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ABSTRACT
A byproduct benefit of using probabilistic model-building
genetic algorithms is the creation of cheap and accurate sur-
rogate models. Learning classifier systems—and genetics-
based machine learning in general—can greatly benefit from
such surrogates which may replace the costly matching pro-
cedure of a rule against large data sets. In this paper
we investigate the accuracy of such surrogate fitness func-
tions when coupled with the probabilistic models evolved
by the χ-ary extended compact classifier system (χeCCS).
To achieve such a goal, we show the need that the proba-
bilistic models should be able to represent all the accurate
basis functions required for creating an accurate surrogate.
We also introduce a procedure to transform populations
of rules based into dependency structure matrices (DSMs)
which allows building accurate models of overlapping build-
ing blocks—a necessary condition to accurately estimate the
fitness of the evolved rules.

Categories & Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning–Concept Learning.

General Terms
Algorithms, Design, Theory.

Keywords
Learning Classifier Systems, Genetics-Based Machine
Learning, fitness estimation, surrogate fitness, model-
building GAs, EDAs, χeCCS, DSMGA.
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1. INTRODUCTION
A daunting challenge for learning classifier systems

(LCS)—and genetics-based machine learning (GBML) in
general—is the amount of time spent in the rule match-
ing procedure required to estimate the fitness of a rule.
Recently, Llorà and Sastry [20] proposed an efficient im-
plementation using hardware accelerated vector operations.
However, such efficient implementations do not eliminate
the need to match candidate rules against the instance of
a given data set. Recently, a renaissance of techniques for
fitness inheritance has blossom in the estimation of distri-
bution algorithms (EDAs) community. The goal is to build
cheap surrogate fitness functions accurate enough to replace
the calculation of expensive fitness functions. Sastry, Lima,
and Goldberg [33] proposed a new surrogate fitness based
on substructural information and linear estimation.

The introduction of the χ-ary extended compact classifier
system (χeCCS) by Llorà, Sastry, Goldbeg, and de la Ossa
[21] showed that GBML approaches could greatly benefit
from using competent genetic algorithms [11]. In this pa-
per, we explore how surrogate fitness functions estimate the
fitness of a rule to avoid matching it against the instances
contained in a given data set. The fitness surrogate proposed
by Sastry, Lima, and Goldberg [33] uses the substructural
information obtaining from the probabilistic model-building
done by eCGA [16], hence, it is a good candidate for χeCCS.

We present how surrogate fitness functions can be built us-
ing substructural information evolved by χeCCS. We explore
how such surrogates behave on two test problems: the hid-
den XOR and the multiplexer problem. Both problems have
different underlying properties. Using both problems we
were able to identify the need for probabilistic models able to
represent all the accurate basis functions required to create
an accurate surrogate. In another words, the substructural
model evolved by χeCCS rely on non-overlapping building
blocks (BBs) [21]. However, in a certain class of problems,
such models may not align with the surrogate expression
proposed by Sastry, Lima, and Goldberg [33]—which re-
quires an overlapping model to solve, for instance, the multi-
plexer problem. For there reasons we will also adapt model-
building techniques to evolve overlapping BBs—the depen-
dency structure matrix genetic algorithm (DSMGA) by Yu,
Goldberg, Yassine, and Chen [41].

1798



The rest of this paper is structured as follows. Section 2
presents a general overview of the χeCCS. Then, section 3
reviews some related work on fitness inheritance for EDAs,
and section 4 describes the surrogate fitness used in this
paper. We conducted initial experiments—as reported in
section 5—that show the need, in certain class of problems,
to use probabilistic models able to express overlapping BBs.
We review one of such methods (DSMGA) in section 6, and
what transformations may be required to model rule sets—
section 7. Finally, we present some conclusions and further
work in section 8.

2. THE χ-ary EXTENDED COMPACT
CLASSIFIER SYSTEM

The χ-ary extended compact classifier system (χeCCS)
relies on a χ-ary extended compact genetic algorithm
(χeCGA) [7, 31] to identify building blocks among the rules.
χeCCS relies on a close-world assumption and uses rules
defined over the ternary alphabe {0,1,#}. Another key ele-
ment is the ability to provide proper niching capabilities—as
already pointed out elsewhere by Bernadó-Mansilla et al. [2,
3].

The χ-ary extended compact genetic algorithm (χeCGA)
[7, 31], is an extension of Harik’s binary eCGA [16]. Unlike
the original eCGA, χeCGA can handle fixed-length chromo-
somes composed of genes with arbitrary cardinalities (de-
noted by χ). As in the original eCGA, χeCGA assumes
that a good probability distribution is equivalent to linkage
learning. The measure of a good distribution is quantified
based on minimum description length(MDL) models. The
key concept behind MDL models is that given all things
are equal, simpler distributions are better than the complex
ones. The MDL restriction penalizes both inaccurate and
complex models, thereby leading to an optimal probability
distribution. The probability distribution used in eCGA is a
class of probability models known as marginal product mod-
els (MPMs). MPMs are formed as a product of marginal
distributions on a partition of the genes. MPMs also fa-
cilitate a direct linkage map with each partition separating
tightly linked genes.

The χeCGA can be algorithmically outlined as follows:

1. Initialize the population with random individuals.

2. Evaluate the fitness value of the individuals

3. Select good solutions by using s-wise tournament se-
lection without replacement [13].

4. Build the probabilistic model: In χeCGA, both the
structure of the model as well as the parameters of
the models are searched. A greedy search is used to
search for the model of the selected individuals in the
population.

5. Create new individuals by sampling the probabilistic
model.

6. Evaluate the fitness value of all offspring

7. Replace the parental population (before selection)
with the offspring population using restricted tourna-
ment replacement (RTR) [15]. We use RTR in order
to maintaining multiple maximally general and maxi-
mally accurate rules as niches in the population.

8. Repeat steps 3–6 until the finalization criteria are met.

Three things need further explanation: (1) the fitness mea-
sure, (2) the identification of MPM using MDL, and (3) the
creation of a new population based on MPM.

In order to promote maximally general and maximally
accurate rules à la XCS [38], χeCCS compute the accuracy
(α) and the error (ε) of an individual [22]. In a Pittsburgh-
style classifier, the accuracy may be computed as the pro-
portion of overall examples correctly classified, and the error
is the proportion of incorrect classifications issued. Let nt+

be the number of positive examples correctly classified, nt−
the number of negative examples correctly classified, nm the
number of times that a rule has been matched, and nt the
number of examples available. Using these values, the accu-
racy and error of a rule r can be computed as:

α(r) =
nt+(r) + nt−(r)

nt
(1)

ε(r) =
nt+

nm
(2)

We note that the error (equation 2) only takes into account
the number of correct positive examples classified1. This is
due to the close-world assumption of the knowledge repre-
sentation which follows from using a default rule. Once the
accuracy and error of a rule are known, the fitness can be
computed as follows.

f(r) = α(r) · ε(r) (3)

The above fitness measure favors rules with a good classifi-
cation accuracy and a low error, or maximally general and
maximally accurate rules.

The identification of MPM in every generation is formu-
lated as a constrained optimization problem. The goal is
to minimize the model complexity and the compress popu-
lation complexity. Further details may be found elsewhere
[16, 21]. The greedy search heuristic used in χ-eCGA starts
with a simplest model assuming all the variables to be in-
dependent and sequentially merges subsets until the MDL
metric no longer improves. Once the model is built and the
marginal probabilities are computed, a new population is
generated based on the optimal MPM as follows, popula-
tion of size n(1 − pc) where pc is the crossover probability,
is filled by the best individuals in the current population.
The rest n ·pc individuals are generated by randomly choos-
ing subsets from the current individuals according to the
probabilities of the subsets as calculated in the model.

One of the critical parameters that determines the success
of χeCGA is the population size. Analytical models have
been developed for predicting the population-sizing and the
scalability of eCGA [32]. The models predict that the pop-
ulation size required to solve a problem with m building
blocks of size k with a failure rate of α = 1/m is given by

n ∝ χk

„
σ2

BB

d2

«
m log m, (4)

where n is the population size, χ is the alphabet cardinality

(here, χ = 3), k is the building block size,
σ2

BB
d2 is the noise-

to-signal ratio [12], and m is the number of building blocks.
For the experiments presented in this paper we used k =

1The proportion of correctly classified examples is used in-
stead to simplify the calculation of the final fitness
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|a|+1 (where |a| is the number of address inputs),
σ2

BB
d2 =1.5,

and m = `
|I| (where ` is the rule size).

Assembling a rule set that describes the concept requires
maintaining multiple maximally accurate and maximally
general rules. Thus, we need an efficient niching method,
that does not adversely affect the quality of the probabilis-
tic models. Therefore, following previous studies in EDAs
[25], we use restricted tournament replacement (RTR) [15].
We note that a sub-structural niching method might be bet-
ter than RTR in stably maintaining multiple niches [30], and
it can be readily incorporated into the proposed algorithm.
In RTR, each new offspring solution x is incorporated into
the original population using the following three steps: (1)
select a random subset W of size w (called window size)
from the original population (before selection), (2) find the
solution y in W that is most similar to x (in terms of Eu-
clidean distance), and (3) make a tournament between x and
y where x replaces y if it is better than y. The parameter w
is called window size, and a good rule of thumb for setting
this parameter is w = min{`}, where ` is the problem size
[25]. We note that the window size w affects the number
of niches that can be maintained by RTR. That is increas-
ing the window size can potentially increase the number of
niches that can be maintained in the population and also
increases the probability of maintaining the niches [15, 25].

We note that the population size n, affects the success
probability of maintaining all maximally general, maximally
accurate rules, γ. In essence, RTR requires larger population
sizes to maintain the global optima for longer time. This is
a well understood phenomena of niching methods and has
been analyzed by Mahfoud for fitness sharing [24] and is
applicable to RTR as well [30]. The minimum population
size required by RTR for maintaining at least one copy of
all but one maximally general maximally accurate rules in
the population is given by [24, 30]

n ∝
log

h“
1− γ1/t

”
/nopt

i
log [(nopt − 1) /nopt]

(5)

where t is the number of generations we need to maintain
all the niches, nopt is the total number of maximally general
maximally accurate rules.

3. EVALUATION RELAXATION IN EDAS
In evaluation relaxation, an accurate, but computation-

ally expensive fitness function—such as the matching pro-
cedure in the χeCCS—is replaced by a less accurate, but
inexpensive surrogate function, and thereby the total num-
ber of costly fitness evaluations are reduced [1, 14, 18, 26,
29, 34, 36]. The low-cost, less-accurate fitness estimate can
either be (1) exogenous, as in the case of approximate fit-
ness functions [1, 18, 23], where, external means are used
to develop the fitness estimate, or (2) endogenous, as in the
case of fitness inheritance [36] where, some of the offspring
fitnesses are estimated based on fitness of parental solutions.

Sastry, Pelikan, and Goldberg [34] proposed a fitness in-
heritance method for EDAs, specifically for eCGA—a simi-
lar method was proposer for the Bayesian optimization algo-
rithm (BOA) [25] by Pelikan and Sastry [26]. Similar to ear-
lier fitness inheritance study [36], all the individuals in the
initial population were evaluated using the expensive fitness
function. Thereafter, an offspring was evaluated either us-
ing a surrogate with a user-specified inheritance probability

pi, or using the expensive fitness function with a probability
1− pi. However, the proposed method used the probabilis-
tic models of eCGA to determine the structural form of the
surrogate. That is, the MPM model used in eCGA, which
partitions the variables of the underlying search problem
into linkage groups, were used to determine the variable in-
teractions used in the surrogate. Therefore, the process of
learning a surrogate model was sub-divided into estimating
the fitness contributions of all possible subsolutions in every
partition according to the linkage map that is automati-
cally and adaptively identified by the probabilistic model of
eCGA. The authors used all evaluated parents and offspring
in estimating the partial contributions of the subsolutions
(or schemata) to the overall fitness of a candidate solution
[34].

Specifically, they used schema theory basis for determin-
ing the relative and partial contribution of a schema to the
overall fitness. That is, they defined fitness of a schema h as
the difference between the average fitness of individuals that
contain the schema and the average fitness of the population
[34]:

f̂s(h) =
1

nh

X
{i|x(i)⊃h}

f(x(i))− 1

M

MX
i=1

f(x(i)), (6)

where nh is the total number of individuals that contain the
schema h, x(i) is the ith evaluated individual and f(x(i))
its fitness, and M is the total number of individuals that
were evaluated. If a particular schema in not present in the
evaluated population, its fitness is arbitrarily set to zero.

4. FITNESS INHERITANCE IN EDAS
USING LEAST SQUARES FITTING

To address the issues presented in the previous section,
Sastry, Lima, and Goldberg [33] proposed a new surro-
gate fitness based on substructural information—as shown
before—and linear estimation. We review in this section the
main elements of such an approach since it is the basis of
the fitness inheritance scheme used by χeCCS. Similar to
Sastry, Pelikan & Goldberg [34], individuals with exact fit-
ness are used to estimate the sub-structural fitnesses of the
remaining individuals. These sub-structures that are de-
fined by the probabilistic model can be viewed and directly
mapped into schemata. The fitness associated with the dif-
ferent schemas that match an individual is then combined to
estimate his fitness. In this study, schema or building-block
fitness is defined as the relative (to the average fitness of the
population) fitness contribution to the overall fitness of an
individual.

After the model is built the linkage groups are treated as
building-blocks partitions, thus all possible schemata under
this structure are considered. Considering a MPM exam-
ple for a 4-bit problem, whose model is [1,3][2][4], the
schemata for which the fitness is predicted are {0*0*, 0*1*,
1*0*, 1*1*, *0**, *1**, ***0, ***1}. The total number of
schemas is given by

N =

mX
i=1

2ki , (7)

where m is the number of BBs and ki is the size of the ith

BB (number of variables belonging to the BB).
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The fitness values of the schemata are estimated as fol-
lows. Each individual used for learning is mapped into a
binary vector of size N , where each variable of the vector
uniquely identifies a given schema. That is, the vector is
instantiated by the following delta function

δ(x, hj) =


1, if x ⊃ hj

0, otherwise
(8)

where x is the individual to be converted and hj is the jth

schema. Basically, the vector will have value “1” for the
schemas that contain individual x and “0” otherwise. After
mapping M evaluated individuals using the above function,
the following matrix with dimension (M ×N) is obtained:

A =

0
BBB@

a1,1 a1,2 . . . a1,N

a2,1 a2,2 . . . a2,N

...
...

. . .
...

aM,1 aM,2 . . . aM,N

1
CCCA , (9)

where ai,j = δ(x(i), hj). We note that x(i) denotes the ith

individual used for learning the surrogate fitness model. We
note that the rank of matrix A is N −m + 1.
Also, the relative (to the average) fitness of each evaluated

individual is kept in a vector with dimension (M × 1) as

f =

0
BBB@

f(x(1))− f̄

f(x(2))− f̄
...

f(x(M))− f̄

1
CCCA , (10)

where f(x(i)) is the evaluated fitness of the ith individual
used for learning and f̄ is the average fitness of all M eval-
uated individuals (both from parent and offspring popula-
tion). The average fitness it then given by

f̄ =
1

M

MX
i=1

f(x(i)). (11)

Given that there are N different schema fitnesses to esti-
mate, the fitness coefficients associated with the N binary
variables can be displayed as vector of dimension (N × 1)

f̂s =

0
BBB@

f̂s(h1)

f̂s(h2)
...

f̂s(hN )

1
CCCA , (12)

where f̂s(hj) is the fitness of schema hj .
The task of estimating the relative fitness of each schema

can be stated as finding a vector f̂s that satisfies the equality:

Af̂s = f . (13)

In practice, this equality might not be entirely satisfied and
one must instead seek for minimizing the difference between
left and right terms of Equation 13. For that, it is used
a multi-dimensional least squares fitting approach. Thus,
under the least squares fitting principle the problem of es-
timating the fitness of schemata can now be reformulated
as finding the appropriate values for vector f̂s such that the
following squared error function χ2 is minimized:

χ2 =
“
Af̂s − f

”T “
Af̂s − f

”
. (14)

XOR

i0

i1

i2

i3

i4

i5

Oc

(a) Hidden XOR

N
O
T

N
O
T

AND

AND

AND

AND
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i0

i1

i2

i3

a

0

a

1

Oc

(b) 6-input multiplexer

Figure 1: The two problems presented in this figure
present different properties. XOR is a problem with
no overlapping in the variable space. The 6-input
multiplexer, on the other hand requires exhaustive
reuse of varible to provide the proper output.

The solution to the above problem is a well-known result
from literature, therefore details on the resolution are not
provided and the interested reader should refer elsewhere [4,
8, 17, 19, 27]. The method used in this paper to perform
multi-dimensional least squares fitting was provided by the
R project for statistical computing2.
After obtaining the estimates for schema fitnesses, the es-

timation of an individual’s fitness is a straightforward pro-
cess that consists in summing the average fitness of the pop-
ulation to the fitness of each schema that contains the in-
dividual being considered. The estimated fitness of an indi-
vidual x is then given by

finh(x) = f̄ +

NX
j=1

δ(x, hj)f̂s(hj), (15)

where f̂s(hj) is given by the jth element of vector f̂s.
It can be easily seen that the surrogate obtained by using

a structure inferred from a perfect model and the coefficients
via least squares yields that is identical to Walsh transform
[10] of the accurate fitness function. This clearly suggests
that given an accurate probabilistic model, we can obtain a
surrogate that accurately estimates the fitness of untested
solutions.

5. FITNESS INHERITANCE IN χECCS:
CHOOSING THE RIGHT BASIS
FUNCTIONS

The surrogate fitness model proposed in the previous sec-
tion has been successfully used in fitness inheritance schemes
in the optimization domain [33]. To successfully apply such
fitness surrogate in the learning domain of the χeCCS [21]
and other genetics-based machine learning, we conducted
preliminary analysis. We used two well-know problems to
the genetics-based machine learning community: (1) the
hidden XOR problem, and (2) the 6-input multiplexer. We
summarize in this section the insights obtain from this sim-
ple experimentation—see Figure 1.
The hidden XOR problem requires discovering a XOR func-

tion embedded in a set of inputs—most of them irrelevant
to the XOR classification task. Our initial tests used a simple

2http://www.r-project.org/
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3-bit XOR embedded in a 6 binary input space. χeCCS eas-
ily solves the problem providing the following output rules,
fitness, and the final MPMs model:

Rules: 111### → 1 f(r) = 0.625
001### → 1 f(r) = 0.625
010### → 1 f(r) = 0.625
100### → 1 f(r) = 0.625
default → 0

Model: [i0 i1 i2] [i3][i4][i5]

The rules provides by χeCCS correctly describes the hid-
den XOR problem. Moreover, the model evolved by χeCCS
clearly groups the two variable [i0 i1 i2] involved in the
hidden XOR. With this information we should be able to cre-
ate the surrogate fitness following the steps described in the
previous section. Once we obtained the surrogate, we gen-
erated all the possible rules (36) and computed the average
error of the surrogate fitness.For illustrative purposes we
present the average error of the surrogate for the evolved
χeCCS model and two other suboptimal models.

Model ε (finh(x))

[i0][i1][i2][i3][i4][i5] 14.976%
[i0 i1][i2][i3][i4][i5] 14.952%
[i0 i1 i2][i3][i4][i5] 0.890%

The results presented above show how when the correct
model is provided, the surrogate model performs remarkably
well. Encouraged by these results, we repeated the experi-
ments for the 6-input multiplexer problem.

Model ε (finh(x))

[i0][i1][i2][i3][i4][i5] 18.703%
[i0 i2][i1 i5][i3 i4] 18.665%

The results (see above) were not as compelling as the
ones obtained on the hidden XOR problem. As stated by
Sastry, Lima, and Goldberg [33] the proposed surrogate fit-
ness based on substructural information and linear estima-
tion should hold for any given accurate model. The reason
for the poor performance of the surrogate fitness was not
the method, but the model used to create such a surrogate.
The model evolved by χeCCS—the same as eCGA—is based
on MPMs and, hence, by definition non-overlapping. This
means that χeCCS is able to solve the multiplexer prob-
lem using a non-overlapping and approximate model. This
model does not prevent the χeCCS to solve the multiplexer
problem quickly, reliably, and accurately [21].

However, this approximated non-overlapping model does
not produce and accurate surrogate fitness function. This is
the result of choosing an inappropriate set of basis function
to fit the regression schema proposed by the surrogate [5].
In another words, to successfully use such surrogate for the
multiplexer problem, we need to induce overlapping BBs. A
validation of this intuition is presented below.

Model ε (finh(x))

[i0][i1][i2][i3][i4][i5] 18.703%
[i0 i2][i1 i5][i3 i4] 18.665%
[i0 i1 i2][i0 i1 i3]
[i0 i1 i4][i0 i1 i5] 0.733%

The last model shows how an overlapping model leads
to a surrogate fitness for the multiplexer problem. This
model easily follows the intuitive underlying model based on
similar basis functions—as presented in Figure 1(b).Thus, if
we want to use fitness inheritance we need to use a model
builder that is able to produce such overlapping models.
The following section introduces a competent GA that is
able to evolve such models as the one required to solve the
multiplexer problem.

6. OVERLAPPING BUILDING BLOCKS
USING DSMGA

This section gives a brief introduction to the model-
building process used in the dependency structure matrix
genetic algorithm (DSMGA), which is later used in this pa-
per as the basis of the proposed method. A detailed de-
scriptions of DSMGA is beyond the scope of this paper
and can be found elsewhere [41]. DSMGA utilizes the de-
pendency structure matrix (DSM) clustering techniques to
extract overlapping BBs. In this section we introduce the
concept of DSM and the DSM clustering problem. Then,
we describe the metric to cluster DSMs and the algorithm
used.

A dependency structure matrix is essentially an adjacency
matrix representation of a graph where each entry dij rep-
resents the dependency between node i and node j [37, 39].
Entries dij can be real numbers or integers. The larger the
dij is, the higher the interaction is between node i and node
j. If we focus on the [0, 1] domain, then dij = 0 means that
node i and node j do not interact, and dij = 1 means that
node i and node j interact with each other. The diagonal
entries (dii) have no significance and are usually set to zero
or blacked-out. For elaborate exposition of DSM, please see
MIT DSM web site: http://www.dsmweb.org/.

The goal of DSM clustering is to find subsets of DSM
elements (i.e., clusters) so that nodes within a cluster are
maximally interacting, and clusters are minimally interact-
ing. In a typical DSM clustering problem, overlapping clus-
ters (clusters that share same nodes) are permissible. The
DSM model of linkage allows overlapping of variables, as op-
posed as the non-overlapping MPM proposed by eCGA [16].
However, rearranging a DSM to obtain the proper clusters
requires a metric to compute the usefulness of the proposed
clustering rearrangement [9, 35, 41].

DSMGA relies on a DSM clustering metric based on the
minimal description length principle (MDL) [28]. Suppose
that we have a model which describes a given data set,
DSM = [dij ]. Here, the model means a description that
specifies which node belongs to which cluster. Usually, the
model does not completely describe the given data; other-
wise, the model would be too complex to use. Therefore,
the description length that the model needs to describe the
given data consists of two parts: the model description and
the mismatched data description.

The minimum description length principle (MDL) [28] sat-
isfies the needs for dealing with the above trade-off. The
MDL can be interpreted as follows: among all possible mod-
els, choose the model that uses the minimal length for de-
scribing a given data set (that is, model description length
plus mismatched data description length). There are two
key points that should be noted when MDL is used: (1) the
encoding should be uniquely decodable, and (2) the length
of encoding should reflect the complexity.

Model Encoding. The description of each cluster starts
with a number which is sequentially assigned to each
cluster, and then this is followed by a sequence of nodes
in the cluster. It is easily seen that the length of this
model description is as follows:

Σnc
i=1 (log2 nn + cli · log2 nn) , (16)

where nc is the number of clusters in the model, nn is
the number of nodes, cli is the number of nodes in the
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i-th cluster. If nn and nc are known, the above model
description is uniquely decodable. When nn is given,
and by assuming nc ≤ nn, then log nn bits are needed
to describe nc. It is a constant for all models, and
therefore they are omitted without loss of accuracy.

Mismatched Data Description. Based on the model,
another DSM (DSM ′ = [d′ij ]) is constructed, where
each entry d′ij is 1 if and only if some cluster con-
tains both node i and node j simultaneously. Then,
DSM ′ is compared to the given DSM . For every mis-
matched entry, where d′ij 6= dij , a description to indi-
cate where the mismatch occurred (i and j) is needed
and one additional bit to indicate whether the mis-
match is zero-to-one or one-to-zero. Define a mismatch
set S = {(i, j)|d′ij 6= dij}. The mismatched data de-
scription length is given by:

Σ(i,j)∈S (log nn + log nn + 1) . (17)

The first log nn in the bracket indicates i, the second
one indicates j, and the additional one bit indicates
the type of mismatch.

The MDL clustering metric is given by the summation of
the model description length and the mismatched data de-
scription. With some arithmetic manipulations, the metric
can be expressed as follows:

fDSM (M) = log nnΣnc
i=1 (cli + 1) + |S|(2 log nn + 1), (18)

where nc is the number of clusters, nn is the number of
nodes in the DSM, cli is the size of the i-th cluster, and S
is a mismatch set.

With the above metric, the DSM clustering problem is
converted into an optimization problem. Given a DSM, the
objective is to find a DSM clustering arrangement (model,
M) to minimize the above metric (fDSM ). A steepest de-
scent algorithm was adopted by Yu, Goldberg, Yassine, and
Chen [41] to optimize the DSM clustering problem. Based
on the MDL metric, it add/remove one node to/from one
cluster at each iteration. The steepest descent algorithm
stops when no further improvement is possible. Further de-
tails can be found elsewhere [41].

7. FITNESS INHERITANCE, BASIS
FUNCTIONS, AND OVERLAPPING BBS

As described in the previous section, DSM clustering is
able to identify overlapping BBs. Using DSM clustering
technique requires being able to express the interaction in-
formation among variables as a DSM. To achieve this goal we
cannot directly use the transformation method proposed by
DSMGA [40], since it deals with binary populations. How-
ever, if we can define a transformation from a rule set to
a DSM that retains the interaction properties of the vari-
ables, then DSM cluster will provide us with the proper BB
identification mechanism.

We can regard a rule r as a set of interactions among spe-
cific values. For instance, given the 6-input multiplexer rule
001### → 1, the first three positions contain specific values
that need to interact with each other to properly assemble
the rule. Hence, given a rule r which condition is defined
among the set of possible variables X, we can define the in-
teraction δs between the ith position and the jth position of

the rule r as:

δs(ri, rj) =


1, if ri 6= # ∧ rj 6= # ∧ i 6= j
0, otherwise

(19)

That is, an interaction between position i and j exists if
and only if both positions in the rule contain specific values.
Thus, we should be able to define a matrix C where cij is
the count of interactions among variables i and j in X for a
rule set R. Such a matrix is defined as:

cij =
X
r∈R

X
i∈X

X
j∈X

δs(ri, rj) (20)

The count matrix C is the base of the DSM, where we
define each of each entries dij as the normalized C where
interactions belong to the [0,1] domain. This can be simply
achieved by defining dij as

dij =
cij

max(C)
(21)

Then, we have to decide which rules should be used when
defining the DSM. The answer is easy, only the distinct ac-
curate ones—as was already suggested elsewhere [6]. This
can be easily achieved by filtering the rules of a population
based on their computed error ε(r). Only rules with no error
should be used to build the DSM to cluster.

Another important consideration is if rules belonging to
different classes should be mixed together in R.Due to the
use of a default rule—close world assumption—when solv-
ing binary classification problems, only rules belonging to
one class are evolved. For non-binary classification prob-
lems we should construct one DSM per class, avoiding the
introduction of spurious interclass interactions.

Given the evolved rules for (1) the hidden XOR presented in
section 5, and (2) the 6-input multiplexer presented below,

Rules: 001### → 1 f(r) = 0.625
01#1## → 1 f(r) = 0.625
10##1# → 1 f(r) = 0.625
11###1 → 1 f(r) = 0.625
0#11## → 1 f(r) = 0.625
#01#1# → 1 f(r) = 0.625
1###11 → 1 f(r) = 0.625
#1#1#1 → 1 f(r) = 0.625
default → 0

the DSM matrices for both problem are

DSMXOR =

0BBBB@
0 1 1 0 0 0
1 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1CCCCA (22)

DSMMUX =

0BBBB@
0 1 0.5 0.5 0.5 0.5
1 0 0.5 0.5 0.5 0.5

0.5 0.5 0 0.25 0.25 0
0.5 0.5 0.25 0 0 0.25
0.5 0.5 0.25 0 0 0.25
0.5 0.5 0 0.25 0.25 0

1CCCCA
(23)

Using this DSMs, DSM clustering returns [i0 i1 i2]

[i3][i4][i5] as model for the hidden XOR problem. As
we presented it in section 5, this is the right model the
leads to the creation of an accurate fitness surrogate. On
the other hand, the DSM clustering produces the model [i0
i1] <i2 i3 i4 i5> indicating that there is a building block
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[i0 i1] that interacts with a bus of variables <i2 i3 i4

i5>. Hence, the bus can be expanded as [i0 i1 i2][i0

i1 i3][i0 i1 i4][i0 i1 i5] giving the right overlapping
model—see section 5—to build an accurate surrogate for the
multiplexer problem.

8. CONCLUSIONS AND FURTHER WORK
We have shown how fitness inheritance for genetics-based

machine learning techniques is possible. A surrogate fitness
based on substructural information and least square fitting
is able to accurately predict the fitness of the rules evolve by
χeCCS. Such a surrogate can replace the cost of computing
the fitness of a rule against large data sets. We have also
show how χeCCS is able to solve hidden XOR and multiplexer
problems quickly, reliably, and accurately by using approxi-
mating probabilistic models of the population of rules based
on non-overlapping BBs.

However, such rough approximation models are not
enough to build a proper surrogate fitness model. An ac-
curate surrogate fitness function requires an accurate prob-
abilistic model able to express overlapping BBs—as empir-
ically shown for the multiplexer problem. The functional
basis used to create the surrogate fitness need to be care-
fully chosen to allow an accurate regression of the fitness
of the rules. In order to obtain such a surrogate we have
defined a transformation which from a set of accurate rules
creates a DSM that, when properly clustered using the DSM
clustering method, provides accurate overlapping BBs. This
overlapping BBs define the correct basis which allow the
creation of accurate surrogates for certain class of Boolean
problems such as the multiplexer. Future research should
focus on introducing probabilistic model-building GAs able
to express overlapping into the χeCCS and bounding the
speedup produce by the use of the surrogate.
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