure: Off
When parent selection pressure is switched off, Sys5 and

Sys6 both produce significant performance improvements.
In EvePar, Sys5 outperforms the other two, by not only the
100% completion rate, but also the much shorter CPU time
consumed (about 21 seconds on average). Note that the
completion rates in Sys6 are different between Exp1 and
Exp2. This is possibly because some outliers in Exp1 re-
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Table 4: Performance of systems using 3 different crossover modes with/without parent selection pressure in
Exp2.

GP Parent Xover EvePar SymReg BinCla
Systems Selection Pressure Mode Completion Actual Time (sec) RMS Error Test Error rate (%)

Sys1 standard 34% 299 ± 154 53.1 ± 7.6 8.5 ± 1.1
Sys2 On partial 32% 288 ± 167 58.6 ± 3.6 7.1 ± 1.0
Sys3 ideal 22% 338 ± 122 58.0 ± 5.8 7.2 ± 1.0
Sys4 standard 10% 370 ± 94 52.3 ± 5.2 6.9 ± 0.8
Sys5 Off partial 100% 21 ± 15 38.9 ± 5.0 4.1 ± 0.6
Sys6 ideal 96% 140 ± 86 37.3 ± 5.6 4.2 ± 0.6

quire more CPU time to complete their search but the CPU
time set in Exp2 terminates those outliers before they find
optimal solutions. In the other two problems, Partial Xover
and Ideal Xover have similar performance.

The results suggest that when stochastic elements are fully
preserved in selecting parents, it is necessary to conduct an
intensive search in the successor states of chosen parents.
The purpose is to remove some stochastic elements and make
good movements so that the search will act differently from
a completely random search.

The results for EvePar suggest using Partial Xover instead
of the standard one or Ideal Xover. One possible explana-
tion is that as the search can make as many movements
as possible within the given time frame, it would be better
just to look at a subset of all possible movements so that
a larger number of less perfect movements can reach the
goal faster than smaller number of perfect movements. But
the subset has to be big enough to cover most important
movements and has to be sufficiently smaller so that most
of the worst movements are filtered out. The results suggest
Partial Xover may lead the search into an optimal subset of
successor states. From the exploration vs. exploitation [3]
points of view, Ideal Xover just spends most time exploiting
the known genetic material but less time exploring other po-
tential useful search space. Therefore, if a tight time frame
is given, it may often fail. To confirm this, we chose a new
boundary of 55 seconds, which is about three standard de-
viations away from the mean in Sys5, and reexamined the
completion rates in Sys5 and Sys6. Within the new time
boundary, Ideal Xover had about 89% runs exceeding the
time limit without finding optimal solutions, while Partial
Xover only had about 4% runs that failed. The standard
crossover is exactly opposite to Ideal Xover. It puts too
much effort into exploring the search space but little effort
on exploiting the known genetic material, thus fails also.

5.3 Overall
When comparing the performances in GP systems with

and without the selection pressure being applied to the par-
ent selection, we conclude that the performance in Sys4 is
the worst in EvePar. But it is better than or comparable
with those in all three systems with parent selection pres-
sure on in SymReg and BinCla. This observation suggests
that, if enough searching time is given, a random (beam)
search can sometimes have similar problem solving quality
to GP systems with selection pressure applied to the parent
selection.

We also conclude that Sys5 and Sys6 are outstanding in all
six systems. The results strongly suggest that if we intend to
use a many-offspring crossover instead of the standard one,

we should remove the selection pressure from the parent
selection to avoid premature convergence in order to gain
further performance improvement.

5.4 Further Discussion
One may argue that it is not necessary to turn off the se-

lection pressure when using a many-offspring breeding pro-
cess. The population diversity can be easily maintained by
increasing the population size while keeping selection pres-
sure on the parent selection.

To verify whether this argument is true, we conducted
another set of experiments for Sys1, Sys2, and Sys3. In the
third set of experiments, the population size is increased
from 100 to 1000. Other parameters and stopping criteria
are the same as those in Exp2. Table 5 lists the results.

By comparing the performances of corresponding GP sys-
tems in Tables 4 and 5, it is clear that the problem solving
qualities are improved with a larger population size. How-
ever, when considering the performances of Sys5 and Sys6
in Table 4 together, it is also clear that, within the same
CPU time limit, the improvements obtained by increasing
the population size by a factor of 10 are not as significant as,
or are similar to those obtained by just switching off parent
selection pressure.

6. CONCLUSIONS AND FUTURE WORK
Stochastic elements exist in the parent selection process

and the breeding process. Some stochastic elements need
to be removed in order to distinguish the genetic search
algorithm from a random search algorithm. On the other
hand some stochastic elements must be retained in order
to prevent the genetic search from being confined in local
optima or converging prematurely.

Selection pressure on the parent selection removes some
stochastic elements. After local search techniques are in-
tegrated into the breeding process, stochastic elements are
further eliminated. The change was suggested as effective
in [10, 14]. However, this paper observed different results
by investigating four groups of GP systems involving two
simulations of constructive crossover operators. The results
show that stochastic elements cannot be removed in both
processes based on the performance comparison under a fair
situation in our experiments. The effectiveness of integrat-
ing local search techniques into the breeding process will
be significantly reduced, and become worse than that of
the standard breeding process if no corresponding change
is made to selection pressure on the parent selection.

If stochastic elements are minimised or optimised in the
parent selection process, for instance tuning the tournament
size, it is better to keep some stochastic elements in the
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Table 5: Performance of systems with population size of 1000 using 3 different crossover modes.
GP Parent Xover EvePar SymReg BinCla

Systems Selection Pressure Mode Completion Actual Time (sec) RMS Error Test Error rate (%)

Sys1 standard 80% 125 ± 155 45.2 ± 7.0 5.3 ± 0.7
Sys2 On partial 90% 70 ± 113 45.5 ± 4.7 4.0 ± 0.7
Sys3 ideal 54% 381 ± 45 40.8 ± 4.4 4.0 ± 0.5

breeding process, for instance using the standard blind ran-
dom crossover operator. On the other hand, if stochastic
elements are minimised or optimised in the breeding pro-
cess, for instance performing enough intensive searching in
successor states of chosen parents, then it is better to keep
some stochastic elements in the parent selection process, for
instance selecting parents randomly for crossover.

Integrating local search techniques into the breeding pro-
cess is a good practice but effective only when selection pres-
sure on the parent selection has been carefully adjusted.
This paper shows that, in our experiments, taking off se-
lection pressure on the parent selection correspondingly is
a good practice for obtaining a significant performance im-
provement by effectively maintaining population diversity
and avoiding local optima or premature convergence.

This paper also shows that when no selection pressure
applied to parent selection, a good strategy of optimising
stochastic elements in the breeding process is Partial Xover
instead of the exhaustive Ideal Xover. However, further in-
vestigations are required in order to make a more general
conclusion. More precisely, we will further investigate an
optimal degree at which the intensive neighbourhood search
can provide the most effective GP system in general.

This paper only investigated the primary genetic operator
in the context of many-offspring breeding. We will further
conduct similar studies on mutation in order to provide a
complete picture.

In all evolutionary algorithms the selection mechanism
considers the quality of the individuals as the basis to make
choices. Therefore only the fitness values are used. The
actual representations of solutions are irrelevant and infor-
mation on the “inside” of an individual is not considered
[3]. Our further research question is whether there are any
other smart heuristics, such as the semantics in solutions,
which can be used to guide a generate-and-test search in the
breeding process in order to save the computational cost.
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