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ABSTRACT 
This paper presents a novel approach to clustering using an 
accuracy-based Learning Classifier System. Our approach 
achieves this by exploiting the generalization mechanisms 
inherent to such systems. The purpose of the work is to develop 
an approach to learning rules which accurately describe clusters 
without prior assumptions as to their number within a given 
dataset. Favourable comparisons to the commonly used k-means 
algorithm are demonstrated on a number of synthetic datasets.   

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search – backtracking, control theory, dynamic 
programming, graph and tree search strategies, heuristic 
methods, plan execution formation and execution, scheduling. 

General Terms 
Algorithms, Performance, Experimentation. 

Keywords 
Data mining, k-means, Learning Classifier Systems. 

1. INTRODUCTION 
This paper presents results from a rule-based approach to 
clustering through the development of a Learning Classifier 
System (LCS)[9] based on Wilson’s XCS [16]. A number of 
studies have indicated good performance for XCS in classification 
tasks (e.g., see [2] for examples). We are interested in the utility 
of such systems to perform unsupervised learning tasks. 

Clustering is an important unsupervised classification technique 
where a set of data are grouped into clusters in such a way that 
data in the same cluster are similar in some sense and data in 
different clusters are dissimilar in the same sense. For this it is 
necessary to first define a measure of similarity which will 
establish a rule for assigning data to the domain of a particular 
cluster centre. One such measure of similarity may be the 

Euclidean distance D between two data x and y defined by D=||x-
y||. Typically in data clustering there is no one perfect clustering 
solution of a dataset, but algorithms that seek to minimize the 
cluster spread, i.e., the family of centre-based clustering 
algorithms, are the most widely used (e.g., [21]). They each have 
their own mathematical objective function which defines how 
well a given clustering solution fits a given dataset. In this paper 
our system is compared to the most well-known of such 
approaches, the k-means algorithm. We use as a measure of the 
quality of each clustering solution the total of the k-means 
objective function: 
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Define a d-dimensional set of n data points X = {x1 ,…., xn } as the 
data to be clustered and k centers C = {c1 ,…., ck } as the 
clustering solution. However most clustering algorithms require 
the user to provide the number of clusters (k), and the user in 
general has no idea about the number of clusters (e.g., see [14]). 
Hence this typically results in the need to make several clustering 
trials with different values for k where k = 2 to kmax   = square-root 
of n (data points) and select the best clustering among the 
partitioning with different number of clusters. The commonly 
applied Davies-Bouldin [5] validity index is used as a guideline to 
the underlying number of clusters here. 

The paper is structured as follows: first we describe the alterations 
to XCS and then present initial results. A form of rule compaction 
for clustering with LCS, as opposed to classification, is then 
presented. A form of local search is then introduced before a 
number of increasingly difficult synthetic datasets are used to test 
the algorithm. 

2. XCSc 
In this paper we present a version of the accuracy-based XCS, 
here termed XCSc. XCSc is a Learning Classifier System without 
internal memory, where the rulebase consists of a number (N) of 
rules. Associated with each rule is a scalar which indicates the 
average error (ε) in the rule’s matching process and the fitness (F) 
estimates the accuracy of the average error and an estimate of the 
average size of the niches (match sets - see below) in which that 
rule participates (σ). 

On receipt of an input data, the rulebase is scanned, and any rule 
whose condition matches the message at each position is tagged 
as a member of the current match set [M]. The rule representation 
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here is the Centre-Spread encoding (see [13] for discussions). A 
condition consists of interval predicates of the form {{c1 ,s1}, ….. 
{cd ,sd}}, where c is the interval’s range centre from [0.0,1.0] and 
s is the “spread” from that centre  from the range (0.0,s0] and d is 
a number of dimensions. Each interval predicates’ upper and 
lower bounds are calculated as follows: [ci - si, ci + si]. If an 
interval predicate goes outside the problem space bounds, it is 
truncated. A rule matches an input x with attributes xi if and only 
if i i i i ic  - s    x   < c  + s≤  for all xi. 

Reinforcement in XCSc consists of updating the matching error ε 
which is derived from the Euclidean distance with respect to the 
input x and c in the condition of each member of the current [M] 
using the Widrow-Hoff delta rule with learning rate β: 

      εj  εj + β(  2/1

1

2 )))(((∑
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l
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Next, the niche size estimate is updated: 

 

σj  σj + β( |[M]| - σj)    (3) 

 

The rest of the fitness update follows that of standard XCS with 
parameters α, ν and ε0 (see [3] for details). 

XCSc employs two discovery mechanisms, a niche genetic 
algorithm (GA)[8] and a covering operator. The general niche GA 
technique was introduced by Booker [1], who based the trigger on 
a number of factors including the payoff prediction "consistency" 
of the rules in a given [M], to improve the performance of LCS. 
XCS uses a time-based mechanism under which each rule 
maintains a time-stamp of the last system cycle upon which it was 
consider by the GA. The GA is applied within the current niche 
when the average number of system cycles since the last GA in 
the set is over a threshold θGA. If this condition is met, the GA 
time-stamp of each rule in the niche is set to the current system 
time, two parents are chosen according to their fitness using 
standard roulette-wheel selection, and their offspring are 
potentially crossed and mutated, before being inserted into the 
rulebase. This mechanism is used here within match sets, as in the 
original XCS algorithm [16], which was subsequently changed to 
work in action sets to aid generalization per action [3]. 

Offspring are produced via mutation (probability μ) where, after 
[17], we mutate an allele by adding an amount + or - rand(m0), 
where m0 is a fixed real, rand picks a real number uniform 
randomly from (0.0,m0], and the sign is chosen uniform randomly. 
Crossover (probability χ, two-point) can occur between any two 
alleles, i.e., within an interval predicate as well as between 
predicates, inheriting the parents’ parameter values or their 
average if crossover is invoked. Replacement of existing members 
of the rulebase uses roulette wheel selection based on estimated 
niche size (if its fitness F is significantly lower than the average 
fitness of rules in [P], its deletion probability is further increased 
as in XCS). If no rules match on a given time step, then a 
covering operator is used which creates a rule with its condition 
centre on the input value and the spread with a range of rand(s0), 

which then replaces an existing member of the rulebase in the 
usual way (see [3]). 

Recently, Butz et al. [4] have proposed a number of interacting 
"pressures" within XCS. Their "set pressure" considers the more 
frequent reproduction opportunities of more general rules. 
Opposing the set pressure is the pressure due to fitness since it 
represses the reproduction of inaccurate overgeneral rules. Thus 
to produce an effective, i.e., general but appropriately accurate, 
solution an accuracy-based LCS using a niche GA with global 
replacement should have these two pressures balanced through the 
setting of the associated parameters. In this paper we show how 
the same mechanisms can be used within XCSc to identify 
clusters within a given dataset; the set pressure encourages the 
evolution of rules which cover many data points and the fitness 
pressure acts as a limit upon the separation of such data points, 
i.e., the error. 

Previously, evolutionary algorithms have been used for clustering 
in two principle ways. The first uses them to search for 
appropriate centers of clusters with established clustering 
algorithms such as the k-means algorithm, e.g., the GA-clustering 
algorithm [10]. However this approach typically requires the user 
to provide the number of clusters. Tseng and Yang [15] proposed 
the CLUSTERING algorithm which has two stages. In the first 
stage a nearest-neighbor algorithm is used to reduce the size of 
data set and in the second the GA-clustering algorithm approach 
is used. Sarafis [12] has recently proposed a further stage which 
uses a density-based merging operator to combine adjacent rules 
to identify the underlying clusters in the data. We suggest that 
modern accuracy-based LCS are well-suited to the clustering 
problem due to their generalization capabilities. 

3. INITIAL PERFORMANCE 
In this section we apply XCSc as described above on two datasets 
for the first experiment to test the performance of the system. The 
first dataset is well-separated as shown in Fig 1(a). We use a 
randomly generated synthetic dataset. This dataset has k = 25 true 
clusters arranged in a 5x5 grid in d = 2 dimension. Each cluster is 
generated from 400 data points using a Gaussian distribution with 
a standard deviation of 0.02, for a total of n = 10,000 datum. The 
second dataset is not well-separated as shown in Fig 1(b). We 
generated it in the same way as the first dataset except the clusters 
are not centred on that of their given cell in the grid. 

The parameters used were: N=800, β=0.2, 0ε = 0.03, v=5, α=0.1, 

χ=0.8, μ =0.04, θGA =12, s0 =0.03, m0 =0.006. All results 
presented are the average of ten runs. Learning trials consisted of 
200,000 presentations of a randomly sampled data point. Figure 2 
shows typical example solutions produced by XCSc on both data 
sets. That is, the region of the 2D input space covered by each 
rule in the final rule-base is plotted along with the data. As can be 
seen, in the well-separated and less-separated case the system 
roughly identifies all 25 clusters. 

As expected, solutions contain many overlapping rules around 
each cluster. The next section presents a rule compaction 
algorithm which enables identification of the underlying clusters. 
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Figure 1. The well-separated (a) and less-separated (b) data 
sets used. 
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(b) 

Figure 2. Typical solutions for the well-separated (a) and less-
separated (b) data sets. 

4. RULE COMPACTION 
Wilson [18] introduced a rule compaction algorithm for XCS to 
aid knowledge discovery during classification problems (see also 
[6][7][20]). We have developed a compaction algorithm for 
clustering: 

Step 1 Delete the useless rules: The useless rules are identified 
and then deleted from the ruleset in the population based on their 
coverage. Low coverage means that a rule matches a small 
fraction (20%) of the average number of datum. 

Step 2: Sort based on numerosity: The population is sorted 
according to the numerosity of the rules and then the rules that 
have the lowest numerosity - less than 2 – are deleted. Then [P]M 
(M < N) is formed by selecting the minimum sequential set of 
rules that covers all the data. 

Step 3: Sort based on error: The population [P]M is sorted 
according to the average error of the rules. Then [P]P (P < M) is 
formed by selecting the minimum sequential set of rules that 
covers all the data. 

Step 4: Remove redundant rules: This step is an iterative process. 
On each cycle of inputting a data point it selects the rule in [P]P in 
the largest number of match sets. This rule is removed into the 
final ruleset [P]F and the data that it covers deleted from the 
dataset. The process continues until the dataset is empty. 
 

Figure 3 shows the final set [P]F for both the full solutions shown 
in Figure 2. XCSc’s identification of the clusters is now clear. 
Under the (simplistic) assumption of non-overlapping regions as 
described by rules in [P]F it is easy to identify the clusters after 
compaction. In the case where no rules subsequently match data 
we could of course identify a cluster by using the distance 
between it and the centre of each rule. 

We have examined the average quality of the clustering solutions 
produced during the ten runs by measuring the total objective 
function described in equation (1) and checking the number of 
clusters defined. The average of quality on the well-separated 
dataset is 6.65 +/- 0.12 and the number of clusters is 25.0 +/- 0. 
The average quality on the not well-separated dataset is 6.71 +/- 
0.14 and the number of clusters is 25.0 +/- 0. That is, it correctly 
identifies the number of clusters every time. For comparison, the 
k-means algorithm was applied to the datasets. The k-means 
algorithm (assigned with the known k=25 clusters) averaged over 
10 runs gives a quality of 32.42 +/- 9.49 and 21.07 +/- 5.25 on the 
well-separated and less-separated datasets respectively. The low 
quality of solutions in the well-separated case is due to the choice 
of the initial centres; k-means is well-known for becoming less 
reliable as the number of underlying clusters increases. For 
estimating the number of clusters we ran, for 10 times each, 
different k (2 to 30) with different random initializations. To 
select the best clustering with different numbers of clusters, the 
Davies-Bouldin validity index is shown in Figure 4. The result on 
well-separated dataset has a lower negative peak at 23 clusters 
and the less-separated dataset has a lower negative peak at 14 
clusters. That is, it is not correct on both datasets, for the same 
reason as noted above regarding quality. Thus XCSc performs 
better than k-means whilst also identifying the number of clusters 
during learning. 
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(b) 

Figure 3. Effects of compaction on the typical solutions in 
Figure 2 for the well-separated (a) and less-separated (b) data. 
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(b) 

Figure 4: K-means algorithm performance using the Davies-
Bouldin index for well-separated (a) and less-separated (b) 

data. Varying k shown on x-axis and index on y-axis. 

5. LOCAL SEARCH 
Previously, Wyatt and Bull [19] have introduced the use of local 
search within XCS for continuous-valued problem spaces. Within 
the classification domain, they used the Widrow-Hoff delta rule to 
adjust rule condition interval boundaries towards those of the 
fittest rule within each niche on each matching cycle, reporting 
significant improvements in performance. Here good rules serve 
as a basin of attraction under gradient descent search thereby 
complimenting the GA search. The same concept has also been 
applied to a neural rule representation scheme in XCS [11]. We 
have examined the performance of local search for clustering 
using Wyatt and Bull’s scheme: once a focal rule (the highest 
fitness rule) has been identified from the current match set all 
rules in [M] use the Widrow-Hoff update procedure to adjust 
each of the two interval descriptor pairs towards those of the focal 
rule, e.g., ,,],[ jicFcc ijjlijij ∀−+−< β  where cij 

represents gene j of rule i in the match set,  Fj  represent gene j of 
the focal rule, and βl is a learning set to 0.1. The spread 
parameters are adjusted in the same way and the mechanism is 
applied on every match cycle before the GA trigger is tested. 
Initial results using Wyatt and Bull’s scheme gave a reduction in 
performance, typically more specific rules, i.e., too many clusters, 
were identified (not shown). 

We here introduce a scheme which uses the current data as the 
target for the local learning to adjust only the centres of the rules: 

)( ijjlijij cxcc −+−< β                           (4) 

Where cij represents the centre of gene j of rule i in the current 
match set, xj represents the value in dimension j of the current 
input data, and βl is the learning rate, here set to 0.1. This is 
applied on every match cycle before the GA trigger is tested, as 
before. In the well-separated case, the quality of solutions was 
6.50 +/- 0.09. In the less-separated case, the quality of solutions 
was 6.48 +/- 0.07. The same number of clusters was identified as 
before, i.e., 25 and 25 respectively. Thus results indicate that our 
data-driven local search improves the quality of the clustering 
over the non-local search approach and is used hereafter. 

6. ADAPTIVE THRESHOLD PARAMETER 
The 0ε  parameter controls the error threshold of rules and we 
have investigated the sensitivity of XCSc to its value by varying 
it. Experiments show that, if 0ε is set high, e.g., 0.1, in the less-
separated case the contiguous clusters are covered by the same 
rules (Figure 5). We therefore developed an adaptive threshold 
parameter scheme which uses the average error of the current 
[M]: 

)/( ][0 ∑= Mj Nετε                     (5) 

Where jε  is the average error of each rule in the current match 

set and N[M] is the number of rules in the current match set. This 
is applied before the fitness function calculations. Experimentally 
we find τ=1.2 is most effective for the problems used here. 

Figure 6 shows how in the well-separated case, the average 
quality and number of clusters from 10 runs is as before, being 
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6.39 +/- 0.04 and 25.0 +/- 0 respectively. In the less-separated 
case the average quality is again almost unchanged at 6.40 +/- 
0.09 and the number of clusters is 25.0 +/- 0. There are no 
significant differences in average quality but with the adaptive 
technique there is a reduction in the number of parameters that 
require careful, possibly problem specific, setting by the user.  
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Figure 5. Typical solutions using 0ε =0.1 before (a) and after 
(b) rule compaction, for the less-separated dataset. 

 

7. INCREASED COMPLEXITY 
Here we examine the performance of XCSc compared to k-means 
over randomly generated datasets in several d dimensions with 
varying numbers k clusters. A Gaussian distribution is generated 
around each centre, their standard deviation is set from 0.01 
(well-separated) up to 0.05 (less-separated). Each centre 
coordinate is generated from a uniform distribution over the 
hypercube [0,1]d, the expected distances between cluster centres 
is set to 0.2. Thus, the expected value of the cluster separation 
varied inversely with standard deviation. We test datasets with d-
dimensions 2, 4 and 6. The true k clusters are 9 and 25, where we 
generate 400 data points for each cluster.  
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Figure 6. Typical solutions using the adaptive 0ε  approach  
before and after rule compaction, for well-separated (a-b) and 

less-separated (c-d) dataset. 
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The parameters used were as before: N=800, β=0.2, v=5, α=0.1, 
χ=0.8, μ =0.04, θGA =12, s0 =0.05, m0 =0.01. Then we determine 
the average quality of clustering and number of clusters from 
XCSc with local search from 10 runs as before. We also 
determine for k-means (the number of k groups was given) the 
quality and Davies-Bouldin index as before. Table 1 shows how 
XCSc always gives superior quality and gives an equivalent or 
closer estimate of the number of clusters compared to k-means. 

 

 

Table 1. XCSc with local seach vs. k-means on harder 
datasets. 

k-means XCSc dataset 

k 

found 

quality k found quality 

k=9, 

d=2 

7 63.728.24 ±  00.000.9 ±  29.013.13 ±

k=9, 

d=4 

6 34.6680.83 ±  00.000.9 ±  31.094.21 ±

k=9, 

d=6 

9 36.4411.133 ±  00.000.9 ±  23.079.43 ±

k=25, 

d=2 

24 

 

39.1037.37 ±  00.000.25 ±  45.015.18 ±

k=25, 

d=4 

20 94.4638.152 ±  00.000.25 ±  01.005.52 ±

k=25, 

d=6 

22 58.6867.278 ±  00.000.25 ± 33.078.67 ±

 

 

We have also considered data in which the clusters are of 
different sizes and/or of different density, examples of which are 
shown in Figures 7(a) and 7(c). In both cases, using the same 
parameters as before, XCSc with the adaptive error threshold 
mechanism is able to correctly identify the true clusters, as shown 
in Figures 7(b) and 7(d). The system without the adaptive 
mechanism was unable to solve either case (not shown). 
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Figure 7. Typical solutions using the adaptive 0ε  approach 
before and after rule compaction for two varingly spaced 

datasets. 
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8. CONCLUSIONS 
Our experiments clearly show how a new clustering technique 
based on the XCS accuracy-based learning classifier system, here 
termed XCSc, is effective at finding clusters of high quality whilst 
automatically finding the number of clusters. That is, XCSc can 
reliably evolve an optimal population of rules through the use of 
reinforcement learning to update rule parameters and a genetic 
algorithm to evolve generalizations over the space of possible 
clusters in dataset. The compaction algorithm presented reduces 
the number of rules in the total population to identify the rules 
that provide the clustering. The local search mechanism helps 
guide the centres of the rules’ intervals in the solution space to 
approach the true centres of clusters; results show that local 
search improves the quality of the clustering over a non-local 
search approach. The original system showed a sensitivity to the 
setting of the error threshold but an effective adaptive scheme has 
been introduced which compensates for this behaviour. We are 
currently applying the approach to a number of large real-world 
datasets and comparing the performance of XCSc to other 
clustering algorithms which also determine an appropriate number 
of clusters during learning. 
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