
Genetically Generated Double-Level
Fuzzy Controller with a Fuzzy Adjustment Strategy
Sofiane Achiche

Technical University of Denmark
Nils Koppels Allé, Building 404

2800 Kgs. Lyngby, DK
+45 4525 4166

sac@gst.mek.dtu.dk

Wang Wei
Technical University of Denmark
Nils Koppels Allé, Building 404

2800 Kgs. Lyngby, DK
+45 4525 6271

ww@mek.dtu.dk

Zhun Fan
Technical University of Denmark
Nils Koppels Allé, Building 404

2800 Kgs. LyngbyDK
+45 4525 6271

zf@mek.dtu.dk

Ali Ozkil
Technical University of Denmark
Nils Koppels Allé, Building 404

2800 Kgs. Lyngby, Copenhagen, DK
+45 4525 6271

s053675@student.dtu.dk

Jiachuan Wang
Systems Department

United Technologies Research Center
East Hartford, 06128, USA

+1 860 610 7549

WangJ2@utc.com

ABSTRACT
This paper describes the use of a genetic algorithm (GA) in
tuning a double-level modular fuzzy logic controller
(DLMFLC), which can expand its control working zone to a
larger spectrum than a single-level FLC. The first-level FLCs
are tuned by a GA so that the input parameters of their
membership functions and fuzzy rules are optimized according
to their individual working zones. The second-level FLC is then
used to adjust contributions of the first-level FLCs to the final
output signal of the whole controller, i.e., DLMFLC, so that it
can function in a wider spectrum covering all individual
working zones of the first-level FLCs. The second-level FLC is
again optimized by a GA. An inverted pendulum system (IPS) is
used to demonstrate the feasibility of the approach.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Methods,
and Search – Heuristic methods.

General Terms: Design

Torben Sørensen
Technical University of Denmark
Nils Koppels Allé, Building 404

2800 Kgs. Lyngby, Copenhagen, DK
+45 4525 6278

ts@mek.dtu.dk

Erik Goodman
Michigan State University

East Lansing, 48823
Michigan, USA

+1 517 355 6453

goodman@msu.edu

Keywords
Genetic algorithm, fuzzy logic controller, modularity.

1. INTRODUCTION
Several research and industrial applications concentrated their
efforts on providing simple and easy control algorithms to cope
with the increasing complexity of the controlled
processes/systems [1]. The design method for a controller
should enable full flexibility in the modification of the control
surface [2]. The systems involved in practice are, in general,
complex and time variant, with delays and nonlinearities, and
often with poorly defined dynamics. Consequently,
conventional control methodologies based on linear system
theory have to simplify/linearize the nonlinear systems before
they can be used, but without any guarantee of providing good
performance. To control nonlinear systems satisfactorily,
nonlinear controllers are often developed. The main difficulty in
designing nonlinear controllers is the lack of a general structure
[3]. In addition, most linear and nonlinear control solutions
developed during the
last three decades have been based on precise mathematical
models of the systems. Most of those systems are
difficult/impossible to be described by conventional
mathematical relations, hence, these model-based design
approaches may not provide satisfactory solutions [4]. This
motivates the interest in using FLC; FLCs are based on fuzzy
logic theory [5] and employ a mode of approximate reasoning
that resembles the decision making process of humans. The
behavior of a FLC is easily understood by a human expert, as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

1880

knowledge is expressed by means of intuitive, linguistic rules.
In contrast with traditional linear and nonlinear control theory,
a FLC is not based on a mathematical model and is widely used
to solve problems under uncertain and vague environments, with
high nonlinearities [6][7]. Since their advent, FLCs have been
implemented successfully in a variety of applications such as
insurance and robotics [8][9][10]. Unlike neural networks, the
first-generation fuzzy systems are not able to learn from data.
However, several techniques have been proposed to extract
fuzzy rules from training data gathered from observation of the
operator control strategy [11][12][13]. As a consequence, an
emerging topic in the FLC research community has been to
investigate ways to help designers to automatically design
FLCs. The majority of the work uses computational intelligence
techniques, including neural networks [14][15][16] and genetic
algorithms (GA) [17][18][19]. This paper concentrates on the
use of a GA. Various approaches have been used to design FLCs
using a GA, either concentrating on the fuzzy control rules [20],
the membership functions [21], or both [22][23][24]. However,
a GA applied to design FLCs has some shortcomings too,
mainly because the FLC is built and selected according to the
fitness value, which only measures how close the solution is to
the desired result under predefined environments, and may
therefore decrease its generalization to changing or uncertain
environments. FLCs tend to show good control behavior only in
ranges near the values of the training sets used to design them
[25]. To avoid this problem, the approach inspired by [26] is
used in this paper; an evolutionary modular fuzzy system is used
to get a combined system that performs better, by combining
different modules together; every module in the final system
produces an output. These outputs are combined by a function
(linear or nonlinear) that produces the final output. However,
finding the right function for the right application is a tedious
task. In this paper, a genetically tuned FLC is used to combine
the outputs of the various FLCs, resulting in a double-level
modular FLC (DLMFLC). The existing FLCs will be the
modules (first-level FLCs) and the second-level FLC will
combine these modules. To validate the approach, an
experiment is carried out to control and stabilize an inverted
pendulum system with changing force disturbances using
DLMFLC. The simulation results demonstrate that DLMFLC
can successfully stabilize the inverted pendulum system under
the whole spectrum of changing force disturbances, while the
first-level FLCs can usually only work in narrower work zones.
This paper is organized as follows: section 2 presents some
introductory material about fuzzy logic; section 3 gives a short
introduction to the GA. Section 4 explains the details of
DLMFLC. As a case study, the problem of an Inverted
Pendulum system (IPS) is defined in section 5, with simulation
results presented and discussed. The paper concludes with
section 6, in which some future research directions are also
pointed out.

2. FUZZY LOGIC
In this section we present a rule-based approach to decision
making and control using fuzzy logic techniques, based on the
compositional rule of inference (CRI). This approach is used to
handle uncertain (imprecise) knowledge and was developed in
the sixties by L.A. Zadeh [27]. Such knowledge can be collected
and delivered by a human expert (e.g. decision-maker, designer,

process planner, machine operator, etc.) or automatically
generated by a learning algorithm using synthetic or
experimental data. The CRI may be written in the form:

RABCU o´)´...´(´ ×××= (1)

where R represents the global relation that aggregates all the
rules (knowledge base). A´, B´, ..., C´ represents the inputs
(observations) and U´ represents the output (conclusion). The
symbol o represents the CRI operator. The knowledge base
consists of two components: the linguistic term base (database)
and the fuzzy production rule base, while the database is divided
in two parts: fuzzy premises and fuzzy conclusions. More about
fuzzy logic and fuzzy logic terms can be found in [28].

3. GENETIC ALGORITHM
Genetic algorithms are stochastic optimization techniques based
on an analogy to the mechanics of biological genetics and
imitate the Darwinian survival-of-the-fittest phenomenon. Each
individual of a population is a potential FLC. In this research,
FLCs are encoded into a genotype before applying four
evolutionary operations: reproduction, mutation, evaluation and
natural selection, and finally decoded.

3.1 GA Applied to FLC Generation
The key part of a FLC is the Fuzzy Inference System, and it is
composed of fuzzy sets and fuzzy rules [28]. One can use some
parameters to describe both of them and encode these
parameters into a chromosome. There are many ways to encode
an FLC into a GA [29]. In this paper, the encoding is based on
the scheme proposed in [30], chosen for its simplicity since only
few parameters are used to describe the FLC—namely, the
number and center values of the input and output membership
functions and the linguistic control rules.

3.1.1 Coding of the Membership Functions
In this paper the number of membership functions (MF) is
assumed to be an odd number greater than unity and the MFs
are distributed symmetrically around a center of zero. Only
triangular fuzzy membership functions are considered for the
sake of coding simplicity and without loss of generality. The
center value is given by:

mP
mMF ici).sgn(=φ where

2
1,,0,,

2
1 ++

−=
nni LL (2)

Where n and Pm are the number of MFs and the exponent of the
power function and sgn(•) denotes the SIGN function:

0
0

1
1

)sgn(
<
≥

⎩
⎨
⎧
−

=
x
x

if
if

x (3)

Finally, the characteristic function gives the values of cm:

mP

m
nc

−

⎟
⎠
⎞

⎜
⎝
⎛ +

=
2

1 (4)

3.1.2 Coding of the Fuzzy Rule Base
A FLC is constructed using the following linguistic rules:

ifR =1 1x is iX1 and 2x is iX 2 then u is Ui, i=1, ..,n (5)

1881

where x1, x2 and u are input and output variables in the
controller; these are described as state error, change-of-state
error and a control input, in this paper.

The rules are coded using a combination of a seed line and seed
points, which are positioned into a phase plane containing all
the possible fuzzy rules one can fire. The locations of the seed
points are determined as follow:

2
1,,0,,

2
1

)tan(.
sin.

++
−=

=
=

oo
ssi

P
ssi

nni

Lx
icLx s

LL

φ (6)

where sφ and sP are seed angles and are defined as
characteristic parameters for the fuzzy linguistic rules. Also Cs is
obtained the same way as Cp using the number of MFs on the
output (no).

L limits the locations of the seed points. For more details on the
coding, see [30].

In Figure 1, the relationship between input and output in the
controller can be represented as a function of these design
parameters as follows.

u(t) = f(x1(t), x2(t)|Ψ) (7)

Figure 1: Control Block Diagram

Where f(•|Ψ) denotes a fuzzy function constructed with the
design parameter vector Ψ. The parameters of Ψ are coded into a
chromosome using binary coding.

3.1.3 Genotype of FLC
The characteristic parameters of the FLC are encoded into a
chromosome as shown in Figure 2. The GA will evaluate this
chromosome using the evaluation function to find the best
individual and the FLC defined by it. More details are given in
[30].

Figure 2: FLC’s Parameters Encoded into a Chromosome

To perform the GA, MatLab was used in conjunction with the
GAOT toolbox, which is open-source code provided by Houck
et al. [31].

3.2 Evaluation Function
The evaluation function is called by the GA to compute the
fitness of a set of parameters. The parameters are passed to
the evaluation function, which processes them and returns a
value corresponding to how well the controller defined by
those parameters performed the task at hand. In this paper, the
evaluation function returns the root mean square error between
the desired and actual (computed) positions of the pendulum.
This function first extracts the relevant parameters from the
chromosome passed in. A SIMULINK model is then called,
from which a record of the error in the pole angle throughout the
duration of the simulation is obtained. The square of the error is
multiplied by a time weight and the sum of this time-weighted
square error is inverted to give a fitness value. If the pole angle
should at any stage of the simulation saturate—i.e., reach ±90°,
then the simulation is stopped immediately so that time is not
wasted modeling controllers that fail to balance the pole. The
MatLab source code for this evaluation function can be found in
[33].

4. DOUBLE-LEVEL MODULAR FLC
FLCs designed automatically by GAs or other techniques
generally exhibit a drop in performances with an increase in the
working zone. The working zone (also called the universe of
discourse) is defined as the interval between the minimum and
maximum values in which the control actions occur. This drop
in efficiency is due to the GA’s learning paradigm, which
generally selects the desired solution by evaluating the fitness
function. A fitness function typically measures how closely a
FLC’s output fits the data in working zone used in the training
set, which is generally smaller than the overall working zone
(smaller interval and/or fewer values or even one single value).
The difficulty this causes will be explained further below.

Figure 3: Training Set and the Working Zone

In Figure 3, g1 and g2 denote the minimum and maximum
values of the FLC’s working zone, respectively. The horizontal
axis is the whole working zone. For the rest of the paper, the
interval G (g1, g2) will refer to the working zone of the FLC
and ts will refer to the training sets. G and ts are linked by the
following expression:

Gts∈ or Gts = (8)

There is no established formula that can describe explicitly this
link. But it is important to note that the performance quality
depends on the selection of ts, since it determines the fitness
function evaluation.

1882

When the ts working zone is smaller than G, the near-optimal
FLC may not work properly for the whole G, as shown in
Figure 4. But increasing the ts working zone would not only
increase learning time, but also causes the GA to get stuck in
local optima because of larger/more complex search space,
yielding an FLC that is not optimum, and therefore cannot solve
the problem either efficiently or effectively.

Figure 4: FLC’s Working Zone

One way to solve this problem is to divide G into smaller
working zones, choose a ts from each (can be a single value),
and construct an FLC that works well for each. A method to
integrate all FLCs is then needed so that the combination covers
the entire working zone G. However, how to divide G properly
so that each smaller working zone can have the right (producing
optimum FLC) ts is still an open problem.

Figure 5: Working Zone Composed of Many Smaller Working

Zones

Another similar way is to randomly select values from G and
use them as ts, and then to identify an appropriate working zone
for each ts by testing. With this method, the working zone of the
system is controlled by several FLCs. This approach will be
referred to as the switch mode in this paper, in which the
concatenation of the FLCs’ smaller working zones gives the
total working zone of the system. In the switch mode approach,
the control switches to a different FLC depending on where the
value of the external input is located in G. Figure 5 shows an
example in which all the FLCs have the same external input, but
as their working zones are different, a switch chooses the FLC
to use to control the target (FLC2 output in Figure 6).

Figure 6: Switch Mode Approach

However, the switch mode approach can still fail quite
frequently. One reason for this is that a smoother transition from
one FLC to another is needed to control the dynamic systems
successfully. An improvement of the switch mode approach is
to use a linear combination of the outputs of the FLCs to control
the system; such an approach has generated some good results,
as described in [26].

Both approaches described above are difficult to realize
properly, since the working zone must be divided into several
smaller ones, and the learning by GA must be done for each,
which is time consuming. The question would be: is it possible
to reduce the number of smaller working zones and/or choose a
finite and limited number of values from the system’s working
zone as ts in order to get an FLC that works well across its
entire working zone? To achieve this, a double-level modular
FLC (DLMFLC) is proposed in this paper.

A DLMFLC is a further improvement of the method presented
in [26]. The basic idea is to use a second-level FLC to adjust the
contribution of the first-level FLCs to the output of the
integrated controller. The first-level FLCs would be the modules
of the control system. These FLCs are called modular FLCs;
they can work in their smaller working zones but not necessarily
well in the whole system’s work zone. Having several FLCs,
how can we integrate them together into a single FLC? How can
this second level be constructed? For each input that falls into
the working zone of a first-level FLC, the output of this
particular FLC module should contribute more to the output of
the overall controller. However, this does not necessarily mean
that other FLC modules should not contribute at all to the output
of the overall controller. They will simply contribute to a lesser
extent. The key here is to decide proper ‘weights’ of all FLC
modules so that their overall contributions can control the
system successfully across the entire working zone.

The method in [26] utilizes a linear combination of the outputs
of the FLC modules, in which the ‘weights’ of the FLC modules
are fixed for all inputs. In this paper, a second-level FLC is used
to integrate the modular FLCs so that the ‘weights’ are adjusted
by the second-level FLC according to different inputs. The basic
scheme is presented in Figure 7.

The existing FLCs constitute the first-level FLCs, which are
FLC1, FLC2, ..., FLCn in Figure 7. A second-level FLC, which
resides above the first-level FLCs (Figure 7), is used to
integrate outputs of the first-level FLCs.

∑
=

∗
n

i
ii af

1

Figure 7: Diagram of Modular Double-Level FLC System

The second level FLC uses the input value of the system to
provide the first level FLCs the fuzzy values f, where,

10, ≤≤= iii aaf (9)

1883

Furthermore, every first-level FLC has an output, too. It is

)(inputfouti = (10)

The output of the FLC to control the object is then given by:

∑
=

×=
n

i
ii outfOUT

1
 (11)

5. Case Study
In order to test and validate the control approach proposed in
Section 4, the Inverted Pendulum system (IPS) control problem
is used, since it is considered a typical testbed for control
experiments.

5.1 Inverted Pendulum System (IPS)
As we chose the IPS as our testbed, it is necessary to introduce
some basic variables and components.
The variables shown in Figure 8 and 9 are as follows:

 M, the mass of the cart,
 m, the mass of the pole,
 l, the distance from the pivot to the center of mass of

the pole,
 I, the moment of inertia of the pole around the pivot,
 x, the cart’s position,
 θ, the angle the center of the pole makes with the

vertical,
 F, the horizontal control force applied to the cart,
 g, gravity.

Figure 8: IPS Model.

..
xm

..
θ

Figure 9: IPS--Pole in Isolation

Taking the second derivative of the position of the pole’s center
of gravity, one obtains:

θθθθ sincos 2&&&&&&& llxxG +−= (12)

Newton’s second law of motion yields:

GxmxMF &&&& += (13)

Combining equations 12 and 13 yields:

θθθθ cossin)(2 &&&&& mlmlmMxF −++= (14)

Considering that, for a rigid body, the sum of the moments
about a fixed point, P, is equal to the moment of inertia of the
body about P multiplied by the angular acceleration plus the
product of the mass of the body, its linear acceleration and the
perpendicular distance between point P and the vector
representing the acceleration yields:

damIM pp
r

+= α (15)

Recombination, insertion and rearrangement of these equations
yields (for a uniform rod of mass m and length L=2× l):

θ

θθθθ

2

2

cos)(
3
4

sin
3
4sincos

3
4

mmM

lmgF
x

−+

−+
=

&

&& (16)

θ

θθθθθθ
2

2

cos)(
3
4

sincoscossin)(

mllmM

mlFgmM

−+

−++
=

&
&& (17)

More details on the inverted-pendulum can be found in [33].

5.2 SIMULINK model of the IPS
Using the equations shown in Section 5.1, the SIMULINK
model shown in Figure 10 is developed. In the model, the input
is the control action. The angle and angular velocity from the
previous time step are combined to compute the cart’s
acceleration and the pole’s angular acceleration, respectively.
The speed and position of the cart are gotten by integrating the
angle and the angular velocity. The pole’s angle is also limited
to remaining in the range of [-pi/2, pi/2]. There are four
variables considered as outputs: pole’s angle and angular
velocity along with the cart’s position and velocity.

Figure 10: SIMULINK model of the IPS
For the sake of uniformity of the parameters during the test, the
values of three variables are fixed:

 M=1kg
 m=0.1kg
 l=0.5m

Gravity is fixed at g = 9.8m/s2.

5.3 Construction of the first-level FLCs
The number of membership functions (MFs) is arbitrarily
restricted to the integers from 3 to 9, inclusively, as most FLCs

1884

are within this range. The number of MFs is limited to odd
integers because of the way the FLC is encoded in the GA. In
the tests reported in this paper, we selected the number of MFs
to be 5.

Figure 11: First-level FLC’s SIMULINK Model

5.3.1 Running the GA
The parameters for running the GA to evolve the FLCs in both
second and first levels are:

• Population size: 50
• Selection mechanism: Stoc.Rem (as in Stochastic

Remainder Sampling, a MatLab script added to the
GA tool box of MatLab [33])

• Crossover: single-point crossover at 0.5
• Mutation : single-bit, at 0.05/bit

Three different disturbances—250N, 500N and 1000N—were
used to create the training sets for evolving the first-level FLCs.
Then the working zone for each evolved FLC module was
obtained by testing the FLC against different external
disturbances ranging from 0N to 1200N, with a 1N increment.

5.4 Second-level FLC
Figure 12 shows the basic scheme of the DLMFLC. The new
blocks on the left are the modular FLC, also called the second-
level FLC. There are some differences in the process of getting
the second-level FLC, as compared to finding the first-level
ones. The disturbance is different—it lasts 0.01s—but the same
three disturbances, which are 250N, 500N and 1000N, are used,
and the simulation starts from 0s, 2s and 4s, respectively. The
FLC’s structure is also different; while the first-level FLC’s
inputs are error and change ratio of error and the output is a
force to reach (control) the target (the pole of IPS), the second-
level FLC is a one-input, three-output system. The input is the
value of the disturbance and the output is the gain (a real value
with no actual physical meaning) for every modular FLC (3
outputs).
The parameters for encoding the second-level FLC into the GA
are therefore also different. The number of MFs is set to 3 and
the output scaling is 0-1 (gain). The parameters for running the
GA are the same as those used to evolve the modular FLCs.

In order to test the repeatability of the experiment, the whole
process was repeated 5 times. A different modular FLC was
selected from each of the 5 experiments. Furthermore, an
additional challenge was imposed on the second-level FLC: the
sum of the outputs of the overall system should not exceed
500N, which is a way of reproducing the torque limit on a motor
that would stabilize the inverted pendulum; however, the
modular FLCs’ outputs have no such limitations (i.e., the
limitation is imposed by the gains evolved for the second-level
FLC).

Figure 12: SIMULINK Model of a Double-Level FLC

5.5 Results
In order to test the efficiency of using a second-level FLC, it is
compared to the results obtained by training the FLC with the
first level only (gains/parameters of the first level FLC are
decided by GA).

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600 800 1000 1200

Disturbance force [N]

1
or

 0

Figure 13: 250N FLC’s Working Zones

Figure 14 and 15 show the working zones for each FLC. A
reading of ‘1’ on the y-axis means that for the disturbance force
shown on the x-axis, the FLC can control and stabilize the IPS
successfully. A reading of ‘0’ indicates otherwise.

0,8

0,9

1

0 200 400 600 800 1000 1200
Disturbance force [N]

1
or

 0

Figure 14: 500N FLC’s Working Zones

1885

0,8

0,9

1

0 250 500 750 1000

Disturbance force [N]

1
or

 0

Figure 15: 1000N FLC’s Working Zones

It is noteworthy that the FLC obtained for the 250N disturbance
has a very limited control range, and examination of the ones
obtained for 500N and 1000N shows that there are many
intervals where the FLC cannot control the IPS. Hence, using a
first-level FLC alone does not give satisfactory results when
testing the controller with different values than the ones used for
the training.
After the second-level FLC is linked to the first-level ones,
comprising the DLMFLC, one can see in Figure 16 that the
controller is able to work properly for the whole range of
disturbance forces.
Figure 17 shows the necessary time to stabilize the inverted
pendulum using a maximal force of 500N, while disturbing the
system with different forces; one can conclude that the response
time is satisfactory in all cases studied.

0

0,2

0,4

0,6

0,8

1

1,2

0 200 400 600 800 1000 1200

Disturbance force [N]

1
or

 0

Figure 16: Double Level FLC's Working Zone

6. CONCLUSION
In order to get a FLC that performs efficiently across the whole
working zone of a controlled system using a genetic algorithm
(GA), a double-level modular FLC (DLMFLC) was proposed
and developed successfully in this paper. The approach was
tested with an IPS controller design problem.

The simulation results show that the DLMFLC obtained works
well across the entire desired working zone and needs only
small training sets during the search process of the GA.

More issues must still to be investigated for the DLMFLC. For
example, one should investigate the relationship between first-
level FLCs and the second-level FLC, so as to guide how to
choose the training sets for the first-level FLCs that make it

easier for the second-level FLC to evolve a better overall
controller—i.e., DLMFLC.

In the test presented in this paper, the second-level FLC is a
SIMO system. In this particular case study of IPS controller
design, external disturbance is the only input for the second-
level FLC. But in practice, several external parameters can
influence a system. Should one add more variables as inputs to
the second-level FLC, and how? All these questions merit
further study to make the DLMFLC usable in more general
applications.

-5

0

5

10

15

20

25

0 20 45 70 95

Time [0.01s]

Pe
nd

ul
um

 a
ng

le
 [o

]

200N
400N
600N
800N
1000N

Figure 17 : Oscillation Angle of the IPS vs. Time.

7. ACKNOWLEDGMENTS
Financial support from the Natural Sciences and
Engineering Research Council of Canada (NSERC) under
Post-Doctoral Grant BP-328508-2006 is gratefully
acknowledged.

REFERENCES
[1] Verbruggen, H.B. and Bruijn, P.M., Fuzzy control and

conventional control: What is (And Can Be) the Real
Contribution of Fuzzy Systems? Fuzzy Sets Systems, Vol.
90, 151–160, 1997.

[2] Kowalska, T.O., Szabat, K. and Jaszczak, K., The
Influence of Parameters and Structure of PI-Type Fuzzy-
Logic Controller on DC Drive System Dynamics, Fuzzy
Sets and Sysems, Vol. 131, 251–264, 2002.

[3] Ahmed, M.S., Bhatti, U.L., Al-Sunni, F.M. and El-Shafei,
M., Design of a Fuzzy Servo-Controller, Fuzzy Sets and
Systems, vol. 124, 231–247, 2001.

[4] Zilouchian, A., Juliano, M., Healy, T. and Davis, J.,
Design of Fuzzy Logic Controller for a Jet Engine Fuel
System, Control and Engineering Practices, Vol. 8, 873–
883, 2000.

[5] Zadeh, L.A., Fuzzy sets, Information Control, Vol. 8, pp.
339–353, 1965.

[6] Liu, B-D., Design and Implementation of the Tree-Based
Fuzzy Logic Controller, IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics., Vol.27, No.3,
475-487, 1997.

[7] Zhiqiang, G., A Stable Self-Tuning Fuzzy Logic Control
System for Industrial Temperature Regulation, IEEE

1886

Transactions on Industry Applications.Vol.38, No.2, 414-
424, 2002.

[8] Shapiro, A.F., Fuzzy Logic in Insurance, Insurance:
Mathematics and Economics, Vol.35, No.2 , 399-424,
2004.

[9] Hayward, G. and Davidson, V., Fuzzy Logic Applications,
Analyst, Vol.128, 1304-1306, 2003.

[10] Peri, V.M. and Simon, D., Fuzzy Logic Control for an
Autonomous Robot, North American Fuzzy Information
Processing Society, NAFIPS 2005 Annual Meeting, 337-
342, 2005.

[11] Castellano, G., Attolico, G. and Distante, A., Automatic
Generation of Fuzzy Rules for Reactive Robot Controllers,
Robotics and Autonomous Systems, Vol. 22, 133–149,
1997.

[12] Higgins, C. M. and Goodman, R. M., Fuzzy Rule-Based
Networks for Control, IEEE Transactions on Fuzzy
Systems, Vol. 2, No. 1, 82–88, 1994.

[13] Wang, L. X. and Mendel, J. M., Generating Fuzzy Rules
By Learning From Examples, IEEE Transactions on
Systems, Man and Cybernetics, Vol. 22, No. 6, 1414–1427,
1992.

[14] Mohamed, A.M.O., Neuro-Fuzzy Logic Model for
Evaluating Water Content of Sandy Soils, Computer-Aided
Civil and Infrastructure Engineer, Vol.19, No.4,274-287,
2004..

[15] Horng, J.H., SCADA System of DC Motor with
Implementation of Fuzzy Logic Controller on Neural
Network, Advances in Engineering Software, Vol.33
Issue.6, pp:361-364, 2002.

[16] Van Cleave, D.W., Tuning of Proportional Plus Derivative
Fuzzy Logic Controller using Neural Network,
Proceedings of the 33rd Southeastern Symposium on
System Theory, 365 -370, 2001.

[17] Nandi, A.K. and Pratihar, D.K, Automatic Design of Fuzzy
Logic Controller using a Genetic Algorithm—To Predict
Power Requirement and Surface Finish in Grinding,
Journal of Material Processing Technology, Vol. 148, 288-
300, 2004.

[18] Achiche, S., Baron, L. and Balazinski, M., Predictive
Fuzzy Control of Paper Quality, Annual Meeting of the
North American Fuzzy Information Processing Society,
CD-ROM Version, 2006.

[19] Chiang, C.K., A Self-Learning Fuzzy Logic Controller
Using Genetic Algorithms with Reinforcements, IEEE
Transactions on Fuzzy Systems, Vol.5, No.3, 460-467,
1997.

[20] Chin, T.C., Genetic Algorithms for Learning the Rule Base
of Fuzzy Logic Controller, Fuzzy Sets and Systems, Vol.97,
No.1, 1-7, 1998.

[21] Arslan, A and Kaya, M., Determination of Fuzzy Logic
Membership Functions using Genetic Algorithms:

Application to Structure-Odor Modeling, Fuzzy Sets and
Systems, Vol.118, No.2, 297-306, 2001.

[22] Li, R. and Zhang Y., Fuzzy Logic Controller Based on
Genetic Algorithms. Fuzzy Sets and Systems, Vol.83, No.1,
1-10, 1996.

[23] Liu, B.D., Design of Adaptive Fuzzy Logic Controller
Based on Linguistic-Hedge Concepts and Genetic
Algorithms, IEEE Transactions on Systems, Man and
Cybernetics, Part B, Vol.31, No.1, 32 -53, 2001.

[24] Chung, H.Y. and Chiang, C.K., A Self-Learning And
Tuning Fuzzy Logic Controller Based on Genetic
Algorithms and Reinforcements, International Journal of
Intelligent Systems, Vol.12, Issue.9, 673-694, 1997.

[25] Balazinski, M., Achiche, S.and Baron, L. Influence of
Optimization and Selection Criteria on Genetically-
Generated Fuzzy Knowledge Bases, 2nd International
Conference on Advanced Manufacturing Technology, 159-
164, 2000.

[26] Yuhui, S., Eberhart, R. and Yaobln C., Evolutionary
Modular Fuzzy System, IEEE International Conference on
Evolutionary Computation Proceedings. IEEE World
Congress on Computational Intelligence, 387-391, 1998.

[27] Zadeh, L.A., Outline of New Approach to the Analysis of
Complex Systems and Decisions Processes, IEEE
Transactions of Systems, Man and Cybernetics, Vol.3, 28-
44, 1973.

[28] Klir, G.J., Zadeh, L. A., Yuan, B., Fuzzy Sets, Fuzzy
Logic, and Fuzzy Systems, World Scientific Series, 1996.

[29] Baron, L., Achiche, S., Balazinski, M., Fuzzy Decision
Support System Knowledge Base Generation Using a
Genetic Algorithm. International Journal of Approximate
Reasoning, Vol.28, No. 2-3, 125-148, 2001.

[30] Young J.P., Hyung, S.C. and Dong H.Ch., Genetic
Algorithm-Based Optimization Of Fuzzy Logic Controller
Using Characteristic Parameters, IEEE International
Conference on Evolutionary Computation, Vol.2, 831-836,
1995.

[31] Houck, C.R., Joines, J. and Kay, K., A Genetic Algorithm
for Function Optimization: A Matlab implementation,
ACM Transactions on Mathematical Software,
http://www.eos.ncsu.edu/eos/service/ie/research/kay_res/G
AToolBox/gaot, 1996.

[32] Lee, M.A., Takagi, Integrating Design States of Fuzzy
System using Genetic Algorithms, Proceedings of the 2nd
IEEE International Conference on Fuzzy Systems, San
Francisco, 612-617, 1993.

[33] Foran, J., Optimization of a Fuzzy Logic Controller Using
Genetic Algorithms, Master in Engineering Report, 108p,
2002.

1887

