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ABSTRACT

In optimization problems involving large amounts of data,
Particle Swarm Optimization (PSO) must be parallelized
because individual function evaluations may take minutes
or even hours. However, large-scale parallelization is dif-
ficult because programs must communicate efficiently, bal-
ance workloads and tolerate node failures.

To address these issues, we present MapReduce Parti-
cle Swarm Optimization (MRPSO), a PSO implementation
based on Google’s MapReduce parallel programming model.
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G.1.6 [Numerical Analysis]: Optimization—
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1. INTRODUCTION
Particle Swarm Optimization (PSO) is an optimization

algorithm that was inspired by experiments with simulated
bird flocking [1]. Many functions, especially those involving
large amounts of data, take a long time to evaluate. To
optimize such functions, PSO must be parallelized.

A parallel implementation of PSO must address a variety
of issues. Inefficient communication or poor load balancing
can hinder scalability. Once a program successfully scales,
it must still address the issue of failing nodes. If a node fails
on average once a year, then the probability of at least one
node failing during a 24-hour job is 50.5% on a 256-node
cluster and 93.6% on a 1000-node cluster.

Google faced these same problems in large-scale paral-
lelization and created a common system called MapReduce
to simplify its hundreds of specialized data processing pro-
grams [2]. MapReduce programs, which are formulated as a
map function and a reduce function, automatically benefit
from advanced mechanisms for communication, load balanc-
ing and fault tolerance.
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Figure 1: RBF execution times with 10,000 points

MapReduce Particle Swarm Optimization (MRPSO) is a
parallel implementation of PSO for computationally inten-
sive functions. MRPSO is simple, flexible, scalable and ro-
bust because it is designed in the MapReduce parallel pro-
gramming model.

2. RESULTS
We evaluate MRPSO with a machine learning problem

involving large amounts of data, specifically, training a ra-
dial basis function (RBF) network by minimizing error. We
implemented MRPSO in Python and ran experiments on
BYU’s Marylou4 supercomputer using Hadoop, an open-
source implementation of MapReduce. Figure 1 shows the
performance of MRPSO through 128 processors on the RBF
training problem.

3. CONCLUSIONS AND FUTURE WORK
MRPSO is a robust but simple implementation of PSO

which scales well with a large number of processors. In fu-
ture work, we will experiment with larger problems, analyze
communication overhead and test other swarm topologies.
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