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ABSTRACT 
This paper describes the use of a genetic algorithm (GA) in 
tuning a double-level modular fuzzy logic controller 
(DLMFLC), which can expand its control working zone to a 
larger spectrum than a single-level FLC. The first-level FLCs 
are tuned by a GA so that the input parameters of their 
membership functions and fuzzy rules are optimized according 
to their individual working zones. The second-level FLC is then 
used to adjust contributions of the first-level FLCs to the final 
output signal of the whole controller, i.e., DLMFLC, so that it 
can function in a wider spectrum covering all individual 
working zones of the first-level FLCs. The second-level FLC is 
again optimized by a GA. An inverted pendulum system (IPS) is 
used to demonstrate the feasibility of the approach. 

Categories and Subject Descriptors 
I.2 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – Heuristic methods.  

General Terms: Design 
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1. INTRODUCTION  
Several research and industrial applications concentrated their 
efforts on providing simple and easy control algorithms to cope 
with the increasing complexity of the controlled 
processes/systems [1]. The design method for a controller 
should enable full flexibility in the modification of the control 
surface [2]. The systems involved in practice are, in general, 
complex and time variant, with delays and nonlinearities, and 
often with poorly defined dynamics. Consequently, 
conventional control methodologies based on linear system 
theory have to simplify/linearize the nonlinear systems before 
they can be used, but without any guarantee of providing good 
performance. To control nonlinear systems satisfactorily, 
nonlinear controllers are often developed. The main difficulty in 
designing nonlinear controllers is the lack of a general structure 
[3]. In addition, most linear and nonlinear control solutions 
developed during the  
last three decades have been based on precise mathematical 
models of the systems. Most of those systems are 
difficult/impossible to be described by conventional 
mathematical relations, hence, these model-based design 
approaches may not provide satisfactory solutions [4]. This 
motivates the interest in using FLC; FLCs are based on fuzzy 
logic theory [5] and employ a mode of approximate reasoning 
that resembles the decision making process of humans. The 
behavior of a FLC is easily understood by a human expert, as 
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knowledge is expressed by means of intuitive, linguistic rules. 
In  contrast with traditional linear and nonlinear control theory, 
a FLC is not based on a mathematical model and is widely used 
to solve problems under uncertain and vague environments, with 
high nonlinearities [6][7]. Since their advent, FLCs have been 
implemented successfully in a variety of applications such as 
insurance and robotics [8][9][10]. Unlike neural networks, the 
first-generation fuzzy systems are not able to learn from data. 
However, several techniques have been proposed to extract 
fuzzy rules from training data gathered from observation of the 
operator control strategy [11][12][13]. As a consequence, an 
emerging topic in the FLC research community has been to 
investigate ways to help designers to automatically design 
FLCs. The majority of the work uses computational intelligence 
techniques, including neural networks [14][15][16] and genetic 
algorithms (GA) [17][18][19]. This paper concentrates on the 
use of a GA. Various approaches have been used to design FLCs 
using a GA, either concentrating on the fuzzy control rules [20], 
the membership functions [21], or both [22][23][24]. However, 
a GA applied to design FLCs has some shortcomings too, 
mainly because the FLC is built and selected according to the 
fitness value, which only measures how close the solution is to 
the desired result under predefined environments, and may 
therefore decrease its generalization to changing or uncertain 
environments. FLCs tend to show good control behavior only in 
ranges near the values of the training sets used to design them 
[25]. To avoid this problem, the approach inspired by [26] is 
used in this paper; an evolutionary modular fuzzy system is used 
to get a combined system that performs better, by combining 
different modules together; every module in the final system 
produces an output. These outputs are combined by a function 
(linear or nonlinear) that produces the final output. However, 
finding the right function for the right application is a tedious 
task. In this paper, a genetically tuned FLC is used to combine 
the outputs of the various FLCs, resulting in a double-level 
modular FLC (DLMFLC). The existing FLCs will be the 
modules (first-level FLCs) and the second-level FLC will 
combine these modules. To validate the approach, an 
experiment is carried out to control and stabilize an inverted 
pendulum system with changing force disturbances using 
DLMFLC. The simulation results demonstrate that DLMFLC 
can successfully stabilize the inverted pendulum system under 
the whole spectrum of changing force disturbances, while the 
first-level FLCs can usually only work in narrower work zones. 
This paper is organized as follows: section 2 presents some 
introductory material about fuzzy logic; section 3 gives a short 
introduction to the GA. Section 4 explains the details of 
DLMFLC. As a case study, the problem of an Inverted 
Pendulum system (IPS) is defined in section 5, with simulation 
results presented and discussed. The paper concludes with 
section 6, in which some future research directions are also 
pointed out. 

2. FUZZY LOGIC 
In this section we present a rule-based approach to decision 
making and control using fuzzy logic techniques, based on the 
compositional rule of inference (CRI). This approach is used to 
handle uncertain (imprecise) knowledge and was developed in 
the sixties by L.A. Zadeh [27]. Such knowledge can be collected 
and delivered by a human expert (e.g. decision-maker, designer, 

process planner, machine operator, etc.) or automatically 
generated by a learning algorithm using synthetic or 
experimental data. The CRI may be written in the form: 

RABCU o´)´...´(´ ×××=    (1) 

where R represents the global relation that aggregates all the 
rules (knowledge base). A´, B´, ..., C´ represents the inputs 
(observations) and U´ represents the output (conclusion). The 
symbol o  represents the CRI operator. The knowledge base 
consists of two components: the linguistic term base (database) 
and the fuzzy production rule base, while the database is divided 
in two parts: fuzzy premises and fuzzy conclusions. More about 
fuzzy logic and fuzzy logic terms can be found in [28]. 

3. GENETIC ALGORITHM 
Genetic algorithms are stochastic optimization techniques based 
on an analogy to the mechanics of biological genetics and 
imitate the Darwinian survival-of-the-fittest phenomenon. Each 
individual of a population is a potential FLC. In this research, 
FLCs are encoded into a genotype before applying four 
evolutionary operations: reproduction, mutation, evaluation and 
natural selection, and finally decoded. 

3.1 GA Applied to FLC Generation 
The key part of a FLC is the Fuzzy Inference System, and it is 
composed of fuzzy sets and fuzzy rules [28]. One can use some 
parameters to describe both of them and encode these 
parameters into a chromosome. There are many ways to encode 
an FLC into a GA [29]. In this paper, the encoding is based on 
the scheme proposed in [30], chosen for its simplicity since only 
few parameters are used to describe the FLC—namely, the 
number and center values of the input and output membership 
functions and the linguistic control rules.  

3.1.1 Coding of the Membership Functions 
In this paper the number of membership functions (MF) is 
assumed to be an odd number greater than unity and the MFs 
are distributed symmetrically around a center of zero. Only 
triangular fuzzy membership functions are considered for the 
sake of coding simplicity and without loss of generality. The 
center value is given by: 

mP
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3.1.2 Coding of the Fuzzy Rule Base 
A FLC is constructed using the following linguistic rules: 

ifR =1 1x is iX1 and 2x is iX 2 then u is Ui, i=1, ..,n (5) 
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where x1, x2 and u are input and output variables in the 
controller; these are described as state error, change-of-state 
error and a control input, in this paper.  

The rules are coded using a combination of a seed line and seed 
points, which are positioned into a phase plane containing all 
the possible fuzzy rules one can fire. The locations of the seed 
points are determined as follow: 
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where sφ and sP are seed angles and are defined as 
characteristic parameters for the fuzzy linguistic rules. Also Cs is 
obtained the same way as Cp using the number of MFs on the 
output (no). 

L limits the locations of the seed points. For more details on the 
coding, see [30]. 

In Figure 1, the relationship between input and output in the 
controller can be represented as a function of these design 
parameters as follows. 

u(t) = f(x1(t), x2(t)|Ψ )    (7) 

 
Figure 1: Control Block Diagram  

Where f(•|Ψ ) denotes a fuzzy function constructed with the 
design parameter vector Ψ. The parameters of Ψ are coded into a 
chromosome using binary coding.  

3.1.3 Genotype of FLC 
The characteristic parameters of the FLC are encoded into a 
chromosome as shown in Figure 2. The GA will evaluate this 
chromosome using the evaluation function to find the best 
individual and the FLC defined by it. More details are given in 
[30]. 

 
Figure 2: FLC’s Parameters Encoded into a Chromosome 

To perform the GA, MatLab was used in conjunction with the 
GAOT toolbox, which is open-source code provided by Houck 
et al. [31]. 

3.2 Evaluation Function 
The evaluation function is called by the GA to compute the 
fitness of a set of parameters.  The  parameters  are  passed  to  
the  evaluation  function,  which  processes them  and  returns  a  
value  corresponding  to  how well  the controller defined by 
those parameters  performed  the task at hand. In this paper, the 
evaluation function returns the root mean square error between 
the desired and actual (computed) positions of the pendulum. 
This function first extracts the relevant parameters from the 
chromosome passed in.  A SIMULINK model is then called, 
from which a record of the error in the pole angle throughout the 
duration of the simulation is obtained. The square of the error is 
multiplied by a time weight and the sum of this time-weighted 
square error is inverted to give a fitness value. If the pole angle 
should at any stage of the simulation saturate—i.e., reach ±90°, 
then the simulation is stopped immediately so that time is not 
wasted modeling controllers that fail to balance the pole. The 
MatLab source code for this evaluation function can be found in 
[33]. 

4. DOUBLE-LEVEL MODULAR FLC 
FLCs designed automatically by GAs or other techniques 
generally exhibit a drop in performances with an increase in the 
working zone. The working zone (also called the universe of 
discourse) is defined as the interval between the minimum and 
maximum values in which the control actions occur. This drop 
in efficiency is due to the GA’s learning paradigm, which 
generally selects the desired solution by evaluating the fitness 
function. A fitness function typically measures how closely a 
FLC’s output fits the data in working zone used in the training 
set, which is generally smaller than the overall working zone 
(smaller interval and/or fewer values or even one single value). 
The difficulty this causes will be explained further below.  

 
Figure 3: Training Set and the Working Zone  

In Figure 3, g1 and g2 denote the minimum and maximum 
values of the FLC’s working zone, respectively. The horizontal 
axis is the whole working zone. For the rest of the paper, the 
interval G (g1, g2) will refer to the working zone of the FLC 
and ts will refer to the training sets. G and ts are linked by the 
following expression: 

Gts∈  or Gts =       (8) 

There is no established formula that can describe explicitly this 
link. But it is important to note that the performance quality 
depends on the selection of ts, since it determines the fitness 
function evaluation. 
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When the ts working zone is smaller than G, the near-optimal 
FLC may not work properly for the whole G, as shown in 
Figure 4. But increasing the ts working zone would not only 
increase learning time, but also causes the GA to get stuck in 
local optima because of larger/more complex search space, 
yielding an FLC that is not optimum, and therefore cannot solve 
the problem either efficiently or effectively.  

 
Figure 4: FLC’s Working Zone 

One way to solve this problem is to divide G into smaller 
working zones, choose a ts from each (can be a single value), 
and construct an FLC that works well for each. A method to 
integrate all FLCs is then needed so that the combination covers 
the entire working zone G. However, how to divide G properly 
so that each smaller working zone can have the right (producing 
optimum FLC) ts is still an open problem. 

 
Figure 5: Working Zone Composed of Many Smaller Working 

Zones 

Another similar way is to randomly select values from G and 
use them as ts, and then to identify an appropriate working zone 
for each ts by testing. With this method, the working zone of the 
system is controlled by several FLCs. This approach will be 
referred to as the switch mode in this paper, in which the 
concatenation of the FLCs’ smaller working zones gives the 
total working zone of the system. In the switch mode approach, 
the control switches to a different FLC depending on where the 
value of the external input is located in G. Figure 5 shows an 
example in which all the FLCs have the same external input, but 
as their working zones are different, a switch chooses the FLC 
to use to control the target (FLC2 output in Figure 6).  

 
Figure 6: Switch Mode Approach 

However, the switch mode approach can still fail quite 
frequently. One reason for this is that a smoother transition from 
one FLC to another is needed to control the dynamic systems 
successfully. An improvement of the switch mode approach is 
to use a linear combination of the outputs of the FLCs to control 
the system; such an approach has generated some good results, 
as described in [26].   

Both approaches described above are difficult to realize 
properly, since the working zone must be divided into several 
smaller ones, and the learning by GA must be done for each, 
which is time consuming. The question would be: is it possible 
to reduce the number of smaller working zones and/or choose a 
finite and limited number of values from the system’s working 
zone as ts in order to get an FLC that works well across its 
entire working zone? To achieve this, a double-level modular 
FLC (DLMFLC) is proposed in this paper. 

A DLMFLC is a further improvement of the method presented 
in [26]. The basic idea is to use a second-level FLC to adjust the 
contribution of the first-level FLCs to the output of the 
integrated controller. The first-level FLCs would be the modules 
of the control system. These FLCs are called modular FLCs; 
they can work in their smaller working zones but not necessarily 
well in the whole system’s work zone. Having several FLCs, 
how can we integrate them together into a single FLC? How can 
this second level be constructed? For each input that falls into 
the working zone of a first-level FLC, the output of this 
particular FLC module should contribute more to the output of 
the overall controller. However, this does not necessarily mean 
that other FLC modules should not contribute at all to the output 
of the overall controller. They will simply contribute to a lesser 
extent. The key here is to decide proper ‘weights’ of all FLC 
modules so that their overall contributions can control the 
system successfully across the entire working zone.  

The method in [26] utilizes a linear combination of the outputs 
of the FLC modules, in which the ‘weights’ of the FLC modules 
are fixed for all inputs. In this paper, a second-level FLC is used 
to integrate the modular FLCs so that the ‘weights’ are adjusted 
by the second-level FLC according to different inputs. The basic 
scheme is presented in Figure 7. 

The existing FLCs constitute the first-level FLCs, which are 
FLC1, FLC2, ..., FLCn in Figure 7. A second-level FLC, which 
resides above the first-level FLCs (Figure 7), is used to 
integrate outputs of the first-level FLCs.  

∑
=

∗
n

i
ii af

1

 
Figure 7: Diagram of Modular Double-Level FLC System 

The second level FLC uses the input value of the system to 
provide the first level FLCs the fuzzy values f, where, 

10, ≤≤= iii aaf       (9)  
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Furthermore, every first-level FLC has an output, too. It is 

)(inputfouti =      (10) 

The output of the FLC to control the object is then given by: 

∑
=

×=
n

i
ii outfOUT

1
    (11) 

5. Case Study 
In order to test and validate the control approach proposed in 
Section 4, the Inverted Pendulum system (IPS) control problem 
is used, since it is considered a typical testbed for control 
experiments. 

5.1 Inverted Pendulum System (IPS) 
As we chose the IPS as our testbed, it is necessary to introduce 
some basic variables and components. 
The variables shown in Figure 8 and 9 are as follows: 

 M, the mass of the cart,  
 m, the mass of the pole, 
 l, the distance from the pivot to the center of mass of 

the pole, 
 I, the moment of inertia of the pole around the pivot, 
 x, the cart’s position, 
 θ, the angle the center of the pole makes with the 

vertical, 
 F, the horizontal control force applied to the cart,  
 g, gravity. 

 
Figure 8: IPS Model. 

..
xm

..
θ

 
Figure 9: IPS--Pole in Isolation 

Taking the second derivative of the position of the pole’s center 
of gravity, one obtains: 

θθθθ sincos 2&&&&&&& llxxG +−=      (12) 

Newton’s second law of motion yields: 

GxmxMF &&&& +=      (13) 

Combining equations 12 and 13 yields: 

θθθθ cossin)( 2 &&&&& mlmlmMxF −++=    (14) 

Considering that, for a rigid body, the sum of the moments 
about a fixed point, P, is equal to the moment of inertia of the 
body about P multiplied by the angular acceleration plus the 
product of the mass of the body, its linear acceleration and the 
perpendicular distance between point P and the vector 
representing the acceleration yields: 

damIM pp
r

+= α      (15) 

Recombination, insertion and rearrangement of these equations 
yields (for a uniform rod of mass m and length L=2× l): 
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More details on the inverted-pendulum can be found in [33]. 

5.2 SIMULINK model of the IPS 
Using the equations shown in Section 5.1, the SIMULINK 
model shown in Figure 10 is developed. In the model, the input 
is the control action. The angle and angular velocity from the 
previous time step are combined to compute the cart’s 
acceleration and the pole’s angular acceleration, respectively. 
The speed and position of the cart are gotten by integrating the 
angle and the angular velocity. The pole’s angle is also limited 
to remaining in the range of [-pi/2, pi/2]. There are four 
variables considered as outputs: pole’s angle and angular 
velocity along with the cart’s position and velocity.  

Figure 10: SIMULINK model of the IPS 
For the sake of uniformity of the parameters during the test, the 
values of three variables are fixed: 

 M=1kg 
 m=0.1kg 
 l=0.5m 

Gravity is fixed at g = 9.8m/s2.  

5.3 Construction of the first-level FLCs  
The number of membership functions (MFs) is arbitrarily 
restricted to the integers from 3 to 9, inclusively, as most FLCs 
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are within this range. The number of MFs is limited to odd 
integers because of the way the FLC is encoded in the GA. In 
the tests reported in this paper, we selected the number of MFs 
to be 5. 

Figure 11: First-level FLC’s SIMULINK Model 

5.3.1 Running the GA 
The parameters for running the GA to evolve the FLCs in both 
second and first levels are: 

• Population size:  50 
• Selection mechanism:  Stoc.Rem (as in Stochastic 

Remainder Sampling, a MatLab script added to the 
GA tool box of MatLab [33])  

• Crossover: single-point crossover at 0.5 
• Mutation : single-bit,  at 0.05/bit 

Three different disturbances—250N, 500N and 1000N—were 
used to create the training sets for evolving the first-level FLCs. 
Then the working zone for each evolved FLC module was 
obtained by testing the FLC against different external 
disturbances ranging from 0N to 1200N, with a 1N increment.  

5.4 Second-level FLC 
Figure 12 shows the basic scheme of the DLMFLC. The new 
blocks on the left are the modular FLC, also called the second-
level FLC. There are some differences in the process of getting 
the second-level FLC, as compared to finding the first-level 
ones. The disturbance is different—it lasts 0.01s—but the same 
three disturbances, which are 250N, 500N and 1000N, are used, 
and the simulation starts from 0s, 2s and 4s, respectively. The 
FLC’s structure is also different; while the first-level FLC’s 
inputs are error and change ratio of error and the output is a 
force to reach (control) the target (the pole of IPS), the second-
level FLC is a one-input, three-output system. The input is the 
value of the disturbance and the output is the gain (a real value 
with no actual physical meaning) for every modular FLC (3 
outputs). 
The parameters for encoding the second-level FLC into the GA 
are therefore also different. The number of MFs is set to 3 and 
the output scaling is 0-1 (gain). The parameters for running the 
GA are the same as those used to evolve the modular FLCs. 

In order to test the repeatability of the experiment, the whole 
process was repeated 5 times. A different modular FLC was 
selected from each of the 5 experiments. Furthermore, an 
additional challenge was imposed on the second-level FLC:  the 
sum of the outputs of the overall system should not exceed 
500N, which is a way of reproducing the torque limit on a motor 
that would stabilize the inverted pendulum; however, the 
modular FLCs’ outputs have no such limitations (i.e., the 
limitation is imposed by the gains evolved for the second-level 
FLC). 

 
Figure 12: SIMULINK Model of a Double-Level FLC 

5.5 Results  
In order to test the efficiency of using a second-level FLC, it is 
compared to the results obtained by training the FLC with the 
first level only (gains/parameters of the first level FLC are 
decided by GA). 
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Figure 13: 250N FLC’s Working Zones 

 
Figure 14 and 15 show the working zones for each FLC. A 
reading of ‘1’ on the y-axis means that for the disturbance force 
shown on the x-axis, the FLC can control and stabilize the IPS 
successfully. A reading of ‘0’ indicates otherwise.  
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Figure 14: 500N FLC’s Working Zones 
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Figure 15: 1000N FLC’s Working Zones 

It is noteworthy that the FLC obtained for the 250N disturbance 
has a very limited control range, and examination of the ones 
obtained for 500N and 1000N shows that there are many 
intervals where the FLC cannot control the IPS. Hence, using a 
first-level FLC alone does not give satisfactory results when 
testing the controller with different values than the ones used for 
the training.  
After the second-level FLC is linked to the first-level ones, 
comprising the DLMFLC, one can see in Figure 16 that the 
controller is able to work properly for the whole range of 
disturbance forces. 
Figure 17 shows the necessary time to stabilize the inverted 
pendulum using a maximal force of 500N, while disturbing the 
system with different forces; one can conclude that the response 
time is satisfactory in all cases studied. 
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Figure 16: Double Level FLC's Working Zone 

6. CONCLUSION 
In order to get a FLC that performs efficiently across the whole 
working zone of a controlled system using a genetic algorithm 
(GA), a double-level modular FLC (DLMFLC) was proposed 
and developed successfully in this paper. The approach was 
tested with an IPS controller design problem.  

The simulation results show that the DLMFLC obtained works 
well across the entire desired working zone and needs only 
small training sets during the search process of the GA. 

More issues must still to be investigated for the DLMFLC. For 
example, one should investigate the relationship between first-
level FLCs and the second-level FLC, so as to guide how to 
choose the training sets for the first-level FLCs that make it 

easier for the second-level FLC to evolve a better overall 
controller—i.e., DLMFLC.  

In the test presented in this paper, the second-level FLC is a 
SIMO system. In this particular case study of IPS controller 
design, external disturbance is the only input for the second-
level FLC. But in practice, several external parameters can 
influence a system. Should one add more variables as inputs to 
the second-level FLC, and how? All these questions merit 
further study to make the DLMFLC usable in more general 
applications.  
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Figure 17 : Oscillation Angle of the IPS vs. Time. 
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