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ABSTRACT
Speciation is an important concept in evolutionary compu-
tation. It refers to an enhancements of evolutionary algo-
rithms to generate a set of diverse solutions. The concept is
studied intensively in the evolutionary design of neural net-
work ensembles. The diversity and cooperation of individual
networks are among the essential criteria of the design. This
paper proposes a speciation framework for ensemble design
which integrates a collection of new techniques. Its charac-
teristic features are: (a) the population of networks are spe-
ciated as such that the mutual information between the net-
works’ outputs and genotypic representations is preserved.
(b) The ensemble is designed incrementally, upon discovery
of a species of networks which enhances the ensemble per-
formance. (c) Multiple species are evolved and individual
networks are evaluated according to the role of their respec-
tive species in the ensemble. This framework provides an
implementation of evolutionary algorithm which performs
simultaneous single-objective optimizations. The new algo-
rithm is evaluated with a series of classification benchmarks
and shows an improvement over other evolutionary training
strategies and a statistical algorithm.

Categories and Subject Descriptors
I.5.2 [Computing Methodologies]: PATTERN RECOG-
NITION—Design Methodology ; I.2.6 [Computing Method-
ologies]: ARTIFICIAL INTELLIGENCE—Learning

General Terms
Algorithms

Keywords
Niching, Evolutionary Network Design, Pattern Recognition

1. INTRODUCTION
Niching is one of the important concepts in evolutionary

computation. It derives from a ecological term niche, which
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refers to a role in an ecosystem filled by a species or a popu-
lation. In evolutionary computation, the terms niching and
speciation refer to enhancements of evolutionary algorithms
(EAs) to find multiple local optima or a set of good solu-
tions, by emphasizing species of individuals to respectively
evolve in a different niche. The concept has been studied
extensively for multimodal and deceptive optimization, hy-
bridization of local search, and cooperative coevolution [9,
24, 17, 13, 11]. There are also practical advantages for gen-
erating diverse solutions in engineering and design, such as
fault tolerance and modularization.

This paper provides new perspectives on two essential as-
pects of speciation: the similarity measure of individuals and
the restriction of mating and competition. Many implemen-
tations of niching employ a native distance measure of the
feature domain, e.g., Hamming and Euclidean distance for
binary and numerical optimizations problem. However, for
complex optimization problems, näıve measurements may
not sufficiently reflect the relevance of the genotype and the
phenotype thus is unsuitable for defining the species. It is
especially difficult to define an appropriate similarity when
the genotypic representation implicitly includes a structure,
such as a network or a graph.

Underlying the concept of speciation is an assumption
that within the domain occupied by the species, the perfor-
mance of the phenotype is quite predictable from its geno-
type. In such a perspective, a speciation should preserve
the information in the genotypic representation about the
phenotype as much as possible. This view lead us to a rel-
atively new methodology in machine learning called Infor-
mation Bottleneck (IB) [26]. IB clustering partitions the
observed variable X such that its mutual information, thus
the predictive power, for another variable Z is preserved
maximally. Such clustering can be useful for speciating the
structural genotypes, such as that of neural networks, with-
out having to select an arbitrary similarity measure.

In the natural process of speciation, the new and origi-
nal species become mutually incompatible, i.e., incapable of
mating, at some point as the genetic crossover becomes too
lethal. This provides an interesting analogy for multimodal
optimization, since a crossover of individuals near different
local optima is less likely to improve the solution. A major
difficulty for implementing such a mechanism is formulating
the transition, discrete or continuous, from compatibility to
incompatibility. Due to the complexity of the EAs and the
variety of the problems to which they are applied, the dy-
namics of the speciation is difficult to analyze.

In this paper, species are viewed as probabilistic distri-
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butions. Based on this view, we propose a speciation tech-
nique using Minority Detection [2], a method for identify-
ing a small subset whose distribution has a significant di-
vergence from that of the rest of the dataset. Using this
method, a species is made incompatible after it differentiates
from the global population in terms of the Kullback-Leibler
divergence. As species are found heuristically, a radius or
a number of niches are unnecessary. The distributions of
species allows for the estimation of its niche, which can be
useful for avoiding redundancy among species.

This paper addresses the problem of designing a neural
network ensemble, in which the concept of niching and spe-
ciation has been studied extensively [11, 16, 19]. A typical
ensemble is a linear combination of multiple networks. A

linear ensemble of k networks’ outputs z =
k
P

i=1

αizi, where

zi is the output of an individual network and αi its weight.
Generally, an ensemble approximates a complex function as
a combination of decomposed modules or redundant net-
works. In classification tasks, ensembles exhibit advantages
in generalization error and variance over large, single net-
works with less training time and risk of overfitting.

The task of designing an ensemble is significantly more
complicated than that of a single network, as it involves de-
cisions on the number of the ensemble members and their
weights as well as designing and training individual net-
works. The performances of the individual networks as well
as their diversity and cooperation are among the properties
seen in good ensembles.

Analogically, an ensemble corresponds to an ecosystem
whose members fill a respective role in performing classifi-
cation. The goal of the speciation is to evolve species of
networks which sufficiently fill the relevant niches, i.e., the
modules or the components of a classifier function.

This paper proposes a simple yet effective speciation frame-
work, which integrates a collection of new techniques. Its
significant differences from previous works are: (a) the pop-
ulation of networks is speciated using IB clustering, as such
that the predictive power of the genotypic representation
is preserved as much as possible. (b) The ensemble is in-
crementally designed on a heuristic basis, i.e., the ensemble
adds a new member if and when a species of networks which
enhances the ensemble performance is found. (c) Multiple
species are evolved and each individual is evaluated accord-
ing to the role of the respective species in an ensemble.

These characteristics collectively emphasize the diversity
and cooperation among the ensemble without defining an
explicit diversity objective. Therefore, the implementation
of this framework is a set of single-objective evolutionary
optimizations which are run simultaneously.

The rest of the paper is organized as follows. Section
2 discusses the existing works of niching and evolutionary
ensemble design. Section 3 describes the enhancements in
two aspects of speciation using machine learning techniques.
Section 4 describes the proposed framework which integrates
the speciation technique with EA. Section 5 evaluates the
performance of the new algorithm using a set of classification
benchmarks. Section 6 gives the conclusion of this paper.

2. BACKGROUND

2.1 Niching
While the survival of the fittest appears as a principle

quite contrary to the diversity of the species, other facets
of evolutionary process, e.g., geographical localization and
genetic incompatibility, bring about a rich variety of species
in nature. In evolutionary computation, many mechanisms
to induce diversity and speciation have been studied as tech-
niques of niching and speciation. Such techniques are used
in problems of multimodal and deceptive optimization [24,
1], hybridization of local and global search [21, 13] and au-
tomatic modulation and coevolution [23, 6]. Two pioneering
works among such studies are crowding and fitness sharing,
from which derives numerous niching techniques [7, 20, 22,
12, 5, 24]. There are also various studies on incorporating
clustering algorithms as a mean of speciation [28, 25, 1].

Fitness sharing induces niching by a distance-based penalty
function. The fitness of an individual is degraded based on
the level of overpopulation within a certain radius. Penaliz-
ing and suppressing of a regions of the fitness landscape is
also employed in Clearing [24] and Sequential Niching [3].

Restricting the mating and competition of individuals is
another important aspect of speciation. Crowding and its
variants control the competition based on the distances be-
tween parents and offspring. Species Conserving GA [17]
also restricts the survival competition to within a certain ra-
dius of superior individuals. Another group of niching tech-
niques evolves multiple subpopulations and restricts mating
and survival competition mostly or strictly to within each
subpopulation [27, 1, 15]. The restricted mating encourages
the discovery of diverse solutions as species are induced to
converge to different niches. Another important effect of
strictly restricted mating and competition is the faster con-
vergence of subpopulation [15, 1], as crossovers among simi-
lar individuals are synonymous to fine tuning of the param-
eters and are less likely to be lethal.

2.2 Evolutionary Design of Ensembles
Designing an ensemble of neural networks is a significantly

more difficult and delicate task than that of a single net-
work, as it involves designing and training multiple neural
networks, decisions on the size of the ensemble, selecting its
members and their weights. Individual performances and
diversity and cooperation among networks are among the
criteria that is emphasized in the ensemble design.

Existing approaches to training multiple networks, aside
from individual training, are incremental training and si-
multaneous training [11]. The basic concept of constructive
training is to sequentially train a new network, with an ad-
ditional objective to cooperate with the existing ensemble.
Such strategy was initially studied in [16]. Simultaneous
training has been employed by various studies [18, 19, 11].
In principle, a set of networks are trained simultaneously,
with additional objectives of diversity and cooperation with
one another. The two approaches have shown improvements
over individual training in inducing diversity and coopera-
tive behavior among individuals. However, a defect of the
incremental training is the strong dependence to few initial
networks. Simultaneous training demerits from the prereq-
uisite ensemble size, which demands empirical knowledge of
the task and the risk of redundancy among networks.

There have been several approaches for emphasizing mul-
tiple criteria of ensemble design. Negative correlation learn-
ing [19] penalizes the correlation of the networks’ outputs
in the fitness function. The drawback to the penalization
approach is its arbitrary tradeoff parameter between the
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penalty and the primary objective. The parameter is known
to have a significant effect on the result.

[11] employs a multi-objective EA to allow for a multitude
of criteria in ensemble design. While multi-objective EA is
very useful for generating Pareto-fronts, it generally does not
optimize individual objectives as well as a single-objective
EA. As reported in [11], the multi-objective approach is not
necessary superior to the single-objective approach, and in-
troducing too many subsidiary objectives degrades the train-
ing and generalization error.

2.3 Notations
The basic notations of neural network ensembles and evo-

lutionary algorithms are given as follows. The weights of
connections are denoted by a vector x = [xi]p. The in-
put pattern and the network output is denoted by vectors
v = [vi]q and z = [zi]r. q and r correspond to the number of
features and classes of the classification task. The number of
nodes in the hidden layer is m; thus p = m (q + r). Weights
from x1 to xq correspond to connections between the first
input and the hidden nodes. xq+1 ∼ xmq correspond to con-
nections between the rest of the input and the hidden nodes
in similar a manner. xmq+1 ∼ xmq+r correspond to connec-
tions between the hidden nodes and the first output. Rest of
the weights correspond to connections between the hidden
nodes and the rest of the outputs in a similar manner.

A network which corresponds to x is denoted by N (x).

An ensemble of k networks is denoted by N = {Ni}k
i=1. The

output of an ensemble N is defined as the weighed sum of
individual outputs

z (N,x) =

k
X

i=1

αiz (Ni,x),

where αi is the weight of an individual network.
The ensemble classifies a sample by winner-take-all method.

For convenience, we denote a binary vector zb which corre-
sponds to the output. 1 is assigned to the largest z and and
0 to others. A binary vector corresponding to the correct
class of ith sample in dataset V = {vi}t

i=1 is denoted by ei.
The ensemble error f is defined from the number of correctly
classified sample as

f (N) =
t
X

i=1

γie
T
i zb (N,vi) (1)

where γi is a weight defined as

γi =
1

k

k
X

j=1

eT
i zb (Nj ,vi) (2)

(2) represents the emphasis on samples that are difficult to
classify by current ensemble members. This weighting has
been proposed in [11] to cover a similar concept in boosting.

In the evolutionary algorithm, a global population is de-
noted by G. A species is a population of individuals de-
noted by s = {xi}. A set of existing species is denoted by
S = {si}. The assignment of an individual xi to a species
s is denoted by yi = s. The cardinality of a set or a popu-
lation is denoted by # (·). The functions of evolutionary al-
gorithms, i.e., initialization, reproductive selection, survival
selection, crossover operation, are denoted by initialize (),
RS (·), SS (·), and XO (·) respectively. initialize () gen-
erates an individual from a uniform distribution over the

search domain. RS (X) returns a random subset of M ⊂ X
as parents. XO (M) is a simplex crossover (SPX) [14], which
generates offspring from a uniform distribution over an ex-
panded simplex formed by µ parents. The number of parents
is set to µ = p + 1 as suggested in [14]. SS (X, L) compares
the fitness of an individual randomly chosen from a popula-
tion X and the best offspring in L. The former is replaced
by the latter if it has a worse fitness. This survival selection
is a variant of the Generalized Generation Gap Model [8].
The number of offspring is empirically set to λ = p2.

3. SPECIATION TECHNIQUES
This section discusses new views on two critical aspects

of speciation: similarity measure and incompatibility.

3.1 Speciation by Information Bottleneck
In clustering, selecting a similarity measure can be viewed

as implicitly determining the relevance of the respective vari-
ables. As such, the impact of the similarity measure is very
significant, often more so than the clustering method itself.
The impact is just as significant with niching techniques, all
of which define some measure of similarity between the indi-
viduals. A good measure differs from problem to problem,
depending on the representation and the fitness function.
For example, if the fitness function is significantly sensitive
to some variables, or variables are highly correlated, use of
Mahalanobis distance is more appropriate over Euclidean
distance. The similarity of two numerical vectors depends
on what they represent, e.g, points in Euclidean domain
or weights of neural networks. For effective niching, it is
essential that the similarity of genotype translates to the
similarity of the phenotype or performance, although such a
measure is not always apparent when the genotype includes
an implicit structure, e.g., graphs and networks.

In speciating the population, it is implicitly assumed that
within the domain occupied by the species, the performance
of the phenotype strongly relate to the genotypic representa-
tion. As such, it seems essential that speciated population
preserve the information about the phenotype as much as
possible. Such view suggests the introduction of Information
Bottleneck [26] methodology, which incorporates top-down
domain knowledge into unsupervised learning.

IB formalizes a probabilistic clustering, using standard no-
tations of mixture estimation: the observed variable X and
the hidden variable Y which corresponds to respective clus-
ters. The conditional probabilities P (Y |X) represent the
soft partitioning of the instances. Additionally, a variable
which represents the domain knowledge, here denoted as Z,
is introduced.

The clustering problem is formalized as a minimization
w.r.t. P (Y |X) as follows.

min
P (Y |X)

I (Y ; X) − βI (Y ; Z) (3)

This formalization derives from the context of data com-
pression, which shares basic concepts with unsupervised learn-
ing. Intuitively, (3) describes the compression of X to signal
Y such that the information of Y is minimized, while pre-
serving the information it has about Z.

Given the definition of mutual information

I (Y ; X) =
X

x∈X

X

y∈Y

P (x, y) log
P (x, y)

P (x) P (y)
, (4)
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(3) rewrites as a functional of conditional probability P (y|x).

Λ =
X

x,y∈X,Y

P (y|x) P (x) log
P (y|x)

P (y)
− β 〈d (x, y)〉P (x,y)

where d denotes the Kullback-Leibler divergence DKL be-
tween two conditional probabilities

d (x, y) = DKL (p (z|x) |p (z|y)) (5)

The minimum of Λ is obtained by an iterative algorithm
described in [26]. P (Y |X) corresponding to such minimum
represents a partitioning of X which preserves the mutual
information between X and Z. In a machine learning task
such as speech recognition, X corresponds to the acoustic
data, and Z represents one of the relevant information, e.g.,
speaker’s identity or the transcripted text. Z thus is a per-
spective, to which the clustering result should be relevant.
In IB, the Kullback-Leibler divergence between P (z|x) and
P (z|y) serves as the implicit similarity, which allows for
clustering without specifying the measure for respective Z.

With regards to evolutionary algorithms, X corresponds
to the genotype of the individuals and Z to their pheno-
type. Y indicate the assignment of individuals to respective
species. This technique provides a clustering with an unar-
bitrary similarity measure when the relevance between the
genotype and the phenotype is complex. It is important to
note that clustering described above is different from clus-
tering individuals based on the neural networks’ output.

3.2 Detection of Species as Minority Subsets
Given the nature of the optimization task, it is very un-

likely that the properties of the landscape, e.g., the radii or
the number of local optima, be provided. Further, it is cau-
tious to assume that the local optima and their surrounding
landscapes are not uniform, therefore species correspond-
ing to some niche may emerge slower than others, or not
appear at all in deceptive problems. Most speciation tech-
niques therefore subjectively analyze individuals to estimate
the property, such as range or density, of species. The dy-
namics of the speciation, however, is generally difficult to
formalize due to the complexity of EAs and the variety of
the problems addressed. In the following, an empirical view
of the species as a probability distribution is introduced from
an analysis of a simple evolutionary optimization setting.

The fitness function is g : x ∈ Ω ⊂ R → R, which has
a set of local optima {ci}. With regards to each ci and
its niche Φi, g is approximated gi (x) ≈ α (x − ci)

2 for x ∈
{x|x − ci < d} ≡ Φi and gn (x) ≈ b otherwise. gn (x) is
always smaller than gi (x) for all i.

The initial population is distributed uniformly, P (X0) =
U (Ω). The crossover, XO (xa, xb) = U ([xa, xb]), is uniform
as well. We assume that the subdomain of the niches are
relatively small, i.e.,

R

x∈Φi
dx ¿

R

x∈Ω
dx, formally. RS is a

random selection and SS is an elitist strategy which replaces
the worst parents with the best offspring.

When κ offspring are generated within the niche Φi, the
probability that one at xa is selected by SS is

Q (x|Φi) =
1

R

Φi
dx

 

1 −

R

g(xa)<g(x)
dx

R

Φi
dx

!κ−1

Assuming that the offspring generated outside of Φi are

irrelevant, the probability distribution over Φi is defined as

P (x|Φi) =
1

ζ
Q (x|Φi) (6)

with ζ being the normalization constant. P (x|Φi) has an
exponential derivative and a limited variance depending on
the value of κ.

The simple analysis of EA provides an intuitive definition
of a species, which is a small subset of a individuals with
a limited variance and a significantly different distribution
than the rest of the population. Subsequently, speciation is
defined as a detection of such subset as a species.

We propose an extension of a machine learning technique
called Minority Detection (MD) [2] for this detection prob-
lem. MD identifies a subset whose distribution has a signif-
icant divergence from that the majority of the dataset. For
more details, readers are referred to [2].

MD is an extension of probabilistic mixture estimation;
the same notations from Section 3.1 is used. A minority
detection problem is characterized by following two settings.

1. An instance xi belongs to either a majority yi = a or
a minority yi = b.

2. The cardinality of the subset S = {xi; yi = b} is trivial
to that of the entire dataset.

Accordingly to 1. and 2., an approximation P (x|a) ≈ P (x)
is introduced. This approximation trivializes the first term
of the following expansion of mutual information,

I (Y ; X) = P (a)
X

x∈X

P (x|a) log
P (x|a)

P (x)

+P (b)
X

x∈X

P (x|b) log
P (x|b)
P (x)

therefore,

≈ P (b)
X

x∈X

P (x|b) log
P (x|b)
P (x)

≡ I (b; X)

Introducing a similar approximation for Z, i.e., P (z|a) ≈
P (z), the approximation of I (Y ; Z) is denoted by I (b; Z).
Using I (b; X) and I (b; Z), the clustering objective Λ is
rewritten as follows.

Λ = I (b; X) − βI (b; Z)

= P (b)
X

x∈X

P (x|b) log
P (x|b)
P (x)

− β 〈d (x, b)〉P (x,b)

where d follows the definition of (5).
[2] shows an iterative algorithm for minimizing Λ. The

time/space complexity of each step is O (# (S)). The pseudo
code of the algorithm is shown in Fig. 1.

An important characteristic of the MD is that if a minor-
ity subset is not present or its density is smaller than the rest
of the dataset, the estimated variance of minority reduces to
0, which corresponds to an empty minority set. As such, the
speciation based on MD is deterred from speciating a small
fluctuation of the initial population or a premature species
which may not yet reflect the property of a niche. Presump-
tion of the radii or the number of species is not required,
since species’ parameters are estimated from individuals.

We define a function speciate (X), whose outputs are a
subset si = {xj ; yj = si}, and its distribution P (x|si) esti-
mated by MD.
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INPUT: observed values X , initial labels Y
OUTPUT: subset s, distribution parameter θ
METHOD:
define s ≡ {xj ∈ X; yj = b}, P (x|θ) ≡ P (x|b)
initialize θ0 s.t. P (x|θ0) = P (x|s), Λ0 = Λ(P (x|θ0))
t = 0
repeat

Y → Yt ,θ → θt, t + 1 → t
a → arg min

yi∈Y
P (xi|b)

update θ s.t. P (x|θ) = P (x|s)
Λt ← Λ (P (x|θ))

until Λt > Λt−1

return W, θ

Figure 1: Pseudo-code of Minority Detection

4. HEURISTIC SPECIATION

4.1 Incremental Framework
This section describes the Heuristic Speciation (HS), a

framework which alternates between the evolutionary algo-
rithm and a speciation procedure. HS evolves a global pop-
ulation G and an set of species S. The population of each
species derives from the global population, but the mating
and competition is restricted to its members once it has
speciated. The members of the ensemble N respectively
correspond to the best individual of a species.

HS iterates following steps for the global population illus-
trated in Fig. 2 (a).

1. Initialize each individual in G with initialize (). Also
initialize S and N as empty sets.

2. Apply genetic operators RS, XO, SS to G until κ new
offspring are added to G.

3. Execute speciate (G).

4. If new species are found, update S and G; otherwise
skip to 5.

5. Terminate upon reaching the target performance or
number of evaluations; otherwise repeat from 2.

The update of S and G in Step 4. is processed as follows.
If a new species si is found, the individuals {xj} ∈ si are
removed from the global population G and replaced by the
same number of individuals generated by initialize (). si is
added to S and its best individual is added to N.

Each new offspring x ∈ X is considered for reassignment
to all existing in S. If there exists a species s ∈ S s.t.
F (s) < F (s + x), x is added to the species s. The pseudo-
code of the update procedure is shown in Fig. 3.

Each speciated population is evolved as an independent
population using a standard evolutionary algorithm. Subse-
quent to its speciation, HS iterates with following steps with
each species si, as illustrated in Fig. 2 (b).

1. Execute selection RS (si) to select parents M .

2. Execute crossover XO (M) to generate offspring L.

3. Execute survival selection SS (L, si).

4. Update the best individual in si to the ensemble.

Update Species Set

Species Detection

Evolutionary

Generations

Output Ensemble

Termination

Criteria Met

Not Met

Initialization

(a)

Reproduction

Fitness Evaluation

Survival Selection

Update Ensemble

Member

Output Network 

Termination

Criteria Met

Not Met

Initialization

(b)

Figure 2: Flowchart of evolution for global popula-
tion (a) and species (b)

5. Halt on the increase in validation error or termination
of global evolution; otherwise repeat from 1.

As described above, speciation restricts direct flow of in-
formation from a species to the global population. How-
ever, new individuals from global population are continually
added to the species via the update of S. To maintain a fi-
nite species population, the worst individuals are eliminated
after every κ generations.

The population size of the global and species population
are determined accordingly to their respective goal of evolu-
tion. A small population size is used for species to converge
quickly to a local optima. The diversity of the species pop-
ulation is sustained by new individuals supplied from the
global population. Much larger population size is used for
the global population to cover multiple niches in a multi-
modal landscape.

As discussed in Section 3.2, the algorithm for detecting
species requires O

`

#(s) p2
´

per iteration step considering
the computation of vector statistics in p dimension, where

INPUT: global population G, existing species S =
{si}k

i=1, new species S′ = {si}k+m
i=k+1, new offspring X =

{xi}t
i=1

OUTPUT: G, S
METHOD:
for all s ∈ S′ do

G = G − s, S = S + s.
G = G + initialize (# (s))

end for
for all xi ∈ X ∩ G and sj ∈ S do

if F (sj) < F (sj + xi) then
G = G − xi , sj = sj + xi

end if
end for

Figure 3: Pseudo-code for Updating G and S
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#(s) is the tentative size of the species. The number of steps
does not exceed # (s0), the initial size of the species, as only
the niches near the new individuals are relevant. The itera-
tion is repeated using each of the κ new offspring as a seed
for different initialization. The computational complexity of
the speciation is therefore O

`

κ#(s0)
2 p2
´

. Meanwhile, the

complexity of the genetic operator is O
`

p2
´

as discussed in

[14]. Overall complexity of the EA with HS is O
`

#(s0)
2 p2
´

per each generation of an offspring.

4.2 Niche-wise Evaluation
Since each species represents a different member of the

ensemble, it is natural for its individuals to be evaluated
according to the species’ role in the ensemble. As such, we
propose a Niche-wise Evaluation described as follows. Given
the ensemble error (1) for training samples V and the current
ensemble N, the fitness function of an individual x in the
global population is defined

f0 = f (N + N (x)) . (7)

The fitness of an individual x in a species si, given the
best network of the species Ni, is defined

fi = f (N − Ni + N (x)) . (8)

Despite the simple formulation, (7) and (8) formulate
some of the important criteria of ensemble design. The in-
dividuals are not rewarded for classifying samples that are
classifiable by a member of the ensemble, as all individual
has the access to the members of the ensemble.

[11] has introduced the Substitution objective similar to
(8). It was shown to be an effective objective for single and
multi-objective EA. In this paper, (8) is used as a primary
emphasis to establish the species’ respective role, in conjunc-
tion with Heuristic Speciation framework and the evaluation
principal of the global population.

Under niche-wise evaluation, it is unlikely to find two
species which correspond to the similar component of a func-
tion as finding one such species modifies the fitness function
and negates the advantage of similar species. Meanwhile,
species with a small population described in Section 4.1 of-
ten converge quickly to a single local optimum. As such, the
reconfiguration of the species, such as merging and splitting
were practically unnecessary thus not implemented in HS
framework.

4.3 Weighting the Ensemble
As seen in (7) and (8), each evaluation is based on a dif-

ferent ensemble, thus the weights of individual networks α,
is not fixed. In this framework, two methods are used for
computing weights: Stacked Regression (SR) [4] and gradi-
ent decent method (GD). SR is a weight optimization mea-
sure based on cross-validation and computationally expen-
sive than GD. HS updates α at following points.

1. Upon discovery of a new species; calculated with SR.

2. At each evaluation; re-adjusted with GD.

5. EXPERIMENTAL RESULTS

5.1 Setup
In this section, the proposed method is evaluated using

three datasets, Glass, Heart Disease, and Pima, available at
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Figure 4: Comparison of Error Rates. 2, ©, and 4
indicate the means for Glass, Heart, Pima datasets
respectively. Lengths of error bars correspond to
the standard deviation.

UCI Machine Learning Repository. All datasets are divided
into three sets following the specification provided with the
original dataset, i.e., first 50% as a training set, next 25%
as a validation set, and the final 25% as a test set. It should
be noted that the results using different separations or other
schemes, e.g. n-fold cross-validation, are not directly com-
parable to this and many of the previous works which follow
this separation.

The Glass dataset comes from the chemical analysis of
glass splinters. There are nine numerical inputs and six
types of glass. The Heart Disease data comes from the
record of Cleveland Clinic. There are 13 numerical inputs
and two classes, i.e., absence and presence of heart disease.
The Pima data has 8 numerical inputs and two classes, pos-
itive or negative for diabetes.

The proposed method is compared to two other strategies
of evolutionary ensemble design: constructive and simulta-
neous training. We implemented the constructive training
as an iteration of single population EA using the fitness
function defined in (7). For simultaneous training, k in-
dependent subpopulations are trained simultaneously using
the fitness defined in (8). The ensemble is comprised of the
best individuals of the subpopulations. The training of each
population halts at the increase in validation error. As with
the proposed method, a sample is classified with the winner-
take-all method, and the weights of the individual networks
are computed by SR and GD.

The maximum number of evaluations for evolutionary meth-
ods is 106. For HS, the size of the global population is 1000
and the maximum size of the species population is 100. The
speciation takes place after every κ = 20 addition of new
offspring. The populations of constructive and simultaneous
training consist of 100 individuals respectively. The number
of populations for simultaneous training is 15.

In addition to the evolutionary methods, AdaBoost [10],
a very widely used population learning method, is applied
to the same problems. For all methods, the number of hid-
den nodes was set to m = 12. For each method, 30 runs
were performed on each dataset and the error rate 1

T
f , i.e.,
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in Heart Disease dataset

number of correctly classified test samples divided by the
number of samples, is recorded.

5.2 Results
Fig. 4 illustrates the comparison of the error rates in test

dataset for respective methods. The performances of evo-
lutionary methods in Fig. 4 were of excellent quality. All
methods exhibits similar or better error rates compared to
the boosting algorithm. Notably, the error rates for Glass
dataset, a multi-class classification task, are better than
that of the boosting algorithm with a significance level of
5% or larger. Although Heuristic Speciation exhibits lower
mean error rate than constructive and simultaneous train-
ing strategies in all datasets, the advantage is statistically
inconclusive at this point.

To study the effect of respective evolutionary methods on
the diversity of the networks, we observed the correlation
among the members of the ensemble during the evolution.
Following [19], the correlation ρ is defined as follows.

ρ =
1

#(V )

X

v∈V

k
X

i=1

ρi

ρi = (z (N,v) − z (Ni,v))T
X

Nj 6=i∈N

(z (N,v) − z (Nj ,v))

Fig. 5 illustrates the correlation for Heart Disease dataset
averaged over all runs. Each evolutionary method shows
a distinguishable pattern which are consistent with other
datasets as well. The correlation of simultaneous training
exhibits a rapid, initial decreases, while a gradual increase
is observed in other two methods. Of the two, Heuristic Spe-
ciation shows a more stable pattern of increase. The surges
in constructive training correspond to an addition of a new
network to the ensemble. Fig. 5 indicate that Heuristic Spe-
ciation exhibits a generally lower level of correlation over the
course of the evolution, which suggests that the evaluation
is reserved to ensembles of lower correlation in HS.

Fig. 6 illustrates the final ensemble size of three evolution-
ary methods. The ensemble size of simultaneous training is
constant therefore its variance is zero. HS designs smaller
ensembles for all datasets with significant difference from
constructive training. It should be noted that the speci-
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Figure 6: Number of Networks in an Ensemble

ation is an intrinsically heuristic approach rather than an
optimization of the ensemble size, which attributes to the
non-trivial variance of the ensemble size.

6. CONCLUSION
In this paper, a new strategy for speciation is proposed

and applied to the design of neural network ensemble. Heuris-
tic Speciation can be viewed as a framework which combines
the merits of the constructive and simultaneous training ap-
proaches. It reduces the dependence to the initial networks
and the prerequisite ensemble size, while inducing the dis-
covery and establishment of roles in a classification task.

The implementations of key features, i.e., detection of
species and discrete incompatibility, were addressed by two
machine learning techniques which subsequently introduce
new perspectives of speciation.

The proposed method improved the average performance
of the conventional training strategies as seen in Fig. 4. The
difference in the performances can be attributed to the lower
correlation among the ensemble. As exhibited in Fig. 5,
The training of HS is more reserved to ensembles with lower
correlation compared to other strategies. Since the objective
of diversity is not explicitly defined as fitness function, it is a
collective effect of the probabilistic clustering, the restriction
of mating and competition, and niche-wise evaluation.

As observed in Fig. 6, the ensemble of HS were generally
smaller than that of constructive training. This result can
be credited to the heuristic property of the proposed method
which increments to the ensemble only when a new role is
found as a population of networks.

An important work for the future is to incorporate the
topological design and the objective of regularization, both
of which are of significant importance in neural network de-
sign. It remains to be seen how the concept of similarity
discussed in this paper can be extended to a topologically
flexible network structures.

1772



7. REFERENCES
[1] S. Ando, J. Sakuma, and S. Kobayashi. Adaptive

isolation model using data clustering for multimodal
function optimization. In GECCO ’05: Proceedings of
the 2005 conference on Genetic and evolutionary
computation, pp. 1417–1424, New York, NY, USA,
2005. ACM Press.

[2] S. Ando and E. Suzuki. An information theoretic
approach to detection of minority subsets in database.
In ICDM ’06: Proceedings of the Sixth International
Conference on Data Mining, pp. 11–20, Washington,
DC, USA, 2006. IEEE Computer Society.

[3] D. Beasley, D. R. Bull, and R. R. Martin. A sequential
niche technique for multimodal function optimization.
Evolutionary Computation, 1(2):101–125, 1993.

[4] L. Breiman. Stacked regressions. Machine Learning,
24(1):49– 64, 7 1996.

[5] A. D. Cioppa, C. D. Stefano, and A. Marcelli. On the
role of population size and niche radius in fitness
sharing. IEEE Trans. Evolutionary Computation,
8(6):580–592, 2004.

[6] P. J. Darwen and X. Yao. Speciation as automatic
categorical modularization. IEEE Trans. Evolutionary
Computation, 1(2):101–108, 1997.

[7] K. A. De Jong. An analysis of behavior of a class of
genetic adaptive systems. Ph.D. thesis,University of
Michigan, 1975.

[8] K. DEB, A. Anand, and D. Joshi. A computationally
efficient evolutionary algorithm for real-parameter
optimization. Evolutionary Computation, 10:371–395,
2002.

[9] K. Deb and D. E. Goldberg. An investigation of niche
and species formation in genetic function
optimization. In J. D. Schaffer, editor, Proceedings of
the Third International Conference on Genetic
Algorithms, pp. 42–50, San Mateo, California, 1989.
Morgan Kaufmann.

[10] Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm. In ICML, pp. 148–156, 1996.
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