
Support Vector Regression for Classifier Prediction

Daniele Loiacono†, Andrea Marelli†, Pier Luca Lanzi†∗
†Artificial Intelligence and Robotics Laboratory (AIRLab)

Politecnico di Milano. P.za L. da Vinci 32, I-20133, Milano, Italy
∗Illinois Genetic Algorithm Laboratory (IlliGAL)

University of Illinois at Urbana Champaign, Urbana, IL 61801, USA

loiacono@elet.polimi.it, am673447@lau.polimi.it, lanzi@elet.polimi.it

ABSTRACT
In this paper we introduce XCSF with support vector prediction:
the problem of learning the prediction function is solved as a sup-
port vector regression problem and each classifier exploits a Sup-
port Vector Machine to compute the prediction. In XCSF with
support vector prediction, XCSFsvm, the genetic algorithm adapts
classifier conditions, classifier actions, and the SVM kernel param-
eters. We compare XCSF with support vector prediction to XCSF
with linear prediction on the approximation of four test functions.
Our results suggest that XCSF with support vector prediction com-
pared to XCSF with linear prediction (i) is able to evolve accurate
approximations of more difficult functions, (ii) has better general-
ization capabilities and (iii) learns faster.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning—Learning Classifier Sys-
tems

General Terms
Algorithms, Performance

Keywords
Learning Classifier Systems , Support Vector Machines, Computed
Prediction, XCS, Genetic Algorithms

1. INTRODUCTION
XCSF [26] extends the idea of learning classifier systems

through the introduction of a computable classifier prediction. In
XCSF classifier prediction is not memorized into a parameter but
computed as a linear combination of the current input and a weight
vector associated to each classifier. Thus, the original update of the
prediction parameter [24] is replaced by the update of the param-
eters of the prediction function. In [26], the prediction function is
defined as the linear combination s · w, where s is the current in-
put and w is the parameters vector associated to each classifier, but
more complex functions can be used [10, 11]. As shown in [12]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

the problem of learning the prediction function is basically an in-
cremental parameters estimation problem that can be solved with
many parameters estimation techniques.

In this paper, we show that the problem of learning the predic-
tion function can also be solved as a support vector regression prob-
lem [21], i.e., using Support Vector Machines (SVMs) to compute
classifier prediction. SVMs are a widely used machine learning
technique with both a sound theoretical background and a lot of
practical successful applications. We introduce XCSF with support
vector prediction, dubbed XCSFsvm, in which classifiers predic-
tion is computed using SVMs. In XCSFsvm classifier prediction
is updated with a well known SVM training techniques adapted to
the online learning setting used in XCSF. The extension of XCSF
with SVMs has two main advantages: (i) it sets the problem of
learning the classifier prediction function as a well-posed quadratic
optimization problem and (ii) it can tackle non-linear prediction
function using the so-called “kernel trick” [21]. One of the known
drawbacks of SVMs is that they require suitable values for the ker-
nel parameters which are typically set through empirical search and
experience. In XCSFsvm, we let evolution do the job, so that the
system is in charge of finding the adequate parameters for the SVM
kernels. Thus, in XCSFsvm the genetic algorithm works both on
the partitioning of the problem space (as it usually happens) and
on the search for the most suitable SVM kernel parameters. We
compared XCSF with our XCSFsvm on four functions inspired to
those used by Butz [1, 2]. Our results suggest that XCSFsvm is not
only able to evolve accurate approximations of functions that are
too difficult for XCSF [26, 9], but it also generalizes significantly
better than XCSF.

The paper is organized as follows. In Section 2 we introduce the
basics of support vector regression. Then, we show how support
vector regression is extended for online learning (Section 3). In
Section 4 we describe XCSF and then we show how we extended
XCSF by adding support vector regression for classifier prediction
(Section 5). The experimental design is described in Section 6
while in Section 7 we report the experimental results.

2. SUPPORT VECTOR REGRESSION
Consider a given set of training samples
{(x1, y1), ..., (x�, y�)} ⊂ X × IR, where X is the input
space (e.g. X ≡ IR3) and yi is the target associated to each input
xi. We define ε−SV regression [21] as the problem of finding a
function, f : X �→ IR, such that f(xi) has at most a deviation ε
from the target yi for all the training samples. In order to be a good
solution, f should be as flat as possible [19], i.e. the smoothest
function with at most an ε deviation from the targets.

In the simplest case the problem can be solved with a linear func-
tion, f(x) = w ·x+b, where w ∈ X and b ∈ IR. In this particular

1806

case the flattest solution is the smallest w [19], such that

|w · xi + b− yi| ≤ ε, ∀i. (1)

Unfortunately very often this problem has no solution and thus the
ε−SV regression problem is usually defined as

min
1

2
‖ w ‖2 + C

lX
i

(ξi + ξ∗i), (2)

subject to (∀i = 1 · · · �):

yi − xi ·w − b ≤ ε− ξi; xi ·w + b− yi ≤ ε− ξ∗i , (3)

where ξi and ξ∗i , called the slack variables, represents at what de-
gree the original problem constraints (Equation 1) are violated by
the solution; the positive constant, C, represents a trade-off be-
tween the accuracy and the flatness of the solution.

The optimization problem defined by Equation 2 and Equation 3
can be often solved more easily in its dual formulation (for the de-
tails we refer the reader to [19]).

In order to extend this approach to non linear regression prob-
lems it is possible to introduce a mapping function, φ : X �→ H,
that maps the input space X in a suitable feature space H where
the regression problem can still be solved by a linear function
f(x) = w · φ(x) + b. In practice, in many problems the dimen-
sionality of such a suitable feature space grows exponentially and
this approach would quickly become infeasible. Luckily the so-
lution of the optimization problem associated to the regression
problem can be expressed solely in terms of the kernel function,
k(x,x′) = φ(x) · φ(x′), i.e. the inner product in H. This key ob-
servation, usually referred to as the kernel trick, allows to solve the
regression problem in a feasible way, because a large class of map-
ping function φ(·) admits an easy to compute kernel. Accordingly
the solution of the regression problem becomes [19]:

f(·) =

�X
i=1

βik(xi, ·) + b, (4)

where the coefficients βi and b are obtained solving the dual for-
mulation of the optimization problem defined by Equation 2 and
Equation 3. It is worthwile observing that, in the solution reported
by Equation 4, many βi coefficients are usually zero: only few
training samples plays a role in the computation of the regression
problem solution, i.e. the training samples associated to non zero
βi coefficients. These particular training samples are usually called
Support Vectors (SVs) [21].

3. ONLINE LEARNING WITH
SUPPORT VECTOR REGRESSION

Solving the ε−SV regression problem introduced in the previ-
ous section involves a non-trivial quadratic programming optimiza-
tion that is, in general, computationally quadratic both in time and
memory with respect to the number of training samples. Many ef-
forts have been done for solving efficiently such optimization prob-
lem [6, 16] but the proposed algorithms usually require all the train-
ing samples at once, i.e. they solve a batch learning problem. In
this paper instead we only deal with the online learning problem,
that is at each time step a new training sample is available. A lot
of incremental algorithms have been introduced in literature either
for computing an approximate solution [7, 22] or the exact solu-
tion [14, 15, 4] of the optimization problem. Unfortunately these
incremental algorithms are not widely used in practice basically
for two reasons [13]: (i) there is not yet any standard available im-
plementation of such algorithms; (ii) they are rather complex and

tricky to implement in order to get a good computational perfor-
mance.

A completely different approach is the one of chunking meth-
ods [21, 17, 18, 20]. The basic idea of chunking methods is that of
solving at each time step a new support vector regression problem
from scratch using a small subset of the training data. The selection
of such training subset thus a key role in the chunking methods. A
common approach [21, 18] is using at each time step, as training
set, the last available training sample and the actual set of SVs.

Here we implemented a slightly different version of chunking
methods. The main drawback of chunking methods is actually that
the complexity of the solution, i.e. the number of SVs, can grow
indefinitely. Even if some methods for keeping small the number
of SVs have been introduced in the literature [7], this is a serious
issue for us both because it results in a significant slowdown of the
training process and because our aim is solving many simple local
regression problems. To deal with this issue we introduced a su-
perior bound, θSV , to the number of SVs used. At time step, t, a
new training sample (xt, yt) is presented to the Support Vector Ma-
chine (SVM) that is updated as described in Algorithm 1. At first
the SVM is used to predict the output of the current training sam-
ple, SVM(xt); if the predicted output differs more than ε from the
target, i.e. |SVM(xt) − yt| > ε (line 2, Algorithm 1), a new SVM
is trained; the training set, T , is built by adding the latest training
sample, (xt, yt), to the actual set of SVs (line 7, Algorithm 1). If
the number of SVs is greater than a fixed threshold θSV , the old-
est one is dropped1. The resulting data set, T , is used for training
a new SVM from scratch with a standard procedure for solving a
batch support vector regression problem (line 8, Algorithm 1). In
our implementation we used the well known LIBSVM [5] library
for performing the underlying batch training of SVMs.

Algorithm 1 Incremental update of SVM.
1: procedure UPDATE(SVM,x, y)
2: if (|y- SVM(x) | > ε) then
3: T ←SVM.SVs
4: if |T | > θSV then
5: Remove the oldest SV from T
6: end if
7: T ← T ∪ {(x, y)}
8: SVM← TRAIN(T)
9: end if

10: end procedure

4. DESCRIPTION OF XCSF
In XCSF [26], computed prediction replaces the usual classi-

fier prediction with a parameter vector w and a prediction function
p(st,w), which defines how classifier prediction is computed from
the current input st and parameter vector w.

Classifiers consist of a condition and four main parameters. Since
as in [26], we focus on function approximation problems, classi-
fiers do not have actions. The condition is represented by a concate-
nation of interval predicates, inti = (li, ui), where li (“lower”) and
ui (“upper”) are real values. The four parameters are: the weight
vector w, used to compute the classifier prediction as a function
of the current input; the prediction error ε, that estimates the error
affecting classifier prediction; the fitness F that estimates the ac-
curacy of the classifier prediction; the numerosity num, a counter
1At each time step, the training set built has at most θSV +1 train-
ing samples, resulting in no more than θSV +1 SVs. Thus at most
one support vector requires to be dropped at the next training step.

1807

used to represent different copies of the same classifier. The weight
vector w has one weight wi for each possible input, and an addi-
tional weight w0 corresponding to a constant input x0, that is set as
a parameter of XCSF (in this work x0 is always set to 1).

Performance Component. At each time step t, XCSF builds a
match set [M] containing the classifiers in the population [P] whose
condition matches the current sensory input st; if [M] contains less
than θmna actions, covering takes place as in XCSI [25, 26]. The
weight vector w of covering classifiers is initialized with zero val-
ues (note that originally [26], the weights were initialized with ran-
dom values in [-1,1]); all the other parameters are initialized as in
XCS (see [3]).

XCSF computes the system prediction of the classifiers in [M]
which, at time t for input st is defined as,

P (st) =

P
cl∈[M]

cl.p(st)× cl.FP
cl∈[M] cl.F

, (5)

where cl is a classifier, [M] is the match set, cl.F is the fitness of cl;
cl.p(st) is the prediction of cl in state st, which is computed as:

cl.p(st) = cl.w0 × x0 +
X
i>0

cl.wi × st(i),

where cl.wi is the weight wi of cl. Then XCSF performs a dummy
action (there are actually no actions involved in function approxi-
mation problems [26]) and a reward P is returned to the system.

Reinforcement Component. XCSF uses the incoming reward P
to update the parameters of classifiers in [M]. In the original XCSF,
the weight vector w is updated using a modified delta rule [23]. In
this paper, we use the most recent recursive least square update
introduced in [9]. After the prediction of the classifiers in [M] is
updated according to the target value P . Finally, the prediction
error ε and the classifier fitness is updated as in XCS.

Discovery Component. The genetic algorithm in XCSF works
as in XCSI [25]. On a regular basis depending on the parameter
θga, the genetic algorithm is applied to classifiers in [A]. It selects
two classifiers with probability proportional to their fitness, copies
them, and with probability χ performs crossover on the copies;
then, with probability μ it mutates each allele. Crossover and mu-
tation work as in XCSI [25, 26].

5. EXTENDING XCSF WITH SVM
It is rather straightforward to extend XCSF with classifier pre-

diction based on support vector regression. In XCSF with support
vector prediction, briefly XCSFsvm (i) each classifier clk has an
associated SVM for regression, clk.SVM(·), that is used to compute
the prediction; (ii) the update of the classifier parameter vector w
(Section 4) is replaced by the update of clk.SVM according to Al-
gorithm 1; (iii) the genetic algorithm is applied both to classifier
conditions and to the parameters of the SVM associated to each
classifier.

A support vector machine for regression (Section 2) is com-
pletely described by the pair 〈ε, C〉 (see Equation 2 and Equation 3)
and by the kernel function k(·, ·) used. In our implementation of
XCSFsvm, we used the RBF kernel, provided by the LIBSVM [5]
library, which is defined as,

k(x,x′) = e−γ‖x−x′‖2
, (6)

where γ ∈ IR is a kernel parameter. The performance of this type
of SVM is highly affected by the value of γ which is problem de-
pendent. For this reason, in XCSFsvm the value of γ is not fixed

but it is evolved. The parameter ε is set as the error threshold ε0
that is used in XCSF to control classifier accuracy. In XCSFsvm
the parameters vector w used in XCSF [26] is replaced by the ker-
nel parameter γ and a set of, at most, θSV support vectors. New
classifiers are initialized with an empty set of support vectors and
with a value of γ uniformly chosen in [γmin, γmax], where γmin

and γmax are system parameters

At each time step, the prediction of each classifier clk in [M]
is computed as the output of the SVM associated to the clas-
sifier, clk.SVM(st). Then the system prediction P (st) of the
classifiers in [M] is computed. For each classifier clk in the
match set [M], clk .SVM is updated according to the procedure
UPDATE(clk.SVM,st−1,P) described in Algorithm 1. The predic-
tion error ε and the fitness are instead updated as usual [3].

The genetic algorithm works as in XCSF [26] for what concerns
the classifier condition. In addition in XCSFsvm genetic algo-
rithm is also applied to the kernel parameter γ. With probabil-
ity χ crossover is applied and the γ values of the offsprings are
recombined. In this work we compared two different recombi-
nation strategies. The first one simply switches the γ values be-
tween the two offsprings, the second one set γ in both the off-
springs to the average of γ values of the parents. The resulting
versions of XCSFsvm are dubbed respectively XCSFsvm-χ1 and
XCSFsvm-χ2. Finally, with probability μ, mutation is applied and
γ is either increased or decreased of an amount uniformly drawn
from the continuous interval (0, γ0]. The initialization of the set of
SVs in the offsprings is straightforward: each offspring inherits the
parent SVs.

Computational Complexity. XCSFsvm requires to store, for each
classifiers, the value of γ, the coefficient b, and at most θSV support
vectors with the respective targets yi and coefficients βi; thus, in
the worst case, the additional memory requirements of XCSFsvm
results in a space complexity of order O(n · θSV), where n is the
dimensionality of the in the input space. The update of classifier
SVMs is based on the LIBSVM optimized training algorithm that
has time complexity of order O(n · θSV) [5]. Therefore the com-
putational complexity of XCSFsvm is strongly influenced by the
choice of the threshold θSV . In this paper we compared XCSFsvm
to the XCSF version with recursive least squares update [9], which
complexity is O(n2) both in time and in space. XCSF can be com-
putationally more expensive than XCSFsvm if n� θSV but this is
not the case of the problems considered in this paper, where n ≤ 4
and θSV = 10.

6. DESIGN OF EXPERIMENTS
In this work, we followed the standard experimental design used

in the literature [24]. Each experiment consists of a number of
problems that the system must solve. Each problem is either a
learning problem or a test problem. Classifiers parameters are al-
ways updated. The genetic algorithm is enabled only during learn-
ing, and it is turned off during test. The covering operator is always
enabled, but operates only if needed. Learning problems and test
problems alternate.

6.1 Test Functions
We tested XCSF with support vector prediction, XCSFsvm, on

the approximation of the four real functions reported in Table 1, that
are a generalization of the ones introduced in [1]. The functions
are continuous; F1, F2, and F4 are normalized so that their range
is [−1, 1]; the range of F3 is [0, 1]. Figure 1 shows the plots of the
four functions when only two input variables are used. The function

1808

F1(x1, · · · , xn) =
1

n

nX
i=1

sin(2πxi)

F2(x1, · · · , xn) = sin

2π

nX
i=1

xi

!

F3(x1, · · · , xn) =
1√
2

˛̨̨
˛̨sin

2π

nX
i=1

xi

!
+ cos

2π

nX
i=1

xi

!˛̨̨
˛̨

F4(x1, · · · , xn) = sin

2π

n−1X
i=1

xi + sin(xn)

!

Table 1: The four test functions used in this paper; x ∈ [0, 1],
n ≥ 2.

F1 is the simplest one since it is additively separable. Accordingly,
it is easily approximated by XCSF (see for instance [1]). This does
not hold in F2 which is therefore more difficult to approximate with
XCSF [1]. Function F3 and F4 present additional difficulties: the
former is not continuously differentiable and the second one has
a continuously changing slope. All the statistics reported in this
paper are averages over 10 experiments.

6.2 Statistical Analysis
To analyze the results reported in this paper, for each experi-

ments and for every tested setting, we collected (i) the average of
the absolute system error in the first 50000 test problems, to mea-
sure the convergence speed; (ii) the average of the absolute system
error in the last 50000 test problems, to measure the accuracy of
the evolved solutions; (iii) a fitness-weighted average of the clas-
sifiers generality (i.e. the hypervolume identified by the classifier
conditions in the input space) in the final populations, to measure
the level of generalization achieved. On these data, we applied a
one-way analysis of variance (ANOVA) [8] to test whether there
was some statistically significant differences; we also applied four
post hoc tests [8], (Tukey HSD, Scheffé, Bonferroni, and Student-
Neumann-Keuls) to find which settings performed significantly dif-
ferent.

7. EXPERIMENTAL RESULTS
We compared XCSF with the two models of XCSFsvm,

XCSFsvm-χ1 and XCSFsvm-χ2, on four test functions (Table 1)
using different number of inputs. Our goal was threefold. First,
we wanted to test how the choice of the parameter γ would affect
the performance of the XCSFsvm approaches. In addition, we also
wanted to test whether the XCSFsvm models could evolve the ad-
equate value of the kernel parameter γ. Then, we wanted to study
how the performance of XCSF and of the XCSFsvm models would
be influenced by the problem size.

7.1 Fixed γ vs. Evolved γ

In this first set of experiments we analyzed how the choice of
the kernel parameter, γ, affects the system performances. For this
purpose we used a slightly modified version of XCSFsvm in which
the value of γ is initialized to a given fixed value and is neither
mutated nor recombined. Then we compared XCSFsvm with dif-
ferent values of γ on the four functions in Table 1 with two in-
put variables. We also compared such XCSFsvm model that keeps
a fixed value of γ with XCSFsvm-χ1 and XCSFsvm-χ2, where
the value of γ is randomly initialized and can be both mutated
and recombined. All the experiments were performed with the

following parameters setting: N = 6400; η = 0.5; β = 0.5;
α = 0.1; ν = 5; χ = 1.0, μ = 0.05, ε0 = 0.05; θdel = 20;
θGA = 20; δ = 0.1; GA-subsumption is on with θsub = 50;
while action-set subsumption is off; r0 = 1.0, m0 = 0.5; in
XCSFsvm-χ1 and XCSFsvm-χ2 we used C = 30, γmin = 0,
γmax = 100, and γ0 = 10. For each function we tested the
following values of γ: (i) γ = 0.05, (ii) γ = 100 and (iii) the
best value of γ experimentally found. It is worthwile observing
that the best value of γ is different for each function tested. Fig-
ure 2a compares performance of XCSFsvm-χ1, XCSFsvm-χ2, and
XCSFsvm with γ ∈ {0.5, 10, 100} on the approximation of func-
tion F1(x1, x2). All the systems compared are able to evolve an
accurate approximation of the target function, but XCSFsvm with
γ = 10 (the best value empirically found) learns faster than all
the other settings; however XCSFsvm-χ1 and XCSFsvm-χ2 learn
faster than XCSFsvm with γ = 0.5 and γ = 100. Figure 2b
compares the performance of XCSFsvm-χ1, XCSFsvm-χ2, and
XCSFsvm with γ ∈ {0.5, 32, 100} on the approximation of func-
tion F2(x1, x2). On this function XCSFsvm-χ1 and XCSFsvm-χ2

learns even faster than XCSFsvm with γ = 32 (the best value
empirically found). The results on the more complex functions,
F3(x1, x2) and F4(x1, x2), show (Figure 2c and Figure 2d) that
XCSFsvm-χ1 and XCSFsvm-χ2 learn roughly as fast as XCSFsvm
with the best fixed value of γ. Overall our finding suggest that
evolving γ not only does not slow down the learning in XCSFsvm
but can even result in a faster learning, suggesting that the most
suitable value of γ may change either during the learning process
or in different subspace of the input space.

7.2 Two variables
In this set of experiments we applied XCSF, XCSFsvm-χ1, and

XCSFsvm-χ2 to the approximation of the four functions in Table 1
when n = 2. The parameters are set as in the previous experiments.
For each function and for each version of XCSF we compared, Ta-
ble 2a reports the average absolute system error in the first 50000
test problems. The data in Table 2a show that XCSFsvm-χ1and
XCSFsvm-χ2 learn faster than XCSF and after the same number
of learning problems reach a smaller prediction error. We applied
a one-way analysis of variance (ANOVA [8]) to test whether the
differences reported in Table 2a are statistically significant. Then,
we applied the typical post-hoc procedures (SNK, Tukey, Scheffé,
and Bonferroni) to analyze the differences among the three sys-
tems The analysis of variance shows that the differences in Ta-
ble 2a are statistically significant at the 99.99% confidence level;
the subsequent post-hoc procedures cluster the three versions of
XCSF into two groups with similar (not significantly different) per-
formances. The first group contains only XCSF, the second con-
tains both XCSFsvm-χ1 and XCSFsvm-χ2. This suggests that the
difference between XCSF and XCSFsvm is statistically significant,
i.e., XCSFsvm models are faster than XCSF with a probability of
the 99.99%. However, the two versions of XCSFsvm perform sim-
ilarly, the difference in their performance is not statistically signifi-
cant. The average prediction error over the last 50000 test problems
is reported in Table 2b. All the three systems learn an accurate solu-
tion for the four functions. The statistical analysis shows that XCSF
is generally more accurate than XCSFsvm-χ1 and XCSFsvm-χ2

(the difference is statistically significant at the 99.99% confidence).
But this is not surprising since, as Table 2c demonstrates, XCSF
evolves solutions that are more specific and therefore tend to be
more accurate. XCSFsvm models evolve accurate solutions (the
final prediction error is smaller than the target threshold ε0) that
are significantly more general than those evolved by XCSF. The
ANOVA shows that the differences in classifier generality reported

1809

(a) (b)

(c) (d)

Figure 1: Test functions with two input variables: (a) F1(x1, x2), (b) F2(x1, x2), (c) F3(x1, x2), (d) F4(x1, x2)

in Table 2c are statistically significant at the 99.99% confidence
level. The post-hoc procedures cluster the three versions into three
groups, one for each version of XCSF, i.e., all the three versions
perform significantly differently. Thus, from the data in Table 2c,
XCSFsvm-χ1 evolves classifiers that are on the average more gen-
eral than those evolved by XCSFsvm-χ2 and XCSF.

Overall, the experiments with the functions of two variables
show that (i) XCSFsvm models converges faster than XCSF to ac-
curate solutions; (ii) at the end of the runs, the solutions evolved by
XCSF are generally more accurate than those evolved by XCSFsvm
models, however, they are also the less general: XCSFsvm-χ1

and XCSFsvm-χ2 evolve solutions that are significantly more gen-
eral than those evolved by XCSF; (iii) although the solutions
evolved by XCSFsvm-χ1 and by XCSFsvm-χ2 are equally accu-
rate, XCSFsvm-χ1 generalizes better than XCSFsvm-χ2. This sug-
gests that the recombination strategy of XCSFsvm-χ1 may be more
effective than the one used in XCSFsvm-χ2, allowing for a more
reliable generalization than XCSFsvm-χ2 despite to an equivalent
learning speed and accuracy.

7.3 Three variables
We repeated the same set of experiments increasing the number

of variables up to three. The parameters are set exactly as in pre-
vious experiments, except for the population size N which in this
case is set to 12800 in accordance with the settings in [2].

As the number of variables increases, the problems become more
challenging so that XCSF cannot reach an accurate solutions for
some of the functions. In contrast, XCSFsvm models always reach
accurate solutions. Table 3b reports the prediction error in the last
50000 test problems for all the versions of XCSF. As it can be
noted, XCSF model cannot evolve an accurate approximation for
the most difficult functions, F3(x1, x2, x3) and F4(x1, x2, x3): the
final prediction error is higher than the target threshold ε0= 0.05.
It can be noted that the solutions for the function F1 with three
variables evolved by XCSFsvm-χ1 and XCSFsvm-χ2 are actu-
ally more accurate than those evolved with only two variables:

the errors in Table 3 are smaller than those in Table 2. On the
other hand, even in the simple function F1 the performance of
XCSF decreases as the number of variables increases: the error
in Table 3 for F1 is larger than that in Table 2. These results
suggest that, even in a linearly separable functions, XCSFsvm is
able to scale up better than XCSF. The statistical analysis of the
data in Table 3 shows that the differences between XCSF and the
two XCSFsvm models are significantly different at the 99.99%,
while the differences between XCSFsvm-χ1 and XCSFsvm-χ2 are
not. XCSFsvm-χ1 and XCSFsvm-χ2 learn significantly faster than
XCSF though these differences are statistically significant at the
99.99% confidence only in F2(x1, x2, x3). Table 3c reports the av-
erage generality of the classifier in the final populations. Again, the
data show that, when XCSF is able to reach an accurate solution,
it still evolves solutions that are less general classifier than those
evolved by XCSFsvm models. As in the previous experiments,
XCSFsvm-χ1 generalizes better than XCSFsvm-χ2. In fact, the
statistical analysis shows that at the 99.99% confidence level, the
populations evolved by XCSFsvm-χ1 are significantly more gen-
eral than those evolved by XCSFsvm-χ2.

7.4 Four variables
Finally, we applied XCSF, XCSFsvm-χ1, and XCSFsvm-χ2 to

F1 and F2 with four variables. The parameters are set as in the
previous experiment except for the population size N which is set
to 51400 for F1 and to 102800 for F2. The results reported in
Table 4 confirm what previously found. In the simple F1, all the
three models find an accurate solution but the solutions evolved
by XCSFsvm-χ1 and XCSFsvm-χ2 are significantly more accurate
than those evolved by XCSF. In the more difficult F2, XCSF can-
not reach an accurate solution, below the target error ε0, and only
XCSFsvm-χ1 and XCSFsvm-χ2 succeed in the task. As in all the
previous experiments, in F1, all the three systems find accurate so-
lutions but those evolved by the XCSFsvm models are significantly
more accurate than those evolved by XCSF. As before, the data of
the average prediction error during the initial 100000 test problems

1810

(Table 4a) shows that XCSFsvm-χ1 and XCSFsvm-χ2 learn faster
than XCSF, though this difference is statistically significant only in
function F1. The previous findings on the generalization are also
confirmed. The solutions evolved by XCSFsvm-χ1 are more gen-
eral than those evolved by XCSFsvm-χ2 and by XCSF, though the
difference is significant only in function F1.

8. CONCLUSIONS
We have introduced XCSF with support vector prediction, briefly

XCSFsvm, in which classifier prediction is computed using a
Support Vector Machine. We proposed two XCSFsvm models,
dubbed XCSFsvm-χ1 and XCSFsvm-χ2, for evolving the kernel
parameter of classifier SVMs. The results presented suggest that
XCSFsvm-χ1 and XCSFsvm-χ2 effectively adapt the kernel pa-
rameter and are able to learn an accurate solution for the target
problem as fast as XCSFsvm with the best kernel parameter em-
pirically determined. We have also compared XCSFsvm-χ1 and
XCSFsvm-χ2 with XCSF on the approximation of four functions
that are a generalization of the ones introduced in [1]. Our results
suggest that the proposed XCSFsvm models are not only able to
evolve accurate solutions for functions too difficult for XCSF but
also learn significantly faster than XCSF, exploiting better general-
ization capabilities.

9. REFERENCES
[1] Martin V. Butz. Kernel-based, ellipsoidal conditions in the

real-valued XCS classifier system. In GECCO 2005:
Proceedings of the 2005 conference on Genetic and
evolutionary computation, volume 2, pages 1835–1842,
Washington DC, USA, 25-29 June 2005. ACM Press.

[2] Martin V. Butz, Pier-Luca Lanzi, and Stewart W. Wilson.
Function approximation with XCS: Hyperellipsoidal
conditions, recursive least squares, and compaction.
(Available on request from www.illigal.org/butz),
2007.

[3] Martin V. Butz and Stewart W. Wilson. An algorithmic
description of XCS. Journal of Soft Computing,
6(3–4):144–153, 2002.

[4] Gert Cauwenberghs and Tomaso Poggio. Incremental and
decremental support vector machine learning. In NIPS, pages
409–415, 2000.

[5] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for
support vector machines. Software available at
http://www.csie.ntu.edu.tw/�cjlin/libsvm,
2001.

[6] Ronan Collobert and Samy Bengio. Svmtorch: support
vector machines for large-scale regression problems. J.
Mach. Learn. Res., 1:143–160, 2001.

[7] Yaakov Engel, Shie Mannor, and Ron Meir. Sparse online
greedy support vector regression. In ECML ’02: Proceedings
of the 13th European Conference on Machine Learning,
pages 84–96, London, UK, 2002. Springer-Verlag.

[8] S. A. Glantz and B. K. Slinker. Primer of Applied Regression
& Analysis of Variance. McGraw Hill, 2001. second edition.

[9] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and
Dave E. Goldberg. Generalization in the XCSF classifier
system: Analysis, improvement, and extension. Technical
Report 2005012, Illinois Genetic Algorithms Laboratory –
University of Illinois at Urbana-Champaign, 2005.

[10] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and
David E. Goldberg. Extending XCSF beyond linear
approximation. In GECCO ’05: Proceedings of the 2005

conference on Genetic and evolutionary computation, pages
1827–1834, New York, NY, USA, 2005. ACM Press.

[11] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and
David E. Goldberg. XCS with computed prediction for the
learning of boolean functions. In Proceedings of the IEEE
Congress on Evolutionary Computation – CEC-2005, pages
588–595, Edinburgh, UK, September 2005. IEEE.

[12] Pier Luca Lanzi, Daniele Loiacono, Stewart W. Wilson, and
David E. Goldberg. Prediction update algorithms for XCSF:
RLS, kalman filter, and gain adaptation. In GECCO ’06:
Proceedings of the 8th annual conference on Genetic and
evolutionary computation, pages 1505–1512, New York, NY,
USA, 2006. ACM Press.

[13] Pavel Laskov. Incremental support vector learning: Analysis,
implementation and applications. Journal of machine
learning research, 7:1909, 2006.

[14] Junshui Ma, James Theiler, and Simon Perkins. Accurate
on-line support vector regression. Neural Comput.,
15(11):2683–2703, 2003.

[15] Mario Martin. On-line support vector machines for function
approximation. Technical report, Universitat Politecnica de
Catalunya, 2002.

[16] John C. Platt. Fast training of support vector machines using
sequential minimal optimization. In Advances in kernel
methods: support vector learning, pages 185–208,
Cambridge, MA, USA, 1999. MIT Press.

[17] Liva Ralaivola and Florence d’Alché Buc. Incremental
support vector machine learning: A local approach. Lecture
Notes in Computer Science, 2130:322–329, 2001.

[18] R. Rosipal and M. Gorilami. An adaptive support vector
regression filter: A signal detection application. In Artificial
Neural Networks, 1999. ICANN 99. Ninth International
Conference on (Conf. Publ. No. 470), volume 2, pages
603–607vol.2, 7-10 Sept. 1999.

[19] Alex J. Smola and Bernhard Schoelkopf. A tutorial on
support vector regression. Statistics and Computing,
14(3):199–222, 2004.

[20] Nadeem Ahmed Syed, Huan Liu, and Kah Kay Sung.
Handling concept drifts in incremental learning with support
vector machines. In KDD ’99: Proceedings of the fifth ACM
SIGKDD international conference on Knowledge discovery
and data mining, pages 317–321, New York, NY, USA,
1999. ACM Press.

[21] Vladimir N. Vapnik. The nature of statistical learning theory.
Springer-Verlag New York, Inc., New York, NY, USA, 1995.

[22] S. Vijayakumar and S. Wu. Sequential support vector
classifiers and regression. In Int. Conf. Soft Computing,
pages 610–619, 1999.

[23] B. Widrow and M. E. Hoff. Adaptive Switching Circuits,
chapter Neurocomputing: Foundation of Research, pages
126–134. The MIT Press, Cambridge, 1988.

[24] Stewart W. Wilson. Classifier Fitness Based on Accuracy.
Evolutionary Computation, 3(2):149–175, 1995.
http://prediction-dynamics.com/.

[25] Stewart W. Wilson. Mining Oblique Data with XCS. volume
1996 of Lecture notes in Computer Science, pages 158–174.
Springer-Verlag, April 2001.

[26] Stewart W. Wilson. Classifiers that approximate functions.
Journal of Natural Computating, 1(2-3):211–234, 2002.

1811

f XCSF XCSFsvm-χ1 XCSFsvm-χ2

F1(x1, x2) 0.0940 ± 0.0132 0.0414 ± 0.0113 0.0450 ± 0.0113
F2(x1, x2) 0.2408 ± 0.0878 0.0606 ± 0.0192 0.0703 ± 0.0207
F3(x1, x2) 0.2289 ± 0.0134 0.1069 ± 0.0309 0.0813 ± 0.0114
F4(x1, x2) 0.3807 ± 0.0575 0.1455 ± 0.0476 0.1293 ± 0.0322

(a)
f XCSF XCSFsvm-χ1 XCSFsvm-χ2

F1(x1, x2) 0.0106 ± 0.0003 0.0183 ± 0.0006 0.0186 ± 0.0008
F2(x1, x2) 0.0143 ± 0.0002 0.0187 ± 0.0028 0.0169 ± 0.0026
F3(x1, x2) 0.0148 ± 0.0002 0.0211 ± 0.0005 0.0214 ± 0.0004
F4(x1, x2) 0.0178 ± 0.0002 0.0141 ± 0.0005 0.0147 ± 0.0004

(b)
f XCSF XCSFsvm-χ1 XCSFsvm-χ2

F1(x1, x2) 0.0340 ± 0.0004 0.1032 ± 0.0265 0.0868 ± 0.0216
F2(x1, x2) 0.0130 ± 0.0002 0.0620 ± 0.0061 0.0455 ± 0.0118
F3(x1, x2) 0.0093 ± 0.0001 0.0182 ± 0.0004 0.0151 ± 0.0003
F4(x1, x2) 0.0077 ± 0.0001 0.0267 ± 0.0004 0.0227 ± 0.0006

(c)

Table 2: XCSF, XCSFsvm-χ1, and XCSFsvm-χ2 applied to two input variables functions: (a) absolute system error average in the
first 50000 test problems, (b) absolute system error average in the last 50000 test problems, and (c) fitness-weighted generality of
classifiers evolved by the systems. Curves are averages of 10 runs.

f XCSF XCSFsvm-χ1 XCSFsvm-χ2

F1(x1, x2, x3) 0.1036 ± 0.0116 0.0637 ± 0.0145 0.0796 ± 0.0262
F2(x1, x2, x3) 0.4315 ± 0.0585 0.2843 ± 0.0652 0.2659 ± 0.0484
F3(x1, x2, x3) 0.2668 ± 0.0012 0.2527 ± 0.0103 0.2460 ± 0.0124
F4(x1, x2, x3) 0.5122 ± 0.0430 0.4485 ± 0.0485 0.4422 ± 0.0403

(a)
f XCSF XCSFsvm-χ1 XCSFsvm-χ2

F1(x1, x2, x3) 0.0167 ± 0.0003 0.0124 ± 0.0004 0.0148 ± 0.0008
F2(x1, x2, x3) 0.0494 ± 0.0011 0.0207 ± 0.0011 0.0201 ± 0.0006
F3(x1, x2, x3) 0.1195 ± 0.0347 0.0426 ± 0.0022 0.0412 ± 0.0016
F4(x1, x2, x3) 0.0836 ± 0.0024 0.0318 ± 0.0007 0.0338 ± 0.0020

(b)
f XCSF XCSFsvm-χ1 XCSFsvm-χ2

F1(x1, x2, x3) 0.0128 ± 0.0001 0.0312 ± 0.0022 0.0169 ± 0.0049
F2(x1, x2, x3) 0.0021 ± 0.0001 0.0037 ± 0.0002 0.0032 ± 0.0003
F3(x1, x2, x3) 0.0021 ± 0.0008 0.0020 ± 0.0001 0.0019 ± 0.0001
F4(x1, x2, x3) 0.0017 ± 0.0001 0.0019 ± 0.0001 0.0017 ± 0.0001

(c)

Table 3: XCSF, XCSFsvm-χ1, and XCSFsvm-χ2 applied to three input variables functions: (a) absolute system error average in the
first 50000 test problems, (b) absolute system error average in the last 50000 test problems, and (c) fitness-weighted generality of
classifiers evolved by the systems.

1812

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50000 100000 150000 200000 250000

A
V

E
R

A
G

E
 S

Y
S

T
E

M
 E

R
R

O
R

NUMBER OF LEARNING PROBLEMS

XCSFsvm-χ1
XCSFsvm-χ2

XCSFsvm (γ=0.5)
XCSFsvm (γ=100)

XCSFsvm (γ=10)
ε0 = 0.05

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50000 100000 150000 200000 250000

A
V

E
R

A
G

E
 S

Y
S

T
E

M
 E

R
R

O
R

NUMBER OF LEARNING PROBLEMS

XCSFsvm-χ1
XCSFsvm-χ2

XCSFsvm (γ=0.5)
XCSFsvm (γ=100)

XCSFsvm (γ=32)
ε0 = 0.05

(a) (b)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50000 100000 150000 200000 250000

A
V

E
R

A
G

E
 S

Y
S

T
E

M
 E

R
R

O
R

NUMBER OF LEARNING PROBLEMS

XCSFsvm-χ1
XCSFsvm-χ2

XCSFsvm (γ=0.5)
XCSFsvm (γ=100)

XCSFsvm (γ=56)
ε0 = 0.05

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 50000 100000 150000 200000 250000

A
V

E
R

A
G

E
 S

Y
S

T
E

M
 E

R
R

O
R

NUMBER OF LEARNING PROBLEMS

XCSFsvm-χ1
XCSFsvm-χ2

XCSFsvm (γ=0.5)
XCSFsvm (γ=100)

XCSFsvm (γ=50)
ε0 = 0.05

(c) (d)

Figure 2: Performance of XCSFsvm-χ1, XCSFsvm-χ2, and XCSFsvm with a not evolved value of γ on (a) F1(x1, x2), (b) F2(x1, x2),
(c) F3(x1, x2), and (d) F4(x1, x2).

f XCSF XCSFsvm-χ1 XCSFsvm-χ2

F1(x1, x2, x3, x4) 0.0994 ± 0.0068 0.0651 ± 0.0062 0.0873 ± 0.0108
F2(x1, x2, x3, x4) 0.5065 ± 0.0259 0.4596 ± 0.0579 0.4935 ± 0.0186

(a)
f XCSF XCSFsvm-χ1 XCSFsvm-χ2

F1(x1, x2, x3, x4) 0.0180 ± 0.0001 0.0123 ± 0.0002 0.0152 ± 0.0010
F2(x1, x2, x3, x4) 0.0834 ± 0.0006 0.0425 ± 0.0081 0.0434 ± 0.0014

(b)
f XCSF XCSFsvm-χ1 XCSFsvm-χ2

F1(x1, x2, x3, x4) 0.0049 ± 0.0000 0.0063 ± 0.0002 0.0036 ± 0.0009
F2(x1, x2, x3, x4) 0.0004 ± 0.0000 0.0004 ± 0.0001 0.0003 ± 0.0000

(c)

Table 4: XCSF, XCSFsvm-χ1, and XCSFsvm-χ2 applied to four input variables functions: (a) absolute system error average in the
first 100000 test problems, (b) absolute system error average in the last 100000 test problems, and (c) fitness-weighted generality of
classifiers evolved by the systems.

1813

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

