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ABSTRACT

Wilson introduced XCSF as a successor to XCS. The major
development of XCSF is the concept of a computed prediction.
The efficiency of XCSF in dealing with numerical input and
continuous payoff has been demonstrated. However, the possible
actions must always be determined in advance. Yet domains such
as robot control require numerical actions, so that neither XCS
nor XCSF with their discrete actions can yield high performance.
This paper studies computed action in XCSF, where the action is
continuous with respect to the input state. In comparison with
Wilson's architecture for continuous action, our XCSF version,
called XCSFCA, proves to be more efficient.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence]: Learning—Concept learning; 1.2.8
[Artificial Intelligence]: Problem Solving, Control Methods, and
Search—Heuristic methods.

General Terms
Algorithms.

Keywords

XCSF, continuous actions, evolution strategy.

1. INTRODUCTION

Research on learning classifier systems has focused on the use of
accuracy-based fitness after the introduction of XCS [11], in
which (1) the classifier fitness is based on the accuracy of the
prediction and (2) general and accurate classifiers are maximally
obtained. The payoff is a discontinuous function of the state x.
The predictions are estimated values representing the expected
payoffs if the system matches x and activates an action. The
system builds a complete map of predictions Condition x Action
= Prediction. However, when the number of states and actions
increases, it is clear that the system cannot construct such map of
predictions. This is not only due to the memory allocated by the
system, but also the time as well as the examples used for training
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the system. The system should generalize from a subset of data to
approximate a payoff function as the study of the generalization
in reinforcement learning [7]. Wilson recently introduced a new
learning classifier system XCSF [13][14][15] that differs from
XCS in real value inputs for the condition part and the new
concept of a computed classifier prediction. XCSF learns how to
construct a function approximator which approximates a payoff
function. It can be a discontinuous 0/1000 payoff function or a
continuous payoff function of real inputs. When XCSF receives
the input x, it builds a system prediction for each discrete action
P(x,q) via the function approximator and chooses the action a*

with the highest prediction p(x,¢*) to maximize the payoff. Some

XCSF versions adapting to different types of payoff functions are
presented in [4][13][14][15].

In traditional learning classifier systems, the possible actions must
always be determined in advance. An animat in woods problems
[10][11] can take one of eight actions corresponding to eight
directions (go north, north-east, east, south-east...). One can use
three bits to encode these eight actions in the action part.
However, when dealing with problems that require real value
outputs, the systems show some limits. In the example of an
animat which could move in any direction represented by an
angle from [0, 2], the solution is to increase the number of bits
encoding actions in order to represent real angles. This one is
feasible but we might lose the reactive attribute in the learning
classifier systems. Indeed, the population size of classifiers, the
time of building a match set and the convergence time of the
system increase. Another solution is to use a generalized classifier
system (GCS) [16], in which the input x is linked with the action
a in the computation of the prediction as well as in the process of
building the match set M. Each classifier employs the form of
t(x,a):-w=p(x,a) where #(x,a) is the condition form allowing the
classifier to be or not to be a member of M. The prediction weight
vector w extends a new weight associated with the action a and
the prediction p(x,z) is computed linearly with x and a. The
difficulty of GCS is to evolve a condition form #(x,a) so that the
action is continuous. Wilson stated that if #(x,a) employs interval
predicates, the best action a* is discontinuous. An example of
GCS with orientable elliptical form #(x,a) is applied to the frog
problem.

In this paper, we will investigate a new approach in which the
action is computed directly. Thus, the action is continuous with
respect to the input state. Basing on XCSF with a computed
classifier prediction p(x,q), we extend a computed classifier action

to XCSF. The classifier action is computed as a linear
combination of the input and a vector of action weights. The



action weights are themselves adapted to the problem by using an
evolution strategy. We apply our XCSF version, called XCSFCA,
to the frog problem described in [15][16]. The results show that
XCSFCA obtains better performances than GCS. In addition, the
population size of classifiers is more compact.

The next section describes briefly XCSF. Section 3 presents
XCSFCA, its application in the frog problem and the results.
Section 4 concludes this paper.

2. REVIEW OF XCSF

XCSF is an extension to XCS for learning environments where
the input is continuous and the payoff landscape is continuous
with respect to the input. A new classifier condition form adapting
to real value inputs is introduced that allows XCSF to evolve
more appropriate conditions. The use of a computed prediction as
a function of the input allows XCSF to evolve classifiers with
accurate values of the prediction. Thus, the system performance
improves, XCSF can yield more compact solutions, and the
convergence time may increase.

XCSF runs like XCS. The system receives an input message x via
the detectors, forms a match set M of classifiers whose condition
part matches x, determines a winner action a,;, between possible
actions in M according to an action selection strategy, forms an
action set 4 of the classifiers advocating a,,;,, and sends a,,,, to the
effectors. The system receives a reward r at the next step to
update the parameters of the classifiers in 4. A new component
updates the prediction weights in order to make the predictions
more accurate. Covering operator is triggered according to a
covering strategy. Either no existing classifier matches x as in
[11] or M contains less than ¢,,, discrete actions as in [3]. A
niche genetic algorithm is invoked to generate potential classifiers
adapting to the problem.

Classifier condition. XCSF extends XCS to deal with continuous
input. The components of a classifier condition are the interval
predicates int;=(/;,u;) where [(“lower”) and u,(“upper”) are real
values. A classifier ¢/ matches an input message x=(x,...,x,) if
each element x; belongs to the corresponding interval predicate
cl.int; at the position i i.e. /<x;<u;. Fortunately, the system with
the real input was studied in [12] and one can use again the
methods manipulating interval predicates.

Computed classifier prediction. The new concept in XCSF is
the computation of the classifier prediction instead of using a
parameter estimating its value. A vector of weights
w=(wg,wy,...,w,), called the prediction weight vector, is added to
each classifier. The classifier prediction clp is computed as a
linear combination of the prediction weight vector c/w and the
input message x=(xj,...,x,) concatenated with a constant x,.
Wilson’s studies [14] proposed that the value of x, should be the
same order of the values of the elements of x.

clp(x)=w-x

w= (W, W, )

)
X' = (%0525, )

Covering operator. When a new covered classifier is created,
each interval predicate int;=(I,u;) is generated as ; = x; - rand(ry)
and u; = x; + rand(ry), where rand(ry) is a value uniform randomly
from [0,79] and 7, is a real constant, and each element w; of the
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weight vector is initialized to a value uniform randomly from
[-1,1].

Discovery mechanism. A genetic algorithm works as in XCS.
Crossover (with probability y) permutes alleles of two parents
between two crossover points. Since an allele is a real value, a
new mutation operator is introduced. Mutation (with probability
) modifies an allele by adding an amount + rand(m,) where m, is
a real constant.

Domain control. Covering and mutation operators can generate
intervals out of the condition range. If it happens, /; and u; of an
interval predicate int; are brought back to the extremes of the
condition range and they are possibly permuted in order to respect
the predicate constraint /<u;.

Reinforcement. The prediction weight vector cl/w of each
classifier in A4 is updated using a modified delta rule [9]:

Aw, =| 1 @)

i
e

clw, <—clw, +Aw,

o |(P=clp(x))x

3)

Where 7 is the correct rate. The classifier prediction error c/. & and
the classifier fitness c/.fit are then updated as follows:

cle<«cle+ ﬁQP—cl. p(x] —cl.g) )
1 if cl e <g,
clx= - 5
a[d'gJ otherwise ©)
€
, cl.x xcl.num
clx' = (6)
chj.KX cl;,.num
jel4]
cl.fit « cl.fit + B(cl.x’ - cl. fit) @)

Where [ is the learning rate. The constant & represents the
threshold of tolerance for the prediction error cl.¢. If cl. ¢ is below
&, the error is accepted and the classifier ¢/ is considered to be
accurate (cl.x=1). Otherwise its accuracy drops off and is
controlled by an accuracy function with the parameters « and v.
The relative accuracy cl.x”is calculated with respect to the other
classifiers cl; of A. cLnum is the numerosity of the classifier cl.
Notice that c/.w is updated first, so cl.& and cl.fit take into account
the change of cl.w.

3. EXTENSION TO XCSF
3.1 XCSF with Computed Continuous Action

As introduced in the first section, XCSF with discrete actions
performs inefficiently when facing problems requiring continuous
real values. We propose an extension to XCSF where actions are
directly computed. The actions are then a continuous function of
the input. The modified classifier system is called XCSFCA.

A vector of action weights ¢=(¢y, ¢, ..., &,) 1s associated to each
classifier action. The classifier action c/.a is computed as a linear
combination of £ and the current input x=(x,, ...,x,) concatenated
with a constant x,.



cla(x,{)=¢ X q
X = (.2, ) ®
A separate process called an evolution strategy (ES) evolves the
action weights to make the computed actions more accurate. The
ES was developed by Schwefel [6] for optimizing real-vectors.
Each individual in the ES consists of a pair of two real-vectors
(&, 0) having the same length n, : a vector of action weights ¢ and
a vector of standard deviations o used by mutation. The ES,
which we use to evolve the action weights, is (1+1)-ES, in which
one parent produces one offspring by mutation, the offspring is
assigned a fitness value evaluating its quality with respect to the
problem, the offspring competes with the parent based on the
fitness, and the best individual becomes the parent of the next
generation. Mutation on ¢ is performed by adding a random value
N(0,0;) from a normal distribution with mean zero and standard
deviation o;. The standard deviation vector is also itself adapted.

o/ =oexp(z' N(0.1)+7 N,(0.1)) ©)
¢l=¢,+N(0,0)) (o

o= (fom ) "

rz( 2@)7 (12)

Where ({%0”) is an individual mutant, n, is the length of the
vector o, and the factors 77and 7 are set by default. The normal
distribution with mean zero and standard deviation one N;(0,1) is
called anew for each value of i=0,...,( n,-1). Each element ¢; is
initialized to a value uniform randomly from [-1,1] and each
element o; is initialized to a constant value o©.

XCSFCA works like
prediction ﬁ’(x, a), except for the following cases: (1) the process

XCSF with a computed classifier

of building the match set M, covering operator, action selection in
exploration and crossover operator are modified, and (2) a new
component updating action weights is introduced.

Match set M. A classifier will become a member of M if its
condition part matches the input as usual and its computed action
cl.a belongs to the range of the action a,,,g.. The ranges of action
weights are not given. The action weights are initially generated
randomly and then updated by mutation. So, a classifier can
compute bad actions out of a,,,e in response to the input. We
modified the process of building M so that M consists of matching
classifiers advocating good actions, which belong to @,,g., and
thus they will have a chance to correct their action weights.

Covering operator. Given the input x, a vector of action weights
cl.{ is repeatedly generated until an action cla computed by
Eq.(8) belongs to the action range allowed. This ensures that the
match set M has at least one good action in response to the input.
Interval predicates cl.int; are created as in XCSF.

Action selection in exploration. A pure random exploration is
usually used for exploring actions of the environment. We
propose to replace it by a deterministic strategy, i.e. the action
with the highest prediction is selected. The classifiers advocating
the best action will survive while an ES will allow the system to
explore actions.

Crossover operator. The recombination of alleles of two parents
does not generate new values of alleles. The system cannot
explore values near the parents’ values, and thus appropriate
conditions are not generated. To solve this problem, we use a mix
crossover [5]. The allele value y° of an offspring is the result of a

mix function of two allele values vl_l and v’,z of parents at the same
position i.

v = (1_7/0/1)"; +7GAvi2

Y6u :(1+2aGA)M_aGA

(13)
(14

Where og, is a real constant from [0,1] and u is a random value
from [0,1]. When ¢,=0, the mix crossover is a kind of crossover
that interpolates two parents’ values. Notice that XCSFCA still
has the XCSF mutation operator.

Action weights update component. An (1+1)-ES is applied on
each member of action set 4 to evolve actions during explore
problems. Indeed, it will mutate the current action of each
classifier of 4 to produce one mutant action and evaluate it.
Accurate actions will be kept to the next time-step. Consider a
classifier ¢/ in 4 with its action weights cl ¢, its standard
deviations cl. g, its error cl.¢&, its experience cl.exp, its numerosity
cl.num and its fitness c/.fit. The mutant classifier ¢/’is a copy of
the parent classifier c/. It inherits the parameters as cl.&, clfit,
cl.exp and cl.num of the parent classifier ¢/ except for its action
represented by (c/”{,cl” o) generated by mutation on (cl.{cl. o).
This corresponds to step 1 (Algorithm 1). The evaluation of the
mutant classifier’s fitness works as follows. The mutant action
represented by (cl’,cl’ o) is calculated. The mutant classifier ¢/’
computes its prediction and is tested in the context of the current
payoff P. Then its prediction error c/’e is estimated and its
accuracy value c/’x is calculated. Finally, its fitness cl’fit is
updated by its relative accuracy value. These correspond to step 2
(Algorithm 1). If the mutant is accurate and better than the parent
in the fitness sense, it will replace its parent (step 3 in Algorithm
1). If replacement doesn't occur, the mutant is discarded and a
new mutant will be generated in next problems. This update
process (Algorithm 1) is called after the reinforcement
component.

Algorithm 1. Update action weights by (1+1)-ES.

1. Mutate one parent action represented by (c/.¢,cl. o) to produce
one mutant action (¢!’ ¢,cl” o) by Eq.(9) and Eq.(10)
2. Evaluate the mutant action (c/” ¢/’ o)

cl’a(x,cl’f) /I computed action of the mutant cl’
1 if ¢l'.a € action range allowed

good = .
0 otherwise

/I the mutant cl’ computes its prediction cl’p
/I and updates its error cl’.c and its fitness cl’fit

QP —cl'.p(x,cl'a)- cl’.g)
cl'.exp
,BQP —cl'.p(x, cl'.a} - cl'.g) otherwise

. 1
if cl'exp<—

cle«cle+
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1 ifcl.e<eg,

c'x= Ie)
a[c' otherwise

&

// accuracy

cl’fit = Os cl.fit /I reduce inherited fitness by Ogs

cl'.ﬁt(—cl'.ﬁt+ﬂ( cl sl num —cl'.ﬁtj
claxclnum+cl' kxcl num

3. Replace the parent classifier if the mutant classifier is accurate
and dominates the parent classifier

if (good=1 and cl’ k=1 and cl’fit > cl.fif)
replace cl by cl’

Where S, &), o, vare parameters used in XCS and the factor g is
used to reduce the mutant’s fitness.

Computed classifier prediction. Notice that because the
classifier prediction clp is computed linearly with x and a, a
weight associated with the action a is added to the prediction
weight vector c/.w.

cl.p(x,a)=w-x"

(15)

)

x" = (xo,xl,...,xn,a)

WZ(WO,WI,...,W w

n> n+l

In summary, XCSFCA has a couple of computations: one for the
action based on the input a(x), the other one for the prediction
based on the input and the result of the first computation

P, a(x)).

3.2 Frog Problem

In this section, we summarize the frog problem introduced in [15].
A frog-like system learns to jump to catch a fly that is at a
distance d far from the frog. The frog receives the signal input x
related to d (0<d<1) and jumps a certain distance. A jump can be
over or under the fly. Then the frog receives a payoff related to
the remaining distance. Consider a jump as an action a that the
system should choose. The frog problem is how to choose the best
action a* to maximize the payoff. Mathematically, the payoff
function is given as follows:

x+a if x+a<l (16)
Px.a)= :

2—(x+a) otherwise

xd)=1-d (17

The payoff function is continuous and nonlinear composed of two
linear planes. To facilitate the reading, we called the frog problem
with the payoff function in Eq.(16) frogl. frog2 is a modification
of frogl. The payoff function is still continuous and nonlinear but
composed of two nonlinear forms (Eq.(18)).

P(x a)— xe" if a<-Inx (18)
’ x"'e™ otherwise
x(d) =¢* 19)
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In both of frogl and frog2 problems, the best value of a* should
be continuous with respect to x in order to be able to maximize
the payoff.

3.3 Simulation Settings

In order to investigate the impact of computed action and
facilitate the comparison of XCSFCA with XCSF in [16], the
minimal change to parameter settings is made to the latter and the
same measures measuring the system performance are used. The
parameter settings used in our results were: N=2000, £=0.2,
17=0.2, 65,~48, y=0.8, 1=0.04, r;~0.1, m=0.1, x,~=1, £=0.01,
oa=0.1, v=5, 6,750, 5=0.1, Og0.1, ¢5,=0, and initial standard
deviation & ¥=3. ¢ ©=3 is chosen as the default value proposed
by [2]. GA-subsumption and action set subsumption were not
activated. Since the input x is one-dimensional, the vector length
of action weights and standard deviations are n,=2. Explore and
exploit problems are alternated with probability 0.5. One run is
stopped after 100,000 explore problems. The payoff received after
jumping is plotted. The system error measures the difference
between the prediction of the expected payoff and the payoff
received. The payoff and system error curves are plotted by using
a 50-point running average from exploit problems, averaged over
ten runs. In each problem, the fly was randomly placed at a
distance d (0<d<1). The action range allowed is [0,1]. At the end
of one run, x was scanned from 0 to 1 and from e to 1 in frogl
and frog2 respectively, increased by 0.001, the best action a* is
plotted. The best action curve is plotted, averaged over ten runs.
This curve exhibits the continuous actions related to the input.

3.4 Results

Since d is generated randomly from [0,1], the sensory input x
received by Eq.(17) gives the value from [0,1]. However, values
of x in fiog2 received by Eq.(19) have the range [¢,1], they are
scaled into [0,1] when computing the prediction and the action so
that the input and the action use the same range. In covering,
given x, cl.£ of a covered classifier is repeatedly generated until
an action cl.a calculated by Eq.(8) belongs to the action range
allowed [0,1].

firog’s results.

In Fig. 1, the system performance is greater than 99% after an
averaged number of 30,000 explore problems. The system error
drops to smaller than 1%. The population size of classifiers N is to
about 37% of N. Fig. 2 shows the best action curve which is
nearly coincident with the diagonal 1-x. The system receives the
input x (not the distance d). If the frog-like system wants to catch
the fly at d, it must jump a distance a=d. Since x is given by
Eq.(17), the best action, which the system needs to obtain, is the
diagonal a=1-x. The averaged number of classifiers building the
best action curve of Fig. 2a is 60.8 classifiers. Fig. 3 shows the
error of best action a* of Fig. 2b, which measures the difference
between a* and the diagonal 1-x. In Fig. 5, the vectors of action
weights (p,&;) are close to (-1,1), which implies that the best
action curve of Fig. 2b is nearly coincident with the diagonal. The
standard deviations oy and o; approach zero values and thus the
values of ¢, and ¢&; will be little updated by Eq.(10). For example,
in the last classifier in Fig. 5, given x = 0.999, its action c/.a and
its prediction clp are computed as follows: cl.a = {pxy + {ix =
1.0006 — 1.0006%0.999 = 0.001 and clp = wpxg + wix + woa =



670.17 + 329.84*0.999 + 329.38*0.001 = 1000.0. The results
showed here are better than the ones of GCS [16] (Fig. 4 and Fig.
6).

The convergence speed is not fast because action weights are
updated by mutation by small changes from one generation to
another in the evolution strategy. In contrast to the delta rule
method, the weights are updated by adding small changes in the
direction that would reduce the error. Because of only one payoff
used for evaluating one individual mutant action, the system
should have strict replacement conditions to ensure that
replacement will occur if the mutant is significantly better than its
parent. This means a poor mutant could replace the effective
classifier by mistake and then cause the system performance to be
sometimes volatile. So, a good insurance is to make a reduction of
the mutant’s fitness by the factor ogg before updating it and use
the accurate mutant in the replacement.

XCSFCA evolves thanks to the loop “reinforcement — ES — GA”.
This means a GA generates offspring that inherit the parameters
of the parents, a reinforcement procedure corrects their
parameters in the context of the current payoff, and their vectors
of action weights will be updated through an ES procedure in
order to produce actions more accurate. The GA will be triggered
to generate new offspring. The loop of “reinforcement — ES —
GA” continues.
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I, i, W, W ", a o

0.000 0.893 669,33 327.70 330.6%9| 0.108 1.0000
0.098 0.654 069,47 327.70 330,83 0.346 1.0002
0,278 0,951 BE9.83 327.77 331.11| 0.048 1.0005
0,233 0,991 B70,31 329.68 329.6%9| 0,009 1.0000
0,208 0.577 669,46 327.04 331.48| 0.422 1.0009
0.070 0.582 069,42 327.70 330.78| 0.419 1.0001
0,232 0,933 B70.18 329.85 329.38| 0.068 1.0005
0,189 0.630 BES. 64 327,73 330,97 0.330 1.0003
0.056 0.566 669,41 327.70 330.77| 0.434 1.0001
0.056 0.618 669,41 327.70 330.77| 0.381 1.0001
0.070 0,586 BE9.43 327.70 330,79 0.413 1.0001
0,115 0,738 BES, 51 327.71 330,86 0,262 1.0003
0.270 0.762 669,81 327.76  331.10| 0,237 1.0005
0,266 0.970 869,87 327.79 331.14| 0.030 1.0005
0.035 0,952 BE9.36 327.69 330.72| 0.045 1.0001
0.036 0,582 BES. 41 327,70 330.77| 0.418 1.0001
0.127 0.705 669,53 327.71 330.8E8| 0.295 1.0002
0.191 0.552 069,65 327.73 330,98 0.448 1.0003
0.151 0.991 B70.31 329.68 329.68| 0.009 1.0000
0,072 0,991 B70,.31 329.67 329.69| 0.009 1.0000
0.2209 0.976 670,17 320.85 320.3E8| 0.024 1.0006
0.040 0.536 669,37 327.70 330.73| 0.461 1.0001
0.178 0.573 869,35 327.02 331.39| 0.427 1.0009
0,308 0,994 B70,17 329.85 329.38| 0.007 1.0006
0,052 0,991 870,30 329,67 329.68| 0,009 1.0000
0,229 0.975 670,17 329.84 320.38| 0.026 1.0006
0.235 0.988 670,31 329.68 329.689| 0.012 1.0000
0.000 0.943 BE9.34 327.69 330.70| 0.0535 1.0001
0.343 1.000 870,17 329.84 329,38 0.001 1.0008

Figure 5: Activated classifiers from one run

¢ o, fox P £ fit  mam
-0, 5005 0.0002 0,00059| 997, 5080 0.0000 1.0000 10,00
-1.0022 Q.0000 0,0001| 997, 8604 0.0000 0.9968 2,00
-1.0018 0.0000 00,0000 997,3538 0.0000 0.5847 2.00
-1.0000 0.0001 0,0016| 999,0020 0.0000 1.0000 30.00
-1.0040 O.0000 0,0000| 997, 8850 0.0000  0,9072 0,00
-1.0010 Q.0000 00,0009 908, 2700 0.0000 0.4824 2,00
-1.0008 0.0000 00,0000 999,06081 0.0000 0.3147 6.00
-1.0014 0.0000 0,0000] 9008, 2062 0.0000 0,8973  5.00
-1.0017 0.0000 0,0003| 958,14680 0.0000  0,8575 3,00
-1.0021 0.0001 0.0004| 007,8930 0.0000  0.9892 21.00
-1.0015 0.0000 00,0001 998.1876 0.0000 0.7968 8,00
-1.0020 0.0000 00,0001 997,6579 0.0000 00,5435 4,00
-1.0017 0.0000 0,0001| 998, 08856 0.0000  0.7508 5,00
-1.0017 Q.0000 0,0000| 997,3851 0.0000 0.42%4  3.00
-1.0030 0.0001 0,00086| 995,3081 0.0000 0.2863 2.00
-1.0015 0.0000 00,0001 998,1341 0.0000 0,5594 4,00
-1.0021 0.0000 0.0001| 997.7748 0.0000 0.8111 E8.00
-1.0014 Q.0000 0,0000| 99,6774 0.0000 0.707%4 10,00
-1.0000 0.0001 00,0008 999,0012 0.0000 0.4019% 17.00
-1.0000 0.0001 0,0008| 999,0897 Q.0000 0,7B1Y  27.00
-1. 0006 0.0000 0.0000| 995.5955 0.0000 0.3554 4.00
-1.0015 O.0000 0,0002| 998,2476 0.0000  0,.8002 0,00
-1.0041 Q.0000 0,0000| 997,7532 0.0001 0.8971 6,00
-1. 0008 0.0000 00,0000 1000,0013 0.0000 0,5%493  5.00
-1.0002 0.0000 00,0005 999,0342 0.0000 0,85300 12.00
-1. 0008 O.0000 0,0000| 1000, 0002 0.0000 0,2828 1.00
-0, 5000 0.0001 0.0004| 009,0087 0.0000 0.8848 05,00
-1.0027 0.0001 00,0015 996.4040 0.0001 0.2902 3.00
-1. 0008 0.0000 0,0000] 1000,0003 0.0000 0,05301 1.00

of frogl of Fig. 2b. Values of the action and prediction columns are the values

computed from the last input. int;=(ly,u,) is the interval predicate; wy, w; and w, are the prediction weights for the constant x,, the
input x and the action a, respectively; £, and &; are the action weights for x, and x, respectively; oy and o; are the standard
deviations used by mutation on £ and &, respectively; a, p, &, fit and num indicate action, prediction, prediction error, fitness and

numerosity, respectively.

Best action a*

O L ! ! !

0 0.2 0.4 0.6

Input x

0.8 1

Figure 6: Best action a* of frogl from one run in [16].

firog2’s results.

frog2 is more difficult than frog! because the form of its payoff
function is composed of two nonlinear tent-like forms on each
side. But the system performance in Fig. 7 is still greater than
99%. The system error drops to about 1%. The population size
is to about 37% of N. The best jump (action), which the system
needs to obtain, is a=-/nx. The averaged number of classifiers
building the best action curve of Fig. 8a is 73.6 classifiers. Fig.
9 shows the error of best action a* of Fig. 8b. Fig. 10 shows
activated classifiers with their main parameters that participated
in the creation of best action a* of Fig. 8b.
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4. CONCLUSION

This paper presented an extension to XCSF, in which the action
is computed directly as a linear combination of the input state
and a vector of action weights. Thus, it is continuous when the
input changes. The action weights are themselves adapted to the
problem by using a separate process called an evolution
strategy. The pure random exploration has been replaced by a
deterministic strategy while the exploration of actions was
guaranteed by the evolution strategy. XCSFCA has a couple of
computations: one for the action and the other one for the
prediction. We tested the performance of XCSFCA in the frog
problems and the results proved to be more efficient than
Wilson’s architecture for continuous action.

XCSFCA needs more work. We proposed Algorithm 1 based on
the evolution strategy to update action weights, although other
methods can perform this update more efficiently. Thus, their
integration into XCSFCA might improve the system
performance further.

We will try to apply this new system to the prey — predator
problem [8] to evolve weights controlling motor schemas [1].
This will be a promising solution to improve the learning
capability of the learning predator further.
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I, 1, W " a & < o, G P £ fit  mum

0.588 0.778 658,51 3469.18 406,11 0.251 0.7760 -0, 8001 0.0000 0.00001| S00.0847 0.0000 0.9012  5.00
0.473 0.968 644.66 358.59 402.27| 0.033 0.7837 -0.7903 0.0030 0.0016] 998.4391 0.0004 0.6286 5.00
0.3a68 0.874 652.64 3465.92 402,095 0.130 0.781% -0.8107 0.0002 0.0019] S05.2504 0.0008  0.7340 3,00
0.548 0.850 654.23 366.60 404.07| 0.163 0.7797 -0.8090 0.0001 0.0000] 999.5752 0.0001 0.9924 3.00
0.466  1.000 642.42 356.49 402,10 0.00L1 0.7832 -0.7824 0.0004 0.0015] 999.1876 0.0001 0.4417 2.00
0.537 0.822 656.48 367.56 405,66 0.195 0.7766 -0.8092 0.0000 0.0000] 999.7370 0.0003 0.7074 1.00
0.&81 0.909 650.08 363.460 402.72| 0.095 0.7838 -0.8044 0.0007 0.0006] 0900,6058 0.0002 0.2415 4.00
0.437 0.922 649,33 363.04 402.48| 0.080 Q.7770 -0.7930 0.0002 0.0003| 999,7298 0.00053 0.7984 6.00
0.44%3 0.862 646,51 372.68 370.04| 0.002 0.9821 -1.4079 0.0000 0.00023| 906.7233 0,000 0.7131 2.00
0.502 0,870 652.25 3465.59 402.8%| 0.127 0.7815 -0.8095 0.0004 0.0000] G08.0F28 0.0006 0.3811 4.00
0.572 0.777 658.63 369.23 406.21| 0.254 0.7760 -0.809L 0.0002 0.0000] 1000,0260 0.0001 0.9700 3.00
0.363 1.000 637,80 360,15 371.33| 0.000 0.0868 -1.30940 0.0004 0.0000] 89C.0300 0.0005 0.9764  7.00
0.374 0.930 648.71 362.45 402.45| 0.073 0.7769 -0.7935 0.0003 0.0015] 999.636%9 0.0004 0.3324 5.00
0.403 0.956 646.43 360.32 402.29| 0.045 0.7835 -0.7943 0.0006 0.0004| 90909,5351 0.0003 0.9200 12.00
0.453 0.704 660,13 368.53 408.9%| 0.353 0.7780 -0.8019 0.0011 0.0000| 999.8432 0.0002 0.9915 12.00
0.548 0.719 658.00 367.04 408.34| 0.333 0.7779 -0.8017 0.0003 0.0001| 9097.7447 0.0004 0.9580 6,00
0.512 0.828 636,24 367.27 403.74| 0.187 0.7760 -0.809L 0.0003 0.0000| 999.4477 0.0013 0.7744 2.00
0.458 0.0923 642,48 351.75 410.54| 0.051 0.8843 -0.0400 0.0046 0.0015| 972.2668 0.0025 0.8401 1.00
0.414 0.830 642,20 370,68 375.71| 0.00L1 0.0833 -1.3948 0.0001 0.0000] 03,6660 0.0006 0.9771 3.00
0.71% 0.837 655.21 368.12 403.36| 0.177 0.7778 -0.8092 0.0000 0.0000] 999.8699 0.0002 0.2085 1.00
0.521 0.863 653,23 366.48 402.07| 0.147 0.7813 -0.8004 0.0001 0.0000] S090.6073 0.0002 0.6270 6.00
0.441 0.772 646.47 372.70 378.92| 0.0835 0.9821 -1.4079 0.0000 0.0001] 916.1105 0.0008 0.9203 4.00
0.388  1.000 630,24 369.67 372.509| 0.002 0.09875 -1.30942 0.0001 0.0005] 901.2440 0.0001 0.9953 12.00
0.446 0.971 647,52 373.13 379.86| 0.002 0.9809 -1.3998 0.0004 0.0002] 909.2193 0.0004 0.40533 1.00
0.646 0.775 658,54 360,21 406,12 0.255 0.7763 -0.800L 0.0000 0.0001| 9099.0623 0.0003 0.8124 &.00
0.846 0.773 638,86 369,43 406,21 0.238 0.7763 -0.8092 0.0000 0.0000| 1000,2953 0.0003 0.2946 1.00
0.422 0.000 642,095 356.92 402,22 0.000 0.7858 -0.7871 0.0002 0.0015] 999, 0.0005 0.7268 3.00
0.485 0,872 652.85 375.41 384.3%| 0,001 0.0831 -1.3948 0.0001 0.0000] S17.5700 0.0007  0.2702  1.00
0.496 0.820 653.99 375.92 385.32| 0.001 0.9843 -1.3943 0.0018 0.0003| 919.4388 0.0003 0.7769 9,00
0.544 0.082 643,097 357.92 402,25 0.018 0.7860 -0.7904 0.001% 0.0056] G08.0276 0.0004  0.7704 6,00
0.54% 0.591 652.36 358.58 412.07| 0.527 0.8379 -0.8800 0.0005 0.0001| 996.2214 0.0014 0.7070 3.00
0.502 0.851 654,70 376.31 385.73| 0.000 0.9850 -1.3924 0.0000 0.0002] 920.9502 0.0001 0.9900 18,00
0.521 0.754 643,97 349.67 415.82| 0.29%4 0.8856 -0.9692 0.0001 0.0000| 979.6375 0.0004 0.9933 12.00
0.6819 0.651 656,94 361.322 414.41| 0.432 0.8184 -0.8632 0.0002 0.0000| 997.7046 0.0006 0.8054 3,00
0.368 0.697 639,72 368.24 408.84| 0.364 Q.7797 -0.8020 0.0003 0.000L| 999.4255 0.0004 0.2834 3.00
0.541 0.709 646,42 350.01 418.83| 0.355 0.8762 -0.94654 0.0001 0.0000| 984.1087 0.0004 0.9187 5.00
0.581 0,556 654,08 358.461 412.57| 0.521 0. 8385 -0.8802 0.0002 0.0002] ©9095.1343 0.0005 0.78%1 7.00
0.646 0.808 657.56 368.42 405,01 0.214 0.7763 -0.8092 0.0000 0.000L1] 1000.4215 0.0005 0.2301 2.00
0.375 0.841 631.90 3464.17 371.53| 0.000 0.5056 -1.3910 0.0005 0.0007] 8592.4365 0.0001 0.48551  &.00
0.545 0.807 646.74 350.13 419.10| 0.207 0.8762 -0.9654 0.0001 0.0000| 976.2270 0.0009 0.2010 5.00
0.8l1a 0. 651 656,73 361.19 414,33 0.432 0.8181 -0.84632 0.0001 0.0000] 007.20846 0.0014  0.5420 4,00
0.382 0.9%9 635.69 367.93 369.99%9| 0.001 0.9918 -1.3924 0.0001 0.0018| 897.8411 0.0002 0.7662 6.00
0.701 0.773 658.090 360,55 406,24 0,259 0.7763 -0.8092 0.0000 0.0003] 1000,4378 0.0001 0.8978 8.00
0.485 0.715 659.47 368.00 408.83| 0.33%9 0.7775 -0.8014 0.0001 0.0001] 999.4167 0.0006 0.9334 14,00
0.588 0.606 655.06 360.25 413,309 0.503 0.8343 -0, 8780 0.0004 0.0000| 9098.7744 0.0006 0.9840 &.00
0.522 0.8%93 631.32 364.84 402.67| 0.113 0.7890 -0.8143 0.0000 0.0000| 999,7227 0.000z2 0.7928 8.00
0.3205 0.974 638,52 369,38 371.02| 0.002 0.09803 -1.309632 0.0011 0.0007| 900.4267 0.0011 0.0235 2.00
0.646 0,704 657.02 368.71 405,08 0.231 0.7763 -0, 80092 Q.0000 0.0001] 1000.1641 0.0003 0.2323 2.00
0.477 0.863 653.17 366.43 402.96| 0.148 0.7815 -0.8093 0.0001 0.0000] 999.6073 0.0002 0.53425 7.00
0.555 0,818 656,97 367.98 405,73 0.202 0.7765 -0.8002 0.0000 0.0000] 1000.2054 0.0008 0.8824 0,00
0.402 0.775 640.58 370.31 373.61| 0.091 0.9850 -1.3920 0.0000 0.0015] 912.4028 0.0008 0.2834 1.00
0.385 0.976 636.41 368.22 370.6%| 0.001 0.9017 -1.3941 0.0002 0.0028| 8098.5005 0.0002 0.7428 4.00
0.406 0.872 641,55 370.62 374.68| 0.001 0.9831 -1.3949 0.0001 0.0000| 902.9067 0.0021 0.98%93 14,00
0.472 0. 781 658,30 360,14 406,03 0.240 0.7763 -0, 8092 0.0001 0.0000] 1000,0478 0.0004 0.2867 2.00
0.717 0.245 647,34 361.19 402.35| 0.057 Q.7772 -0.7899 0.0002 0.0013| 999.3535383 0.0004 0.1072 1.00
0.3289 0.654 650,91 368.27 408.01| 0.366 0.7800 -0.8010 0.0001 0.0000| 999.6985 0.0002 0.78l0 9.00
0.588 0. 605 655.37 360.44 413,55 0.504 0.8342 -0.8700 0.0007 0.00001| ©99%.2063 0.0004  0.6247  G.00
0.379 0.976 635.71 367.96 370.00| 0.002 0.9913 -1.3928 0.0000 0.00053| 897.8177 0.0018 0.2927 2.00
0.581 0,640 652,70 358,78 412.38| 0.4&0 0.838% -0.8802 0.0002 0.0002] S906.0302 0.0023  0.4658  3.00
0.625 0,651 657.64 361.77 414.73| 0.431 0.8179 -0.8632 0.0004 0.0000] 998.55341 0.0005 0.9764 13,00
0.434 0.748 645,70 372.37 378.26| 0.138 0.9822 -1.4077 0.0000 0.0000] 921.2192 0.0001 0.1068 1.00
0.450 0. 681 658.93 367.77 408.45| 0.388 0.7836 -0.7993 0.0002 0.00001] 999.3250 0.0008 0.4118 3.00
0.476 0.801 651.66 374.70 383,62 0.025 0.09814 -1.30967 0.0001 0.0000| o17.8542 0.0001 0.6075 7.00
0.465 0.747 630,77 374.64 382.36| 0.140 0.9822 -1.4080 0.0000 0.0000| 928.4057 0.0002 0.2863 2.00
0.422 0.872 644,18 371.57 377.31| 0.00L1 0.9830 -1.30948 0.0001 0.0000| 906.1741 0.0033 0.9223 12.00
0.418 0,801 644 .01 371.51 377.14| 0.025 0.0815 -1.39467 0.0001 0.0000] S07.8108 0.0044  0.0166 10,00
0.503 0.760 659.30 369.84 406.26| 0.275 0.7765 -0.8092 0.0000 0.0000] 1000,2538 0.0001 0.7399 6.00
0.530 0.737 645,47 350.32 416,098 0.314 0.8820 -0.8730 0.0001 0.0000] S98L.3776 0.0006 0.2435 2,00
0.481 0.934 652.20 375.03 384.07| 0.000 0.9826 -1.3951 0.0008 0.0001| 916.3230 0.0003 0.1073 1.00
0.368 0.976 634,71 367.59 3609.02| 0.002 0.9014 -1.3934 0.0002 0.0002| 8O06.3806 0.0026 0.6345 7.00
0.737 0,791 658.19 368.92 406.05| 0.236 0.7760 -0.8089 0.0000 0.0007] 1000,3051 0.0001 0.2865 3.00
0.522 0.0950 648,70 362.37 402,55 0.028 0.7800 -0.8142 0.0000 0.0000| O08.6697 0.0066 0.4006 3,00
0.44% 0.747 649,96 374.27 38L.71| 0.140 0.9822 -1.4080 0.0000 0.0000| 927.2781 0.0017 0.3378 3.00
0.521 0.7a5 650,30 360.84 406.26] 0.268 0.7765 -0.8092 0.0000 0.0000[ 1000,5648 0.0000 0.0428 1.00

Figure 10: Activated classifiers from one run of frog2 of Fig. 8b. Values of the action and prediction columns are the values
computed from the last input.
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