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ABSTRACT
Existing metrics for dynamic optimisation are designed pri-
marily to rate an algorithm’s overall performance. These
metrics show whether one algorithm is better than another,
but do not indicate any specific aspects of the performance.
In this paper we split the offline error metric into two com-
ponent parts. We propose a new metric to measure con-
vergence speed, and show how this, when combined with
a population diversity metric, correlates strongly with the
overall performance.

We then use these metrics to analyse several optimisation
algorithms, yielding new insight into both the test function
and how the algorithms’ characteristics can be improved.

Categories and Subject Descriptors
G.1 [Numerical Analysis]: Optimisation; F.2.1 [Analysis
of Algorithms and Problem Complexity]: Numerical
Algorithms and Problems

General Terms
Algorithms

Keywords
Evolutionary Computation, Particle Swarms, Multimodal
Function Optimisation, Dynamic Optimisation

1. INTRODUCTION
Dynamic optimisation poses a unique challenge for Evo-

lutionary Algorithms. Many algorithms, while being highly
effective on static problems, flounder in a changing envi-
ronment. Diversity preservation becomes critical; not only
must the algorithm avoid premature convergence, it must
also track “promising” solutions in case they lead to a global
optimum in the future.

While there exist many metrics designed to compare per-
formance on dynamic functions, in general they only mea-
sure the overall performance of an algorithm without giving
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insight into its strengths and weaknesses. This information
would be very useful to those trying to improve existing al-
gorithms or develop new ones. With this knowledge efforts
can be directed more effectively, leading to reduced research
time and ultimately, better algorithms.

Algorithms are often framed in terms of exploration vs.
exploitation, yet these aspects are rarely actually measured
or reported on in papers. This work combines two metrics
that exclusively measure the exploration and exploitation
characteristics of an algorithm.

We will be presenting a new metric, Best Known Peak
Error (BKPE), to measure convergence speed. By combin-
ing this with the existing peak cover metric [5], we will offer
new insight into the relative strengths of several optimisa-
tion algorithms on a dynamic benchmark function. We will
also show how and why these metrics correlate with offline
error performance [5].

This paper is structured as follows: Section 2 introduces
the existing metrics, Moving Peaks and Particle Swarm Op-
timisation (PSO), the algorithm we will use to demonstrate
the metrics. The new metric will be explained in Section 3
and related to offline error in Section 4, followed by the
experimental setup in Section 5. The correlation between
offline error and the metrics will be discussed in Section 6
as well as how the relative strengths of several PSO variants
can be shown. Finally Section 7 will conclude the paper and
suggest directions for future research.

2. RELATED WORK
In this paper we introduce a new metric for dynamic op-

timisation problems, combining it with an existing metric.
This section outlines some of the previously developed met-
rics, as well as the algorithms and dynamic benchmark func-
tion we will test the metrics on.

2.1 Performance Metrics
Various metrics have been proposed to measure algorithm

performance in dynamic environments. Many report the
fittest value at each generation; an algorithm’s performance
is analysed by graphing these values and comparing with
other algorithms at each generation[1, 7].

Online performance [8] measures the average fitness of
every individual at each generation. This metric penalises
algorithms that keep individuals in suboptimal areas of the
decision space to preserve diversity or better react to fitness
landscape changes – the suboptimal individuals drag the
average population fitness down.

Morrison introduced the Collective Mean Fitness [13]. This
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works by averaging the fitness of the best individual in each
generation over many iterations. By measuring over a large
number of generations, this metric provides a stable value
with which performance can be compared.

Mean Tracking Error [13] measures the average distance in
the search space between the optimum and the best known
solution. This indicates the convergence speed of the algo-
rithm on the correct peak. Algorithms which do not track
the correct peak are penalised by this metric, even if they
have converged on an area of near-optimal fitness.

For the Moving Peaks optimisation benchmark (See Sec-
tion 2.2), Branke’s modified offline error [5] is the most com-
monly used metric, although it is also used with other fitness
functions. This metric measures the average fitness differ-
ence between the global optimum and the best found solu-
tion since the last landscape change. An algorithm that can
converge quickly on a new optimum is rewarded with a low
error, as is one that maintains good population diversity to
react rapidly to change.

While these metrics are effective in comparing algorithms,
they do not say how the algorithms can be improved. The
two orthogonal aspects of an algorithm’s performance – ex-
ploration and exploitation – are measured as one, discarding
valuable information.

A less well-known metric outlined by Branke in Chapter
5 of [5] is peak cover. This exclusively measures popula-
tion diversity – the exploration aspect of an algorithm – by
analysing how many of the optima or peaks the algorithm
tracks. An algorithm that tracks more peaks is better posi-
tioned to adapt once a change occurs; it has a higher chance
of already covering the new best peak. For fitness func-
tions where peaks can become submerged or hidden below
other parts of the fitness landscape, the hidden peaks are
ignored. This prevents the metric penalising an algorithm
for not tracking a peak that isn’t visible anyway. Peak cover
is calculated using Equation (1).

peak cover =
covered peaks

non-hidden peaks
(1)

A peak is covered when there is at least one individual
within its catchment area. Figure 1 shows a number of indi-
viduals on different peaks. Peak 1 is ignored since its tip is
hidden by Peak 2. Peak 3 is not covered as there are no in-
dividuals within its catchment area. This gives a peak cover
of 0.5 (50%).

In Section 3 we will be introducing the compliment to
peak cover, a metric that measures the exploitation of an
algorithm. Together, these metrics provide a far more de-
tailed understanding of an algorithm’s performance charac-
teristics.

2.2 Moving Peaks
Moving Peaks is a dynamic optimisation problem genera-

tor proposed by Branke [4], in which there are a number of
peaks that can be specified to move randomly. The object is
to track the location of the highest peak as it moves through
the decision space.

After a predefined number of evaluations, the peak loca-
tions, heights and widths are changed. The currently high-
est peak may not always be; it may be overtaken by another
peak or even hidden completely (Figure 2). To achieve good
results, algorithms must track as many peaks as possible.

Figure 1: Half of the non-hidden peaks are repre-
sented by the population, giving a peak cover of 0.5
(50%). Peak 1 is ignored because it’s hidden by
Peak 2.

Figure 2: The Moving Peaks function provides
a challenge to evolutionary algorithms. The
previously-best Peak 2 is now hidden by Peak 3 and
Peak 1 has become the new global optimum. Any
algorithm that fully converges on a single peak will
perform poorly on this function.

2.3 Particle Swarms
Particle Swarm Optimisation (PSO) has proved very ef-

fective at solving the Moving Peaks function [12]. It consists
of a population of particles that move around the decision
space [9]. Each particle has a memory of the best location it
has so far visited, known as the personal best, and is able to
interact with a number of other particles as defined by the
neighbourhood topology [10]. To decide where to move next,
the particle randomly chooses a point near the best point it
has found and the best point that any of its neighbours has
found, known as the neighbourhood best. To prevent parti-
cles from travelling directly to the chosen point, they have
an inertia. While they are attracted to the chosen point,
it may take several iterations to turn around and reach it.
The constriction coefficient [6, 9] variation of PSO has been
adopted for our experiments, as shown in Equations (2) and
(3).

�v(i,t+1) = χ(�v(i,t)+ϕ1(�p(i,t)−�x(i,t))+ϕ2(�p(g,t)−�x(i,t))) (2)

�x(i,t+1) = �x(i,t) + �v(i,t+1), (3)

where:

ϕ1 = c1r1, ϕ2 = c2r2,

χ =
2κ˛̨

2− c−√c2 − 4c
˛̨

t represents the current time step. �x(i,t) and �v(i,t) are
the current location and velocity of the particle respectively.
�p(i,t) is the personal best location of the current particle and
�p(g,t) the best location found by any of its neighbours. c1

and c2 are constants, typically 2.05. c = c1 + c2. κ is also
a constant, usually set at 1. r1 and r2 are uniform random
numbers between 0 and 1.
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χ acts to constrict the velocity of the particle. This pre-
vents it from violently oscillating around its personal best [6]
and ensures the surrounding area will be thoroughly ex-
plored. In addition, the velocity is limited to the size of
the decision space. If a particle’s velocity would take it out
of the decision space, it is “bounced” off the edge.

For the standard PSO, we have used a von Neumann
neighbourhood topology. This was shown in [10] to have
good convergence properties while remaining robust against
premature convergence. While it cannot compete with algo-
rithms that have been specifically designed for multimodal
environments, it provides reasonable performance without
incurring heavy code or runtime overheads.

2.4 Niching Particle Swarms
Niching particle swarms offer improved performance on

multimodal problems by identifying “niches” within the pop-
ulation and preventing particles from different niches com-
municating. Each niche maintains a subset of the population
on a different peak, allowing the system to converge on mul-
tiple optima simultaneously. Even on unimodal problems
this can be an advantage, as the added diversity reduces
the risk of premature convergence; even if one niche gets
trapped in a local optimum, the rest of the population is
free to explore other areas. We will be testing the metrics
using three niching (also known as specied) particle swarms:
SPSO [11], ESPSO [3] and ANPSO [2].

SPSO introduces the concept of species seeds [11]. An
individual is a species seed if there are no fitter individuals
within a user-specified distance r of it. Particles that are
not species seeds are allocated to the fittest seed within r of
their location. Each species is defined as the seed and all of
the particles that have been allocated to it. Particles within
the same species are able to interact freely with each other
but are prevented from interacting with any particles from
other species.

One of the disadvantages of SPSO is that it is sensitive
to the value of r - if it is too small, the level of particle
interaction is too low and the population is likely to become
trapped in local optima. If it is set too large the algorithm is
unable to differentiate nearby peaks - it is very difficult for
the system to maintain individuals on multiple peaks within
the same species. ESPSO [3] was developed to counter this
difficulty. Once a species seed has remained in the same
place for several iterations, its members can no longer join
or leave. This allows new species to form on nearby optima
without interference from optima that have already been
discovered. This characteristic makes the algorithm far less
sensitive to r - the user can set it to a large arbitrary value
with very little impact on performance.

The final niching algorithm we will use is ANPSO [2]. This
algorithm analyses which particles tend to stay together over
successive iterations and groups those into niches. The rest
of the population is placed in a von Neumann neighbour-
hood topology to increase the speed at which new niches
are found, while allowing different promising areas to be ex-
plored simultaneously.

2.5 Guaranteed Convergence PSO
A particle swarm can converge quickly on an optimum

when there are a number of particles in the area. When
there are only a few particles, the system takes a lot longer
to accurately find the optimum. GCPSO [15] can be imple-
mented on top of a normal PSO in order to increase con-
vergence speed. It modifies the behaviour so that the fittest
particle randomly tries points near its personal best, rather
than moving around as the rest of the population does. The
radius of the hypersphere in which it searches is adaptively
determined by the number of consecutive moves that led to
success or failure. A successful move is one that gives the
particle a better fitness than it did before, and the opposite
for a failure. If the number of successful moves reaches a
threshold the radius is increased, making the particle more
aggressive in its searches. Conversely, if the number of fail-
ures in a row reaches a threshold, the radius is decreased.

The GCPSO algorithm was modified so it could be used
with non fully-connected neighbourhood topologies [14]. In
this variant, any particle who had a higher personal best
fitness than any of its neighbours used the GCPSO search-
ing algorithm and maintained its own success and failure
counts. This modification allows it to be used with niching
algorithms such as the ones outlined above.

3. MEASURING CONVERGENCE SPEED
Offline error is an effective way to compare an algorithm’s

overall performance on Moving Peaks. In this section, we
introduce a new metric called “Best Known Peak Error”
(BKPE), and show how it and peak cover represent the
component parts of offline error. Unlike offline error, these
metrics are calculated at the end of every generation instead
of at each evaluation (See Figure 3).

BKPE measures the convergence speed of the algorithm
once it has found the catchment area of a peak. The peak
used for the calculation is the peak with the fittest individ-
ual that was covered for the entire time since the last peak
movement. This metric is calculated similarly to offline er-
ror; it is the difference in fitness between the top of the peak
and the fittest individual within the peak’s catchment area.
While the actual peak chosen has little effect on the metric,
we chose the best known peak as it’s the one the algorithm
is most likely to be concentrating its resources on. As with
peak cover, individuals on hidden peaks are ignored.

At the end of each generation, for each peak the fittest
individual within that peak’s catchment area is chosen, and
the fitness difference between the individual and the peak is
added to that peak’s error (See Equation (4) and Figure 3).
Immediately before the peaks are moved, the peak with the
fittest individual and that was covered at the end of every
generation since the last move is selected, and its error added
to the total. After this, the error for each peak is reset to
0. The BKPE is calculated by dividing the total error by
the number of generations1. This is described in detail in
Algorithm 1.

BKPE =
1

G

GX
g=1

eg,i (4)

1If there was no peak covered for every generation between
two peak movements, the BKPE cannot be calculated for
this period and the generations between the movements are
ignored.
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Figure 3: For the BKPE the error is calculated
to every known peak. Immediately before a peak
movement, the error of the fittest particle on a
known peak (in this case the right-hand peak) is
added to the total error for the run. The errors
for each peak are then reset to 0. The BKPE in
the scenario above would be 13

3 generations
= 4.33. The

middle peak is ignored because it was unknown dur-
ing the first generation. The offline error would be

54
9 evaluations

= 6.

G is the total number of generations, g is the current
generation number and i is the index of the peak that has
the fittest individual. eg,i represents the accumulated fitness
error between the last peak movement and generation g for
peak i.

4. RELATING PEAK COVER AND BKPE TO
OFFLINE ERROR

Peak cover and BKPE are orthogonal component parts
of offline error. To obtain a good offline error score, the
algorithm must converge quickly (measured by BKPE) and
track as many peaks as possible (measured by peak cover).
An algorithm with a low BKPE and high peak cover will
achieve a low offline error, as shown in Figure 4. Conversely,
an algorithm that has a high BKPE and low peak cover is
likely to have a high offline error.

Let us imagine an algorithm possessing an oracle. The
oracle knows the exact location of each peak but not the
height. It must keep an individual on each peak in order
to return the global optimum. This algorithm would have
a peak cover of 1 and a BKPE of very close to 0. Since we
track every peak, the best known peak will always be the
globally optimal peak, thus the BKPE and offline error will
be almost2 the same.

2There will be a small difference – the offline error is com-
puted every evaluation whereas the BKPE is calculated ev-
ery generation.

r is the cumulative total error, initially 0
m is the number of ticks for which the metric has been
computed, initially 0
BKPE = r

m

t is the current tick
l is the tick of the last peak movement
K is the set of peaks
U is the set of unknown peaks
P is the set of population members
ey is the error of the peak y

covering(�ki) returns the subset of P that covers �ki

hidden() returns the subset of K that is hidden by
other peaks
fitness(�x) returns the fitness of point �x
y and f are temporary variables

At the end of each generation:

for ∀i; �ki ∈ K ∧ �ki /∈ U do

C ← covering(�ki)
if C = � then

U ← U ∪ �ki

end
else

// Find the fittest individual on peak �ki

y ← 0
for ∀j; �cj ∈ C do

if fitness(�cj) > fitness(�cy) then
y ← j

end
end
ei ← ei + fitness(�ki)− fitness(�cy)

end
end

Immediately before a peak movement:

if ∃i; �ki ∈ K ∧ �ki /∈ U then
// Find the fittest individual on a non-covered
// peak and note which peak it’s on
f ← −∞
y ← 0

for ∀i; �ki ∈ K ∧ �ki /∈ U do

C ← covering(�ki)
for ∀j; �cj ∈ C do

if fitness(�cj) > f then
y ← i
f ← fitness(�cj)

end
end

end
r ← r + ey

m← m + t− l

end

Immediately after a peak movement:

U ← hidden()
l← t
for ∀i; �ki ∈ K ∧ �ki /∈ U do

ei ← 0

end

Algorithm 1: The procedure for calculating BKPE.
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Figure 4: Algorithms that get a low BKPE and high
peak cover will have a low offline error, thus offline
error is related to the distance from the bottom right
of the graph.

5. EXPERIMENTAL SETUP
We are primarily interested in showing the correlation of

peak cover and BKPE with offline error. To do that, we will
be comparing the offline error of each run to the distance
from the point as it would be plotted on Figure 4 to the
bottom right of the graph. The BKPE is normalised so that
all values are in the range [0, 1]. The actual calculation for
this is shown in Equation (5). We have called the resulting
variable PB, standing for “Peak cover and BKPE”.

PB =

s
(1− peak cover)2 +

„
BKPE

max(BKPE)

«2

(5)

In addition, we will also analyse the relative performance
of four PSO variants and the effect of adding a convergence
enhancer to the algorithms. The PSO models we will use
are standard constriction PSO with a von Neumann neigh-
bourhood model, SPSO, ESPSO and ANPSO. Each PSO is
also tested in combination with GCPSO to enhance conver-
gence. All parameters have been set to the recommended
values. An r value of 30 has been used for SPSO and ES-
PSO. 50 runs with an initial population size of 100 was used
for all PSO models and each run was stopped after 500000
evaluations. For SPSO, we limited each species to 10 parti-
cles - any excess particles were randomly distributed in the
decision space. These parameter settings are the same as
were used in [12]. To allow better comparison with ESPSO
and encourage more stable species, we used the particle’s
personal best as the species seed.

The Moving Peaks Scenario 2 benchmark was used, with
different numbers of peaks from 1 to 190. The peaks change
height and location every 5000 evaluations. To detect these
changes, the personal best of the fittest particle in each of the
top 5 species is recorded. If the fitness of that point changes,
all of the particles have their personal best memory reset
to their current location. As the von Neumann topology
doesn’t maintain distinct species, we monitor the landscape
using the 5 fittest particles instead.
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Figure 5: The correlation between PB and offline
error. The vertical bar represents the runs using
the von Neumann topology; these all had a small
BKPE and a peak cover of 0.1. Across all the runs,
the correlation coefficient between offline error and
PB was 0.83, showing these are strongly correlated.

6. RESULTS
This section will first discuss the correlation of the met-

rics with offline error and how it changes with the number
of peaks. It will then analyse the differences in the perfor-
mance of the tested PSO variants. Finally we will use the
metrics to determine how the algorithms’ performance can
be improved.

6.1 Correlation with offline error
Figure 5 shows the Pearson correlation between PB and

offline error when there are 10 peaks. The vertical bar at
approximately 0.9 on the PB axis is caused by the von Neu-
mann runs. Invariably this topology caused the PSO to con-
verge on only one of the 10 peaks, giving a peak cover of 0.1.
As the BKPE was small relative to the other algorithms, al-
most all of the von Neumann runs had a PB of around 0.9.
In this case, the offline error was almost entirely determined
by movements of the peak the algorithm converged on – it
had very little chance to locate alternate peaks once it had
converged. In our tests there was almost no correlation be-
tween offline error and PB for the von Neumann runs: -0.01
in the case of the 10-peak tests. To avoid skewing our re-
sults, we have excluded these runs when discussing overall
correlations.

Figure 6 shows the correlation between the two metrics
and offline error for the speciated algorithms as the number
of peaks varies. A high correlation indicates that the given
metric is a large determining factor in the offline error. To
make the graph easier to read, we have plotted the correla-
tion of 1−peak cover and made the peaks axis logarithmic.
A coefficient of -1 or 1 indicates perfect correlation and 0
indicates none. A negative correlation indicates that as the
first variable increases the second generally decreases.

The correlation of PB with offline error is generally slightly
higher than both peak cover and BKPE. When there are
fewer than 50 peaks the correlation is very strong (> 0.8),
showing that these metrics are the main factors of offline
error. Above 50 peaks the correlation declines; it becomes
increasingly important to track the most promising peaks
instead of every peak possible.

The peak cover is most important when there are only a
few peaks. Since the number of peaks relative to the pop-
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Figure 7: The correlation between 1 - peak cover
and BKPE. When there are many peaks, maintain-
ing a high peak cover results in a low convergence
speed because there are fewer individuals on each
peak.

ulation size is low, it is possible to keep a significant num-
ber of individuals on each peak. This allows the algorithm
to respond more quickly to peak movements and changes.
The comparatively low BKPE correlation shows that while
convergence speed does play a role here, the offline error is
mainly determined by how many of the peaks were tracked.

As the number of peaks increases, tracking too many be-
comes a disadvantage. Since the algorithms only have a fi-
nite number of individuals available, there is a risk of spread-
ing the search power too thin. Figure 7 shows that as the
number of peaks increases, runs where the peak cover was
high tended to also have a high BKPE. This indicates that
maintaining individuals on too many peaks reduces the algo-
rithm’s ability to quickly converge, offsetting any diversity
advantage. The correlation between offline error and BKPE
indicates quick convergence is important, even if it is not
on the correct peak. Although the algorithm may not be
tracking the currently-optimal peak, it is likely to be track-
ing another with similar fitness. As long as the algorithm
accurately knows the location of the alternative peaks, the
error penalty should be relatively small.

6.2 Algorithm performance
Figures 8 and 9 show the performance of the algorithms

on the 10 and 110 peak problems respectively. The most
obvious difference between the two is that the peak cover is
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Figure 8: Comparative performance with 10 peaks.
Bottom left: The non GCPSO von Neumann point
is obscured by the GCPSO-enhanced result as the
BKPE and peak cover are almost identical.
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Figure 9: Comparative performance with 110 peaks.

much lower with 110 peaks; the algorithms no longer have
enough individuals to represent all of the peaks – they must
choose the most promising ones.

To allow easy comparison, the symbol used for the GCPSO-
enhanced algorithms is a filled version of the respective un-
enhanced version. As can be seen in both figures, GCPSO
made very little difference to performance. It would seem
that on this problem at least, PSO does not require this
enhancement to achieve fast convergence.

The number of peaks did not change the algorithms’ rel-
ative BKPE and peak cover rankings. Von Neumann has
an extremely low BKPE because almost all individuals con-
verged on the same peak. The extra search power gives it
a far lower BKPE than the niching algorithms, at the cost
of only being able to track a single peak and thus a very
low peak cover. It should be repeated that von Neumann’s
offline error performance was very poor as it was difficult for
it to switch peaks.

ANPSO and SPSO showed very similar BKPE, although
for the 10 peak problem SPSO had a significantly better
peak cover. For the 110 peak problem both the BKPE and
peak cover are almost identical, resulting in very similar
offline errors of 3.69 and 4.04 respectively.

ESPSO’s comparatively poor BKPE and peak coverage
can be expected as in general it is slower to locate optima
than SPSO [3]. It was designed to reduce the sensitivity to
SPSO’s radius parameter and thus require less tuning. Since
the optimal radius value is already known and we are only
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Table 1: Algorithm performance with 10 peaks (mean and standard error).
Algorithm Peak cover BKPE Offline error
ANPSO 0.61 (±0.01) 1.98 (±0.07) 4.69 (±0.23)
ANPSO (GCPSO) 0.64 (±0.01) 1.96 (±0.06) 4.04 (±0.16)
ESPSO 0.55 (±0.02) 3.31 (±0.10) 7.43 (±0.35)
ESPSO (GCPSO) 0.56 (±0.03) 3.71 (±0.13) 7.57 (±0.43)
SPSO 0.89 (±0.01) 1.92 (±0.05) 2.63 (±0.08)
SPSO (GCPSO) 0.90 (±0.01) 1.86 (±0.05) 2.24 (±0.08)
von Neumann 0.11 (±0.00) 0.90 (±0.04) 16.39 (±0.57)
von Neumann (GCPSO) 0.11 (±0.00) 0.88 (±0.04) 16.53 (±0.51)

Table 2: Correlation with offline error for 10 peaks.

ANPSO ESPSO SPSO VNa

1 - Peak cover 0.5 0.76 0.12 0.17
BKPE 0.37 -0.04 0.58 0

avon Neumann

interested in tracking the highest peak within each species
area, the enhancements in ESPSO do not translate to im-
proved performance as measured by these metrics.

Finally, in Table 1 we compare the offline error of the al-
gorithms when tested on the 10 peak problem. SPSO com-
bined with GCPSO was by far the best performing algo-
rithm, while von Neumann was the worst. The correlation
between offline error and the presented metrics is evidenced
by these results.

6.3 Improving the algorithms
Each algorithm has its own strengths and weaknesses.

Some algorithms such as SPSO are very good at maintain-
ing diversity, others are able to converge very quickly. The
overall effectiveness of an algorithm is still measured by of-
fline error; as discussed above increasing peak coverage or
decreasing BKPE may not necessarily be advantageous.

To find how an arbitrary algorithm can be improved, we
determine the correlation of peak cover and BKPE with of-
fline error. Table 2 lists these correlations for the tested
algorithms. A high correlation between one of the metrics
and offline error indicates the algorithm’s final performance
is dependant on that aspect. A low correlation suggests im-
proving the algorithm in this area is not likely to impact on
overall performance – the effort is better spent elsewhere.

It should be noted that the numbers in Table 2 do not
indicate performance. Algorithms that have similar correla-
tion for a particular metric may have wildly different perfor-
mance in that area. For example, ESPSO and von Neumann
both have almost no correlation between BKPE and offline
error, however ESPSO’s mean BKPE is more than 3 times
as large as von Neumann’s.

The most striking feature of the table is the very low cor-
relations for the von Neumann runs. Since both metrics have
a low correlation, we know the offline error must be deter-
mined by some other factor. In this case it is the movements
and average height of the algorithm’s chosen peak.

ANPSO showed a reasonable correlation for both metrics,
indicating that improving either the diversity or convergence
speed should improve offline error. Interestingly, SPSO and

ESPSO were opposite each other in this regard: for SPSO
increasing the peak coverage has a negligible effect, most
likely because peak cover was already very high. ESPSO
on the other hand benefited greatly from increased peak
coverage. ANPSO has a similar peak cover but far less cor-
relation with offline error, possibly indicating that ESPSO
is becoming trapped on low value peaks. In any case, the
high correlation shows that adding a diversity preservation
mechanism to this algorithm would likely improve offline er-
ror.

The lack of correlation between BKPE and offline error for
ESPSO shows that while the BKPE is very high, improving
it is not likely to have much impact on the offline error
score. By contrast SPSO had a strong correlation for BKPE
- increasing convergence speed should improve the overall
performance.

7. CONCLUSION
The metrics presented in this paper allow better insight

into algorithm performance than offline error alone. While
offline error is an effective metric by which to rate algo-
rithms, it can still be broken down into two principal com-
ponents: convergence speed and diversity. By measuring
the performance of these aspects individually, peak cover
and BKPE can better show the strengths and weaknesses of
an algorithm.

There are many future research directions from this paper.
First of all would be to analyse the performance of other al-
gorithms and improve their diversity and convergence char-
acteristics. Other diversity preservation techniques may be
more effective on this function than niching, and techniques
such as quantum swarms as presented in [12] may reduce
the BKPE better than GCPSO.

It may also be possible to modify both the peak cover
and BKPE metrics to better rate the diversity and conver-
gence properties of an algorithm. By weighting each peak
by the number of individuals on it, we can analyse how an
algorithm is spending its resources. This may encourage the
development of algorithms that dynamically allocate indi-
viduals to the most promising peaks. By maintaining only a
minimal population on suboptimal peaks, an algorithm can
increase its convergence speed on good peaks while still be-
ing able to react quickly to a low peak becoming the global
optimum.
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