
Towards Clustering with XCS
Kreangsak Tamee

Department of Computer Engineering
King Mongkut’s Institute of Technology

Bangkok, Thailand 10520

kreangsakt@yahoo.com

Larry Bull
School of Computer Science

University of the West of England
Bristol BS16 1QY, U.K.

+44 (0)117 3283161
larry.bull@uwe.ac.uk

Ouen Pinngern
Department of Computer Engineering
King Mongkut’s Institute of Technology

Bangkok, Thailand 10520

kpoeun@kmitl.ac.th

ABSTRACT
This paper presents a novel approach to clustering using an
accuracy-based Learning Classifier System. Our approach
achieves this by exploiting the generalization mechanisms
inherent to such systems. The purpose of the work is to develop
an approach to learning rules which accurately describe clusters
without prior assumptions as to their number within a given
dataset. Favourable comparisons to the commonly used k-means
algorithm are demonstrated on a number of synthetic datasets.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods
and Search – backtracking, control theory, dynamic
programming, graph and tree search strategies, heuristic
methods, plan execution formation and execution, scheduling.

General Terms
Algorithms, Performance, Experimentation.

Keywords
Data mining, k-means, Learning Classifier Systems.

1. INTRODUCTION
This paper presents results from a rule-based approach to
clustering through the development of a Learning Classifier
System (LCS)[9] based on Wilson’s XCS [16]. A number of
studies have indicated good performance for XCS in classification
tasks (e.g., see [2] for examples). We are interested in the utility
of such systems to perform unsupervised learning tasks.

Clustering is an important unsupervised classification technique
where a set of data are grouped into clusters in such a way that
data in the same cluster are similar in some sense and data in
different clusters are dissimilar in the same sense. For this it is
necessary to first define a measure of similarity which will
establish a rule for assigning data to the domain of a particular
cluster centre. One such measure of similarity may be the

Euclidean distance D between two data x and y defined by D=||x-
y||. Typically in data clustering there is no one perfect clustering
solution of a dataset, but algorithms that seek to minimize the
cluster spread, i.e., the family of centre-based clustering
algorithms, are the most widely used (e.g., [21]). They each have
their own mathematical objective function which defines how
well a given clustering solution fits a given dataset. In this paper
our system is compared to the most well-known of such
approaches, the k-means algorithm. We use as a measure of the
quality of each clustering solution the total of the k-means
objective function:

2(,) || ||min
{1... }1

n
o X C x ci jj ki

= −∑
∈=

 (1)

Define a d-dimensional set of n data points X = {x1 ,…., xn } as the
data to be clustered and k centers C = {c1 ,…., ck } as the
clustering solution. However most clustering algorithms require
the user to provide the number of clusters (k), and the user in
general has no idea about the number of clusters (e.g., see [14]).
Hence this typically results in the need to make several clustering
trials with different values for k where k = 2 to kmax = square-root
of n (data points) and select the best clustering among the
partitioning with different number of clusters. The commonly
applied Davies-Bouldin [5] validity index is used as a guideline to
the underlying number of clusters here.

The paper is structured as follows: first we describe the alterations
to XCS and then present initial results. A form of rule compaction
for clustering with LCS, as opposed to classification, is then
presented. A form of local search is then introduced before a
number of increasingly difficult synthetic datasets are used to test
the algorithm.

2. XCSc
In this paper we present a version of the accuracy-based XCS,
here termed XCSc. XCSc is a Learning Classifier System without
internal memory, where the rulebase consists of a number (N) of
rules. Associated with each rule is a scalar which indicates the
average error (ε) in the rule’s matching process and the fitness (F)
estimates the accuracy of the average error and an estimate of the
average size of the niches (match sets - see below) in which that
rule participates (σ).

On receipt of an input data, the rulebase is scanned, and any rule
whose condition matches the message at each position is tagged
as a member of the current match set [M]. The rule representation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007…$5.00.

1854

here is the Centre-Spread encoding (see [13] for discussions). A
condition consists of interval predicates of the form {{c1 ,s1}, …..
{cd ,sd}}, where c is the interval’s range centre from [0.0,1.0] and
s is the “spread” from that centre from the range (0.0,s0] and d is
a number of dimensions. Each interval predicates’ upper and
lower bounds are calculated as follows: [ci - si, ci + si]. If an
interval predicate goes outside the problem space bounds, it is
truncated. A rule matches an input x with attributes xi if and only
if i i i i ic - s x < c + s≤ for all xi.

Reinforcement in XCSc consists of updating the matching error ε
which is derived from the Euclidean distance with respect to the
input x and c in the condition of each member of the current [M]
using the Widrow-Hoff delta rule with learning rate β:

 εj εj + β(2/1

1

2)))(((∑
=

−
d

l
ljl cx - εj) (2)

Next, the niche size estimate is updated:

σj σj + β(|[M]| - σj) (3)

The rest of the fitness update follows that of standard XCS with
parameters α, ν and ε0 (see [3] for details).

XCSc employs two discovery mechanisms, a niche genetic
algorithm (GA)[8] and a covering operator. The general niche GA
technique was introduced by Booker [1], who based the trigger on
a number of factors including the payoff prediction "consistency"
of the rules in a given [M], to improve the performance of LCS.
XCS uses a time-based mechanism under which each rule
maintains a time-stamp of the last system cycle upon which it was
consider by the GA. The GA is applied within the current niche
when the average number of system cycles since the last GA in
the set is over a threshold θGA. If this condition is met, the GA
time-stamp of each rule in the niche is set to the current system
time, two parents are chosen according to their fitness using
standard roulette-wheel selection, and their offspring are
potentially crossed and mutated, before being inserted into the
rulebase. This mechanism is used here within match sets, as in the
original XCS algorithm [16], which was subsequently changed to
work in action sets to aid generalization per action [3].

Offspring are produced via mutation (probability μ) where, after
[17], we mutate an allele by adding an amount + or - rand(m0),
where m0 is a fixed real, rand picks a real number uniform
randomly from (0.0,m0], and the sign is chosen uniform randomly.
Crossover (probability χ, two-point) can occur between any two
alleles, i.e., within an interval predicate as well as between
predicates, inheriting the parents’ parameter values or their
average if crossover is invoked. Replacement of existing members
of the rulebase uses roulette wheel selection based on estimated
niche size (if its fitness F is significantly lower than the average
fitness of rules in [P], its deletion probability is further increased
as in XCS). If no rules match on a given time step, then a
covering operator is used which creates a rule with its condition
centre on the input value and the spread with a range of rand(s0),

which then replaces an existing member of the rulebase in the
usual way (see [3]).

Recently, Butz et al. [4] have proposed a number of interacting
"pressures" within XCS. Their "set pressure" considers the more
frequent reproduction opportunities of more general rules.
Opposing the set pressure is the pressure due to fitness since it
represses the reproduction of inaccurate overgeneral rules. Thus
to produce an effective, i.e., general but appropriately accurate,
solution an accuracy-based LCS using a niche GA with global
replacement should have these two pressures balanced through the
setting of the associated parameters. In this paper we show how
the same mechanisms can be used within XCSc to identify
clusters within a given dataset; the set pressure encourages the
evolution of rules which cover many data points and the fitness
pressure acts as a limit upon the separation of such data points,
i.e., the error.

Previously, evolutionary algorithms have been used for clustering
in two principle ways. The first uses them to search for
appropriate centers of clusters with established clustering
algorithms such as the k-means algorithm, e.g., the GA-clustering
algorithm [10]. However this approach typically requires the user
to provide the number of clusters. Tseng and Yang [15] proposed
the CLUSTERING algorithm which has two stages. In the first
stage a nearest-neighbor algorithm is used to reduce the size of
data set and in the second the GA-clustering algorithm approach
is used. Sarafis [12] has recently proposed a further stage which
uses a density-based merging operator to combine adjacent rules
to identify the underlying clusters in the data. We suggest that
modern accuracy-based LCS are well-suited to the clustering
problem due to their generalization capabilities.

3. INITIAL PERFORMANCE
In this section we apply XCSc as described above on two datasets
for the first experiment to test the performance of the system. The
first dataset is well-separated as shown in Fig 1(a). We use a
randomly generated synthetic dataset. This dataset has k = 25 true
clusters arranged in a 5x5 grid in d = 2 dimension. Each cluster is
generated from 400 data points using a Gaussian distribution with
a standard deviation of 0.02, for a total of n = 10,000 datum. The
second dataset is not well-separated as shown in Fig 1(b). We
generated it in the same way as the first dataset except the clusters
are not centred on that of their given cell in the grid.

The parameters used were: N=800, β=0.2, 0ε = 0.03, v=5, α=0.1,

χ=0.8, μ =0.04, θGA =12, s0 =0.03, m0 =0.006. All results
presented are the average of ten runs. Learning trials consisted of
200,000 presentations of a randomly sampled data point. Figure 2
shows typical example solutions produced by XCSc on both data
sets. That is, the region of the 2D input space covered by each
rule in the final rule-base is plotted along with the data. As can be
seen, in the well-separated and less-separated case the system
roughly identifies all 25 clusters.

As expected, solutions contain many overlapping rules around
each cluster. The next section presents a rule compaction
algorithm which enables identification of the underlying clusters.

1855

(a)

(b)

Figure 1. The well-separated (a) and less-separated (b) data
sets used.

(a)

(b)

Figure 2. Typical solutions for the well-separated (a) and less-
separated (b) data sets.

4. RULE COMPACTION
Wilson [18] introduced a rule compaction algorithm for XCS to
aid knowledge discovery during classification problems (see also
[6][7][20]). We have developed a compaction algorithm for
clustering:

Step 1 Delete the useless rules: The useless rules are identified
and then deleted from the ruleset in the population based on their
coverage. Low coverage means that a rule matches a small
fraction (20%) of the average number of datum.

Step 2: Sort based on numerosity: The population is sorted
according to the numerosity of the rules and then the rules that
have the lowest numerosity - less than 2 – are deleted. Then [P]M
(M < N) is formed by selecting the minimum sequential set of
rules that covers all the data.

Step 3: Sort based on error: The population [P]M is sorted
according to the average error of the rules. Then [P]P (P < M) is
formed by selecting the minimum sequential set of rules that
covers all the data.

Step 4: Remove redundant rules: This step is an iterative process.
On each cycle of inputting a data point it selects the rule in [P]P in
the largest number of match sets. This rule is removed into the
final ruleset [P]F and the data that it covers deleted from the
dataset. The process continues until the dataset is empty.

Figure 3 shows the final set [P]F for both the full solutions shown
in Figure 2. XCSc’s identification of the clusters is now clear.
Under the (simplistic) assumption of non-overlapping regions as
described by rules in [P]F it is easy to identify the clusters after
compaction. In the case where no rules subsequently match data
we could of course identify a cluster by using the distance
between it and the centre of each rule.

We have examined the average quality of the clustering solutions
produced during the ten runs by measuring the total objective
function described in equation (1) and checking the number of
clusters defined. The average of quality on the well-separated
dataset is 6.65 +/- 0.12 and the number of clusters is 25.0 +/- 0.
The average quality on the not well-separated dataset is 6.71 +/-
0.14 and the number of clusters is 25.0 +/- 0. That is, it correctly
identifies the number of clusters every time. For comparison, the
k-means algorithm was applied to the datasets. The k-means
algorithm (assigned with the known k=25 clusters) averaged over
10 runs gives a quality of 32.42 +/- 9.49 and 21.07 +/- 5.25 on the
well-separated and less-separated datasets respectively. The low
quality of solutions in the well-separated case is due to the choice
of the initial centres; k-means is well-known for becoming less
reliable as the number of underlying clusters increases. For
estimating the number of clusters we ran, for 10 times each,
different k (2 to 30) with different random initializations. To
select the best clustering with different numbers of clusters, the
Davies-Bouldin validity index is shown in Figure 4. The result on
well-separated dataset has a lower negative peak at 23 clusters
and the less-separated dataset has a lower negative peak at 14
clusters. That is, it is not correct on both datasets, for the same
reason as noted above regarding quality. Thus XCSc performs
better than k-means whilst also identifying the number of clusters
during learning.

1856

0 5 10 15 20 25 30
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3
Davies-Bouldin's index

(a)

(b)

Figure 3. Effects of compaction on the typical solutions in
Figure 2 for the well-separated (a) and less-separated (b) data.

(a)

(b)

Figure 4: K-means algorithm performance using the Davies-
Bouldin index for well-separated (a) and less-separated (b)

data. Varying k shown on x-axis and index on y-axis.

5. LOCAL SEARCH
Previously, Wyatt and Bull [19] have introduced the use of local
search within XCS for continuous-valued problem spaces. Within
the classification domain, they used the Widrow-Hoff delta rule to
adjust rule condition interval boundaries towards those of the
fittest rule within each niche on each matching cycle, reporting
significant improvements in performance. Here good rules serve
as a basin of attraction under gradient descent search thereby
complimenting the GA search. The same concept has also been
applied to a neural rule representation scheme in XCS [11]. We
have examined the performance of local search for clustering
using Wyatt and Bull’s scheme: once a focal rule (the highest
fitness rule) has been identified from the current match set all
rules in [M] use the Widrow-Hoff update procedure to adjust
each of the two interval descriptor pairs towards those of the focal
rule, e.g., ,,],[jicFcc ijjlijij ∀−+−< β where cij

represents gene j of rule i in the match set, Fj represent gene j of
the focal rule, and βl is a learning set to 0.1. The spread
parameters are adjusted in the same way and the mechanism is
applied on every match cycle before the GA trigger is tested.
Initial results using Wyatt and Bull’s scheme gave a reduction in
performance, typically more specific rules, i.e., too many clusters,
were identified (not shown).

We here introduce a scheme which uses the current data as the
target for the local learning to adjust only the centres of the rules:

)(ijjlijij cxcc −+−< β (4)

Where cij represents the centre of gene j of rule i in the current
match set, xj represents the value in dimension j of the current
input data, and βl is the learning rate, here set to 0.1. This is
applied on every match cycle before the GA trigger is tested, as
before. In the well-separated case, the quality of solutions was
6.50 +/- 0.09. In the less-separated case, the quality of solutions
was 6.48 +/- 0.07. The same number of clusters was identified as
before, i.e., 25 and 25 respectively. Thus results indicate that our
data-driven local search improves the quality of the clustering
over the non-local search approach and is used hereafter.

6. ADAPTIVE THRESHOLD PARAMETER
The 0ε parameter controls the error threshold of rules and we
have investigated the sensitivity of XCSc to its value by varying
it. Experiments show that, if 0ε is set high, e.g., 0.1, in the less-
separated case the contiguous clusters are covered by the same
rules (Figure 5). We therefore developed an adaptive threshold
parameter scheme which uses the average error of the current
[M]:

)/(][0 ∑= Mj Nετε (5)

Where jε is the average error of each rule in the current match

set and N[M] is the number of rules in the current match set. This
is applied before the fitness function calculations. Experimentally
we find τ=1.2 is most effective for the problems used here.

Figure 6 shows how in the well-separated case, the average
quality and number of clusters from 10 runs is as before, being

0 5 1 0 1 5 2 0 2 5 3 0
0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

1 . 1

1 . 2

1 . 3
D a vie s -B o u ld in 's in d e x

1857

6.39 +/- 0.04 and 25.0 +/- 0 respectively. In the less-separated
case the average quality is again almost unchanged at 6.40 +/-
0.09 and the number of clusters is 25.0 +/- 0. There are no
significant differences in average quality but with the adaptive
technique there is a reduction in the number of parameters that
require careful, possibly problem specific, setting by the user.

(a)

(b)

Figure 5. Typical solutions using 0ε =0.1 before (a) and after
(b) rule compaction, for the less-separated dataset.

7. INCREASED COMPLEXITY
Here we examine the performance of XCSc compared to k-means
over randomly generated datasets in several d dimensions with
varying numbers k clusters. A Gaussian distribution is generated
around each centre, their standard deviation is set from 0.01
(well-separated) up to 0.05 (less-separated). Each centre
coordinate is generated from a uniform distribution over the
hypercube [0,1]d, the expected distances between cluster centres
is set to 0.2. Thus, the expected value of the cluster separation
varied inversely with standard deviation. We test datasets with d-
dimensions 2, 4 and 6. The true k clusters are 9 and 25, where we
generate 400 data points for each cluster.

(a)

(a)

(b)

(c)

(d)

Figure 6. Typical solutions using the adaptive 0ε approach
before and after rule compaction, for well-separated (a-b) and

less-separated (c-d) dataset.

1858

The parameters used were as before: N=800, β=0.2, v=5, α=0.1,
χ=0.8, μ =0.04, θGA =12, s0 =0.05, m0 =0.01. Then we determine
the average quality of clustering and number of clusters from
XCSc with local search from 10 runs as before. We also
determine for k-means (the number of k groups was given) the
quality and Davies-Bouldin index as before. Table 1 shows how
XCSc always gives superior quality and gives an equivalent or
closer estimate of the number of clusters compared to k-means.

Table 1. XCSc with local seach vs. k-means on harder
datasets.

k-means XCSc dataset

k

found

quality k found quality

k=9,

d=2

7 63.728.24 ± 00.000.9 ± 29.013.13 ±

k=9,

d=4

6 34.6680.83 ± 00.000.9 ± 31.094.21 ±

k=9,

d=6

9 36.4411.133 ± 00.000.9 ± 23.079.43 ±

k=25,

d=2

24

39.1037.37 ± 00.000.25 ± 45.015.18 ±

k=25,

d=4

20 94.4638.152 ± 00.000.25 ± 01.005.52 ±

k=25,

d=6

22 58.6867.278 ± 00.000.25 ± 33.078.67 ±

We have also considered data in which the clusters are of
different sizes and/or of different density, examples of which are
shown in Figures 7(a) and 7(c). In both cases, using the same
parameters as before, XCSc with the adaptive error threshold
mechanism is able to correctly identify the true clusters, as shown
in Figures 7(b) and 7(d). The system without the adaptive
mechanism was unable to solve either case (not shown).

(a)

(b)

(c)

(d)

Figure 7. Typical solutions using the adaptive 0ε approach
before and after rule compaction for two varingly spaced

datasets.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1859

8. CONCLUSIONS
Our experiments clearly show how a new clustering technique
based on the XCS accuracy-based learning classifier system, here
termed XCSc, is effective at finding clusters of high quality whilst
automatically finding the number of clusters. That is, XCSc can
reliably evolve an optimal population of rules through the use of
reinforcement learning to update rule parameters and a genetic
algorithm to evolve generalizations over the space of possible
clusters in dataset. The compaction algorithm presented reduces
the number of rules in the total population to identify the rules
that provide the clustering. The local search mechanism helps
guide the centres of the rules’ intervals in the solution space to
approach the true centres of clusters; results show that local
search improves the quality of the clustering over a non-local
search approach. The original system showed a sensitivity to the
setting of the error threshold but an effective adaptive scheme has
been introduced which compensates for this behaviour. We are
currently applying the approach to a number of large real-world
datasets and comparing the performance of XCSc to other
clustering algorithms which also determine an appropriate number
of clusters during learning.

9. ACKNOWLEDGMENTS
This work was partially supported by the Commission On Higher
Education of Thailand.

10. REFERENCES
[1] Booker, L.B. (1989) Triggered Rule Discovery in Classifier

Systems. In J.D. Schaffer (ed) Proceeding of the Third
International Conference on Genetic Algorithms. Morgan
Kaufmann, pp265-274.

[2] Bull, L. (2004)(ed.) Applications of Learning Classifier
Systems. Springer.

[3] Butz, M. and Wilson, S. (2001) An algorithmic description
of XCS. In Lanzi, P. L., Stolzmann, W., and S. W. Wilson
(eds.), Advances in Learning Classifier Systems. Third
International Workshop (IWLCS-2000). Springer, pp253-
272.

[4] Butz, M., Kovacs, T., Lanzi, P-L and Wilson, S.W. (2004)
Toward a Theory of Generalization and Learning in XCS.
IEEE Transactions on Evolutionary Computation 8(1): 28-
46.

[5] Davies, D. L. and Bouldin, D. W. (1979) A Cluster
Separation Measure. IEEE Trans. On Pattern Analysis and
Machine Intelligence, vol. PAMI-1 (2): 224-227.

[6] Dixon, P., Corne, D., and Oates, M. (2003) A Ruleset
Reduction Algorithm for the XCS Learning Classifier
System. In Lanzi, Stolzmann & Wilson (eds.), Proceedings
of the 5th International Workshop on Learning Classifier
Systems. Springer, pp.20-29.

[7] Fu, C. and Davis, L. (2002). A Modified Classifier System
Compaction Algorithm. In Banzhaff et al. (eds.) Proceedings
of GECCO 2002. Morgan Kaufmann, pp 920-925.

[8] Holland, J.H. (1975) Adaptation in Natural and Artificial
Systems. Univ. of Michigan Press.

[9] Holland, J.H. (1976) Adaptation. In Rosen & Snell (eds)
Progress in Theoretical Biology, 4. Plenum

[10] Maulik, U. and Bandyopadhyay, S. (2000) Genetic
algorithm-based clustering technique. Pattern Recognition
33: 1455-1465.

[11] O'Hara, T. and Bull, L. (2005) A Memetic Accuracy-based
Neural Learning Classifier System. In Proceedings of the
IEEE Congress on Evolutionary Computation. IEEE Press,
pp2040-2045.

[12] Sarafis, I.A., Trinder, P.W., and Zalzala, A.M.S. (2003)
Mining comprehensible clustering rules with an evolutionary
algorithm. In E. Cant´u- Paz et al. (eds.) Proc Genetic and
Evolutionary Computation Conference. Springer, pp2301–
2312.

[13] Stone, C. and Bull, L. (2003) For real! XCS with continuous-
valued inputs. Evolutionary Computation 11(3):299–336.

[14] Tibshirani, R., Walther, G., and Hastie, T. (2001) Estimating
the Number of Clusters in a Dataset Via the Gap Statistic.
Journal of the Royal Statistical Society, B, 63: 411-423.

[15] Tseng, L. Y. and Yang, S. B. (2001) A genetic approach to
the automatic clustering problem. Pattern Recognition 34:
415-424.

[16] Wilson, S.W. (1995) Classifier Fitness Based on Accuracy.
Evolutionary Computation 3(2):149-76.

[17] Wilson, S. W. (2000) Get real! XCS with continuous-valued
inputs. In P. L. Lanzi, W. Stolzmann and S. W. Wilson (eds.)
Learning Classifier Systems. From Foundations to
Applications. Springer, pp209–219.

[18] Wilson, S. (2002). Compact Rulesets from XCSI. In Lanzi,
Stolzmann & Wilson (eds.), Proceedings of the 4th
International Workshop on Learning Classifier Systems.
Springer, pp197-210.

[19] Wyatt, D. and Bull, L. (2004) A Memetic Learning Classifier
System for Describing Continuous-Valued Problem Spaces.
In N. Krasnagor, W. Hart & J. Smith (eds) Recent Advances
in Memetic Algorithms. Springer, pp355-396.

[20] Wyatt, D., Bull, L. and Parmee, I. (2004) Building Compact
Rulesets for Describing Continuous-Valued Problem Spaces
Using a Learning Classifier System. In I. Parmee (ed)
Adaptive Computing in Design and Manufacture VI.
Springer, pp235-248.

[21] Xu, R and Winch, D. (2005) Survey of Clustering
Algorithms. IEEE Transactions on neural networks 16 (3):
645-678.

1860

