
MRPSO: MapReduce Particle Swarm Optimization

Andrew W. McNabb
Brigham Young University
Computer Science Dept.

3361 TMCB, Provo, UT 84602
a@cs.byu.edu

Christopher K. Monson
Google, Inc.

4720 Forbes Ave., Lower Level
Pittsburgh, PA 15213

c@cs.byu.edu

Kevin D. Seppi
Brigham Young University
Computer Science Dept.

3361 TMCB, Provo, UT 84602
k@cs.byu.edu

ABSTRACT

In optimization problems involving large amounts of data,
Particle Swarm Optimization (PSO) must be parallelized
because individual function evaluations may take minutes
or even hours. However, large-scale parallelization is dif-
ficult because programs must communicate efficiently, bal-
ance workloads and tolerate node failures.

To address these issues, we present MapReduce Parti-
cle Swarm Optimization (MRPSO), a PSO implementation
based on Google’s MapReduce parallel programming model.

Categories and Subject Descriptors

G.1.6 [Numerical Analysis]: Optimization—
nonlinear programming, unconstrained optimization

General Terms

Algorithms

Keywords

Swarm intelligence, Parallelization, Optimization

1. INTRODUCTION
Particle Swarm Optimization (PSO) is an optimization

algorithm that was inspired by experiments with simulated
bird flocking [1]. Many functions, especially those involving
large amounts of data, take a long time to evaluate. To
optimize such functions, PSO must be parallelized.

A parallel implementation of PSO must address a variety
of issues. Inefficient communication or poor load balancing
can hinder scalability. Once a program successfully scales,
it must still address the issue of failing nodes. If a node fails
on average once a year, then the probability of at least one
node failing during a 24-hour job is 50.5% on a 256-node
cluster and 93.6% on a 1000-node cluster.

Google faced these same problems in large-scale paral-
lelization and created a common system called MapReduce
to simplify its hundreds of specialized data processing pro-
grams [2]. MapReduce programs, which are formulated as a
map function and a reduce function, automatically benefit
from advanced mechanisms for communication, load balanc-
ing and fault tolerance.

Copyright is held by the author/owner(s).
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
ACM 978-1-59593-697-4/07/0007.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 128 64 32 16 8 4 1

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
o

n
d

s
)

Number of Processors

RBF MRPSO
Serial Execution Time

Figure 1: RBF execution times with 10,000 points

MapReduce Particle Swarm Optimization (MRPSO) is a
parallel implementation of PSO for computationally inten-
sive functions. MRPSO is simple, flexible, scalable and ro-
bust because it is designed in the MapReduce parallel pro-
gramming model.

2. RESULTS
We evaluate MRPSO with a machine learning problem

involving large amounts of data, specifically, training a ra-
dial basis function (RBF) network by minimizing error. We
implemented MRPSO in Python and ran experiments on
BYU’s Marylou4 supercomputer using Hadoop, an open-
source implementation of MapReduce. Figure 1 shows the
performance of MRPSO through 128 processors on the RBF
training problem.

3. CONCLUSIONS AND FUTURE WORK
MRPSO is a robust but simple implementation of PSO

which scales well with a large number of processors. In fu-
ture work, we will experiment with larger problems, analyze
communication overhead and test other swarm topologies.

4. REFERENCES
[1] James Kennedy and Russell C. Eberhart. Particle

swarm optimization. In International Conference on

Neural Networks IV, pages 1942–1948, Piscataway, NJ,
1995. IEEE Service Center.

[2] Jeffrey Dean and Sanjay Ghemawat. MapReduce:
Simplified data processing on large clusters. Sixth

Symposium on Operating System Design and

Implementation, November 2004.

177


