
XCSF with Computed Continuous Action 
Trung Hau Tran, Cédric Sanza, Yves Duthen 

IRIT 
Paul Sabatier University 

Toulouse, France 

hau@irit.fr 
 

Dinh Thuc Nguyen 
Faculty of Information Technology 

University of Natural Sciences 
HoChiMinh City, Vietnam 

 
 
 

ABSTRACT 
Wilson introduced XCSF as a successor to XCS. The major 
development of XCSF is the concept of a computed prediction. 
The efficiency of XCSF in dealing with numerical input and 
continuous payoff has been demonstrated. However, the possible 
actions must always be determined in advance. Yet domains such 
as robot control require numerical actions, so that neither XCS 
nor XCSF with their discrete actions can yield high performance. 
This paper studies computed action in XCSF, where the action is 
continuous with respect to the input state. In comparison with 
Wilson's architecture for continuous action, our XCSF version, 
called XCSFCA, proves to be more efficient. 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning—Concept learning; I.2.8 
[Artificial Intelligence]: Problem Solving, Control Methods, and 
Search—Heuristic methods. 

General Terms 
Algorithms. 

Keywords 
XCSF, continuous actions, evolution strategy. 

1. INTRODUCTION 
Research on learning classifier systems has focused on the use of 
accuracy-based fitness after the introduction of XCS [11], in 
which (1) the classifier fitness is based on the accuracy of the 
prediction and (2) general and accurate classifiers are maximally 
obtained. The payoff is a discontinuous function of the state x. 
The predictions are estimated values representing the expected 
payoffs if the system matches x and activates an action. The 
system builds a complete map of predictions Condition x Action 
⇒ Prediction. However, when the number of states and actions 
increases, it is clear that the system cannot construct such map of 
predictions. This is not only due to the memory allocated by the 
system, but also the time as well as the examples used for training 

the system. The system should generalize from a subset of data to 
approximate a payoff function as the study of the generalization 
in reinforcement learning [7]. Wilson recently introduced a new 
learning classifier system XCSF [13][14][15] that differs from 
XCS in real value inputs for the condition part and the new 
concept of a computed classifier prediction. XCSF learns how to 
construct a function approximator which approximates a payoff 
function. It can be a discontinuous 0/1000 payoff function or a 
continuous payoff function of real inputs. When XCSF receives 
the input x, it builds a system prediction for each discrete action 

),(ˆ axP  via the function approximator and chooses the action a* 
with the highest prediction *),(ˆ axP  to maximize the payoff. Some 
XCSF versions adapting to different types of payoff functions are 
presented in [4][13][14][15]. 

In traditional learning classifier systems, the possible actions must 
always be determined in advance. An animat in woods problems 
[10][11] can take one of eight actions corresponding to eight 
directions (go north, north-east, east, south-east…). One can use 
three bits to encode these eight actions in the action part. 
However, when dealing with problems that require real value 
outputs, the systems show some limits. In the example of an 
animat which could move in any direction represented by an 
angle from [0, 2π], the solution is to increase the number of bits 
encoding actions in order to represent real angles. This one is 
feasible but we might lose the reactive attribute in the learning 
classifier systems. Indeed, the population size of classifiers, the 
time of building a match set and the convergence time of the 
system increase. Another solution is to use a generalized classifier 
system (GCS) [16], in which the input x is linked with the action 
a in the computation of the prediction as well as in the process of 
building the match set M. Each classifier employs the form of 
t(x,a):w⇒p(x,a) where t(x,a) is the condition form allowing the 
classifier to be or not to be a member of M. The prediction weight 
vector w extends a new weight associated with the action a and 
the prediction p(x,a) is computed linearly with x and a. The 
difficulty of GCS is to evolve a condition form t(x,a) so that the 
action is continuous. Wilson stated that if t(x,a) employs interval 
predicates, the best action a* is discontinuous. An example of 
GCS with orientable elliptical form t(x,a) is applied to the frog 
problem. 

In this paper, we will investigate a new approach in which the 
action is computed directly. Thus, the action is continuous with 
respect to the input state. Basing on XCSF with a computed 
classifier prediction ),(ˆ axP , we extend a computed classifier action 
to XCSF. The classifier action is computed as a linear 
combination of the input and a vector of action weights. The 
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action weights are themselves adapted to the problem by using an 
evolution strategy. We apply our XCSF version, called XCSFCA, 
to the frog problem described in [15][16]. The results show that 
XCSFCA obtains better performances than GCS. In addition, the 
population size of classifiers is more compact. 

The next section describes briefly XCSF. Section 3 presents 
XCSFCA, its application in the frog problem and the results. 
Section 4 concludes this paper. 

2. REVIEW OF XCSF 
XCSF is an extension to XCS for learning environments where 
the input is continuous and the payoff landscape is continuous 
with respect to the input. A new classifier condition form adapting 
to real value inputs is introduced that allows XCSF to evolve 
more appropriate conditions. The use of a computed prediction as 
a function of the input allows XCSF to evolve classifiers with 
accurate values of the prediction. Thus, the system performance 
improves, XCSF can yield more compact solutions, and the 
convergence time may increase. 

XCSF runs like XCS. The system receives an input message x via 
the detectors, forms a match set M of classifiers whose condition 
part matches x, determines a winner action awin between possible 
actions in M according to an action selection strategy, forms an 
action set A of the classifiers advocating awin, and sends awin to the 
effectors. The system receives a reward r at the next step to 
update the parameters of the classifiers in A. A new component 
updates the prediction weights in order to make the predictions 
more accurate. Covering operator is triggered according to a 
covering strategy. Either no existing classifier matches x as in 
[11] or M contains less than φmna discrete actions as in [3]. A 
niche genetic algorithm is invoked to generate potential classifiers 
adapting to the problem. 

Classifier condition. XCSF extends XCS to deal with continuous 
input. The components of a classifier condition are the interval 
predicates inti=(li,ui) where li(“lower”) and ui(“upper”) are real 
values. A classifier cl matches an input message x=(x1,…,xn) if 
each element xi belongs to the corresponding interval predicate 
cl.inti at the position i i.e. li≤xi≤ui. Fortunately, the system with 
the real input was studied in [12] and one can use again the 
methods manipulating interval predicates. 

Computed classifier prediction. The new concept in XCSF is 
the computation of the classifier prediction instead of using a 
parameter estimating its value. A vector of weights 
w=(w0,w1,…,wn), called the prediction weight vector, is added to 
each classifier. The classifier prediction cl.p is computed as a 
linear combination of the prediction weight vector cl.w and the 
input message x=(x1,…,xn) concatenated with a constant x0. 
Wilson’s studies [14] proposed that the value of x0 should be the 
same order of the values of the elements of x. 

( ) xwxpcl ′⋅=.  

( )nwwww ,...,, 10=  

( )nxxxx ,...,, 10=′  

 
(1) 

Covering operator. When a new covered classifier is created, 
each interval predicate inti=(li,ui) is generated as li = xi - rand(r0) 
and ui = xi + rand(r0), where rand(r0) is a value uniform randomly 
from [0,r0] and r0 is a real constant, and each element wi of the 

weight vector is initialized to a value uniform randomly from      
[-1,1]. 

Discovery mechanism. A genetic algorithm works as in XCS. 
Crossover (with probability χ) permutes alleles of two parents 
between two crossover points. Since an allele is a real value, a 
new mutation operator is introduced. Mutation (with probability 
μ) modifies an allele by adding an amount ± rand(m0) where m0 is 
a real constant. 

Domain control. Covering and mutation operators can generate 
intervals out of the condition range. If it happens, li and ui of an 
interval predicate inti are brought back to the extremes of the 
condition range and they are possibly permuted in order to respect 
the predicate constraint li≤ui. 

Reinforcement. The prediction weight vector cl.w of each 
classifier in A is updated using a modified delta rule [9]: 
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Where η is the correct rate. The classifier prediction error cl.ε and 
the classifier fitness cl.fit are then updated as follows: 
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( )fitclclfitclfitcl .  ... −′+← κβ  (7) 

Where β is the learning rate. The constant ε0 represents the 
threshold of tolerance for the prediction error cl.ε. If cl.ε is below 
ε0, the error is accepted and the classifier cl is considered to be 
accurate (cl.κ=1). Otherwise its accuracy drops off and is 
controlled by an accuracy function with the parameters α and ν. 
The relative accuracy cl.κ′ is calculated with respect to the other 
classifiers clj of A. cl.num is the numerosity of the classifier cl. 
Notice that cl.w is updated first, so cl.ε and cl.fit take into account 
the change of cl.w. 

3. EXTENSION TO XCSF 

3.1 XCSF with Computed Continuous Action 
As introduced in the first section, XCSF with discrete actions 
performs inefficiently when facing problems requiring continuous 
real values. We propose an extension to XCSF where actions are 
directly computed. The actions are then a continuous function of 
the input. The modified classifier system is called XCSFCA. 

A vector of action weights ζ=(ζ0,ζ1,…,ζn) is associated to each 
classifier action. The classifier action cl.a is computed as a linear 
combination of ζ and the current input x=(x1,…,xn) concatenated 
with a constant x0. 

1862



( ) xxacl ′⋅=ζζ,.  
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A separate process called an evolution strategy (ES) evolves the 
action weights to make the computed actions more accurate. The 
ES was developed by Schwefel [6] for optimizing real-vectors. 
Each individual in the ES consists of a pair of two real-vectors 
(ζ,σ) having the same length nσ : a vector of action weights ζ and 
a vector of standard deviations σ used by mutation. The ES, 
which we use to evolve the action weights, is (1+1)-ES, in which 
one parent produces one offspring by mutation, the offspring is 
assigned a fitness value evaluating its quality with respect to the 
problem, the offspring competes with the parent based on the 
fitness, and the best individual becomes the parent of the next 
generation. Mutation on ζ is performed by adding a random value 
N(0,σi) from a normal distribution with mean zero and standard 
deviation σi. The standard deviation vector is also itself adapted. 

( ) ( )( )1,0 1,0 iii NNexp ττσσ +′=′  (9) 

( )iii N σζζ ′+=′ ,0  (10) 
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Where (ζ′,σ′ ) is an individual mutant, nσ is the length of the 
vector σ, and the factors τ′ and τ  are set by default. The normal 
distribution with mean zero and standard deviation one Ni(0,1) is 
called anew for each value of i=0,…,( nσ -1). Each element ζi is 
initialized to a value uniform randomly from [-1,1] and each 
element σi is initialized to a constant value σ (0). 

XCSFCA works like XCSF with a computed classifier 
prediction ),(ˆ axP , except for the following cases: (1) the process 
of building the match set M, covering operator, action selection in 
exploration and crossover operator are modified, and (2) a new 
component updating action weights is introduced. 

Match set M. A classifier will become a member of M if its 
condition part matches the input as usual and its computed action 
cl.a belongs to the range of the action arange. The ranges of action 
weights are not given. The action weights are initially generated 
randomly and then updated by mutation. So, a classifier can 
compute bad actions out of arange in response to the input. We 
modified the process of building M so that M consists of matching 
classifiers advocating good actions, which belong to arange, and 
thus they will have a chance to correct their action weights. 

Covering operator. Given the input x, a vector of action weights 
cl.ζ is repeatedly generated until an action cl.a computed by 
Eq.(8) belongs to the action range allowed. This ensures that the 
match set M has at least one good action in response to the input. 
Interval predicates cl.inti are created as in XCSF. 

Action selection in exploration. A pure random exploration is 
usually used for exploring actions of the environment. We 
propose to replace it by a deterministic strategy, i.e. the action 
with the highest prediction is selected. The classifiers advocating 
the best action will survive while an ES will allow the system to 
explore actions. 

Crossover operator. The recombination of alleles of two parents 
does not generate new values of alleles. The system cannot 
explore values near the parents’ values, and thus appropriate 
conditions are not generated. To solve this problem, we use a mix 
crossover [5]. The allele value o

iv  of an offspring is the result of a 

mix function of two allele values 1
iv  and 2

iv  of parents at the same 
position i. 

( ) 211 iGAiGA
o
i vvv γγ +−=  (13) 

( ) GAGAGA u ααγ −+= 21  (14) 

Where αGA is a real constant from [0,1] and u is a random value 
from [0,1]. When αGA=0, the mix crossover is a kind of crossover 
that interpolates two parents’ values. Notice that XCSFCA still 
has the XCSF mutation operator. 

Action weights update component. An (1+1)-ES is applied on 
each member of action set A to evolve actions during explore 
problems. Indeed, it will mutate the current action of each 
classifier of A to produce one mutant action and evaluate it. 
Accurate actions will be kept to the next time-step. Consider a 
classifier cl in A with its action weights cl.ζ, its standard 
deviations cl.σ, its error cl.ε, its experience cl.exp, its numerosity 
cl.num and its fitness cl.fit. The mutant classifier cl′ is a copy of 
the parent classifier cl. It inherits the parameters as cl.ε, cl.fit, 
cl.exp and cl.num of the parent classifier cl except for its action 
represented by (cl′.ζ,cl′.σ) generated by mutation on (cl.ζ,cl.σ). 
This corresponds to step 1 (Algorithm 1). The evaluation of the 
mutant classifier’s fitness works as follows. The mutant action 
represented by (cl′.ζ,cl′.σ) is calculated. The mutant classifier cl′ 
computes its prediction and is tested in the context of the current 
payoff P. Then its prediction error cl′.ε is estimated and its 
accuracy value cl′.κ is calculated. Finally, its fitness cl′.fit is 
updated by its relative accuracy value. These correspond to step 2 
(Algorithm 1). If the mutant is accurate and better than the parent 
in the fitness sense, it will replace its parent (step 3 in Algorithm 
1). If replacement doesn't occur, the mutant is discarded and a 
new mutant will be generated in next problems. This update 
process (Algorithm 1) is called after the reinforcement 
component. 

Algorithm 1. Update action weights by (1+1)-ES. 

1. Mutate one parent action represented by (cl.ζ,cl.σ) to produce 
one mutant action (cl′.ζ,cl′.σ) by Eq.(9) and Eq.(10) 
2.   Evaluate the mutant action (cl′.ζ,cl′.σ) 
 cl′.a(x,cl′.ζ)        // computed action of the mutant cl′ 

⎩
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⎧ ∈′

=
otherwise   0

    if    1 allowedrangeaction.alc
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 // the mutant cl′ computes its prediction cl′.p 
 // and updates its error cl′.ε and its fitness cl′.fit 
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3. Replace the parent classifier if the mutant classifier is accurate 
and dominates the parent classifier 
 if (good = 1  and  cl′.κ = 1  and  cl′.fit > cl.fit) 
          replace  cl  by  cl′ 

 
Where β, ε0, α, ν are parameters used in XCS and the factor δES is 
used to reduce the mutant’s fitness. 

Computed classifier prediction. Notice that because the 
classifier prediction cl.p is computed linearly with x and a, a 
weight associated with the action a is added to the prediction 
weight vector cl.w. 

( ) xwaxpcl ′′⋅=,.  

( )110 ,,...,, += nn wwwww  

( )axxxx n ,,...,, 10=′′  

 
(15) 

In summary, XCSFCA has a couple of computations: one for the 
action based on the input a(x), the other one for the prediction 
based on the input and the result of the first computation          
p(x, a(x)). 

3.2 Frog Problem 
In this section, we summarize the frog problem introduced in [15]. 
A frog-like system learns to jump to catch a fly that is at a 
distance d far from the frog. The frog receives the signal input x 
related to d (0≤d≤1) and jumps a certain distance. A jump can be 
over or under the fly. Then the frog receives a payoff related to 
the remaining distance. Consider a jump as an action a that the 
system should choose. The frog problem is how to choose the best 
action a* to maximize the payoff. Mathematically, the payoff 
function is given as follows: 

( ) ( )⎩
⎨
⎧

+−
≤++

=
otherwise   2

1 if            
,

ax
ax ax

axP  
(16) 

( ) ddx −=1  (17) 

The payoff function is continuous and nonlinear composed of two 
linear planes. To facilitate the reading, we called the frog problem 
with the payoff function in Eq.(16) frog1. frog2 is a modification 
of frog1. The payoff function is still continuous and nonlinear but 
composed of two nonlinear forms (Eq.(18)). 
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( ) dedx −=  (19) 

In both of frog1 and frog2 problems, the best value of a* should 
be continuous with respect to x in order to be able to maximize 
the payoff. 

3.3 Simulation Settings 
In order to investigate the impact of computed action and 
facilitate the comparison of XCSFCA with XCSF in [16], the 
minimal change to parameter settings is made to the latter and the 
same measures measuring the system performance are used. The 
parameter settings used in our results were: N=2000, β=0.2, 
η=0.2, θGA=48, χ=0.8, μ=0.04, r0=0.1, m0=0.1, x0=1, ε0=0.01, 
α=0.1, ν=5, θdel=50, δ=0.1, δES=0.1, αGA=0, and initial standard 
deviation σ (0)=3. σ (0)=3 is chosen as the default value proposed 
by [2]. GA-subsumption and action set subsumption were not 
activated. Since the input x is one-dimensional, the vector length 
of action weights and standard deviations are nσ=2. Explore and 
exploit problems are alternated with probability 0.5. One run is 
stopped after 100,000 explore problems. The payoff received after 
jumping is plotted. The system error measures the difference 
between the prediction of the expected payoff and the payoff 
received. The payoff and system error curves are plotted by using 
a 50-point running average from exploit problems, averaged over 
ten runs. In each problem, the fly was randomly placed at a 
distance d (0≤d≤1). The action range allowed is [0,1]. At the end 
of one run, x was scanned from 0 to 1 and from e-1 to 1 in frog1 
and frog2 respectively, increased by 0.001, the best action a* is 
plotted. The best action curve is plotted, averaged over ten runs. 
This curve exhibits the continuous actions related to the input. 

3.4 Results 
Since d is generated randomly from [0,1], the sensory input x 
received by Eq.(17) gives the value from [0,1]. However, values 
of x in frog2 received by Eq.(19) have the range [e-1,1], they are 
scaled into [0,1] when computing the prediction and the action so 
that the input and the action use the same range. In covering, 
given x, cl.ζ of a covered classifier is repeatedly generated until 
an action cl.a calculated by Eq.(8) belongs to the action range 
allowed [0,1]. 

frog1’s results. 

In Fig. 1, the system performance is greater than 99% after an 
averaged number of 30,000 explore problems. The system error 
drops to smaller than 1%. The population size of classifiers N is to 
about 37% of N. Fig. 2 shows the best action curve which is 
nearly coincident with the diagonal 1-x. The system receives the 
input x (not the distance d). If the frog-like system wants to catch 
the fly at d, it must jump a distance a=d. Since x is given by 
Eq.(17), the best action, which the system needs to obtain, is the 
diagonal a=1-x. The averaged number of classifiers building the 
best action curve of Fig. 2a is 60.8 classifiers. Fig. 3 shows the 
error of best action a* of Fig. 2b, which measures the difference 
between a* and the diagonal 1-x. In Fig. 5, the vectors of action 
weights (ζ0,ζ1) are close to (-1,1), which implies that the best 
action curve of Fig. 2b is nearly coincident with the diagonal. The 
standard deviations σ0 and σ1 approach zero values and thus the 
values of ζ0 and ζ1 will be little updated by Eq.(10). For example, 
in the last classifier in Fig. 5, given x = 0.999, its action cl.a and 
its prediction cl.p are computed as follows: cl.a = ζ0x0 + ζ1x = 
1.0006 – 1.0006*0.999 = 0.001 and cl.p = w0x0 + w1x + w2a = 
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670.17 + 329.84*0.999 + 329.38*0.001 = 1000.0. The results 
showed here are better than the ones of GCS [16] (Fig. 4 and Fig. 
6). 

The convergence speed is not fast because action weights are 
updated by mutation by small changes from one generation to 
another in the evolution strategy. In contrast to the delta rule 
method, the weights are updated by adding small changes in the 
direction that would reduce the error. Because of only one payoff 
used for evaluating one individual mutant action, the system 
should have strict replacement conditions to ensure that 
replacement will occur if the mutant is significantly better than its 
parent. This means a poor mutant could replace the effective 
classifier by mistake and then cause the system performance to be 
sometimes volatile. So, a good insurance is to make a reduction of 
the mutant’s fitness by the factor δES before updating it and use 
the accurate mutant in the replacement. 

XCSFCA evolves thanks to the loop “reinforcement – ES – GA”. 
This means a GA generates offspring that inherit the parameters 
of the parents, a reinforcement procedure corrects their 
parameters in the context of the current payoff, and their vectors 
of action weights will be updated through an ES procedure in 
order to produce actions more accurate. The GA will be triggered 
to generate new offspring. The loop of “reinforcement – ES – 
GA” continues. 

 

 
Figure 1: Results of frog1 averaged over ten runs. 

 

 
(2a) averaged over ten runs 

 
(2b) from one run 

Figure 2: Best action a* of frog1 is plotted by scanning the 
values of x from 0 to 1, increased by 0.001. The diagonal 1-x 
and best action a* are nearly coincident. Best action a* is 
slightly broken at some inputs x. 
 

 
Figure 3: Error of best action a* of Fig. 2b. The vertical axis is 

scaled to [0..0.00016] to make visible. 
 

 
Figure 4: Results of frog1 from one run in [16]. 
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Figure 5: Activated classifiers from one run of frog1 of Fig. 2b. Values of the action and prediction columns are the values 
computed from the last input. int0=(l0,u0) is the interval predicate; w0, w1 and w2 are the prediction weights for the constant x0, the 
input x and the action a, respectively; ζ0 and ζ1 are the action weights for x0 and x, respectively; σ0 and σ1 are the standard 
deviations used by mutation on ζ0 and ζ1, respectively; a, p, ε, fit and num indicate action, prediction, prediction error, fitness and 
numerosity, respectively. 
 

 
Figure 6: Best action a* of frog1 from one run in [16]. 

 
frog2’s results. 

frog2 is more difficult than frog1 because the form of its payoff 
function is composed of two nonlinear tent-like forms on each 
side. But the system performance in Fig. 7 is still greater than 
99%. The system error drops to about 1%. The population size 
is to about 37% of N. The best jump (action), which the system 
needs to obtain, is a=-lnx. The averaged number of classifiers 
building the best action curve of Fig. 8a is 73.6 classifiers. Fig. 
9 shows the error of best action a* of Fig. 8b. Fig. 10 shows 
activated classifiers with their main parameters that participated 
in the creation of best action a* of Fig. 8b. 

4. CONCLUSION 
This paper presented an extension to XCSF, in which the action 
is computed directly as a linear combination of the input state 
and a vector of action weights. Thus, it is continuous when the 
input changes. The action weights are themselves adapted to the 
problem by using a separate process called an evolution 
strategy. The pure random exploration has been replaced by a 
deterministic strategy while the exploration of actions was 
guaranteed by the evolution strategy. XCSFCA has a couple of 
computations: one for the action and the other one for the 
prediction. We tested the performance of XCSFCA in the frog 
problems and the results proved to be more efficient than 
Wilson’s architecture for continuous action. 

XCSFCA needs more work. We proposed Algorithm 1 based on 
the evolution strategy to update action weights, although other 
methods can perform this update more efficiently. Thus, their 
integration into XCSFCA might improve the system 
performance further. 

We will try to apply this new system to the prey – predator 
problem [8] to evolve weights controlling motor schemas [1]. 
This will be a promising solution to improve the learning 
capability of the learning predator further. 
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Figure 7: Results of frog2 averaged over ten runs. 
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Figure 8: Best action a* of frog2 is plotted by scanning the 
values of x from e-1 to 1, increased by 0.001. Best action a* is 
close to the curve –lnx. 
 

 
Figure 9: Error of best action a* of Fig. 8b. The vertical axis 

is scaled to [0..0.0016] to make visible.
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Figure 10: Activated classifiers from one run of frog2 of Fig. 8b. Values of the action and prediction columns are the values 
computed from the last input. 
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