
Evolving Distributed Agents for Managing Air Traffic

Adrian Agogino
UCSC, NASA Ames Research Center

Mailstop 269-3
Moffett Field, CA 94035, USA

adrian@email.arc.nasa.gov

Kagan Tumer
Oregon State University

204 Rogers Hall
Corvallis, OR 97331, USA

kagan.tumer@oregonstate.edu

ABSTRACT
Air traffic management offers an intriguing real world chal-
lenge to designing large scale distributed systems using evo-
lutionary computation. The ability to evolve effective air
traffic flow strategies depends not only on evolving good lo-
cal strategies, but also on ensuring that those local strategies
result in good global solutions. While traditional, direct evo-
lutionary strategies can be highly effective in certain com-
binatorial domains, they are not well-suited to complex air
traffic flow problems because of the large interdependencies
among the local subsystems. In this paper, we propose an
evolutionary agent-based solution to the air traffic flow prob-
lem. In this approach, we evolve agents both to learn the
right local flow strategies to alleviate congestion in their im-
mediate surroundings, and to prevent the creation of conges-
tion “downstream” from their local areas. The agent-based
approach leads to better and more fault-tolerant solutions.
To validate this approach, we use FACET, an air traffic sim-
ulator developed at NASA and used extensively by the FAA
and industry. On a scenario composed of three hundred air-
craft and two points of congestion, our results show that an
agent based evolutionary computation method, where each
agent uses the system evaluation function, achieves 40% im-
provement over a direct evolutionary algorithm. In addition
by creating agent-specific “difference evaluation functions”
we achieve an additional 30% improvement over agents us-
ing the system evaluation.

Categories and Subject Descriptors
J.7 [Computing Applications]: Physical Sciences and En-
gineering—Aerospace

General Terms
Application, Algorithms, Performance

Keywords
Air Traffic Control, Multiagent Systems, Evolution

1. INTRODUCTION

Copyright 2007 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
GECCO’07, July7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007 ...$5.00.

The ability to effectively control air traffic with tradi-
tional control/optimization algorithms is decreasing rapidly
as the air traffic levels and aircraft heterogeneity increases
and restrictions on flight plans decrease. New strategies are
needed to cope with this added complexity and provide ro-
bust safety levels while ensuring that air traffic delays do
not reach unacceptable levels. Indeed, even at current air
traffic levels, in 2005 alone there was an estimated 322,272
hours of delays within the United States airspace with a
total cost estimated to exceed three billion dollars by indus-
try [6]. With an expected increase in air traffic, unless the
air traffic management processes are overhauled, these de-
lays are expected to become significantly worse. The Next
Generation Air Transportation Systems (NGATS) initiative
is designed to address future issues in air traffic manage-
ment without requiring major infrastructure changes (e.g.,
airports, runways, and towers) or adding large numbers of
additional air traffic controllers. To accomplish this, new
robust algorithms are needed that can safely manage com-
plex air traffic flows while making optimal use of current
infrastructure.

Evolutionary computation has been shown to be a power-
ful tool in solving complex problems such as pole balancing,
rocket control, assembly line balancing and robotics [2, 7,
12, 8, 16]. Due to its success in complex domains, the use
of evolutionary algorithms is a promising approach in the
air traffic flow problem. However, using a single, centralized
evolutionary algorithm to create a control policy for the en-
tire airspace is problematic for three reasons:

1. A centralized algorithm provides a single point of fail-
ure and is not robust against communication failures
that are inevitable in a system spread over large geo-
graphic areas;

2. A single evolutionary controller will struggle to dis-
cover effective solutions in a state space large enough
to encompass the US national air space; and

3. A single evolutionary controller is both slow to opti-
mize and slow to modify to adapt to changing condi-
tions.

Instead of using a centralized evolutionary algorithm, we
propose an adaptive approach based on local agents that is
a better fit to this naturally distributed problem. In this
architecture (shown in Figure 1), each agent is responsible
for a local area and maintains its own population of partial
solutions. At the beginning of each trial (consisting of mul-

1888

tiple time steps), each agent selects a member from its pop-
ulation as its “representative”. All representatives are then
put together to form a full solution that is used to manage
traffic during the trial. At the end of the trial, the full solu-
tion is evaluated and each agent receives an evaluation that
rates the performance of the selected representative. The
agents then update their populations (e.g., by either retain-
ing that representative or not). To apply this multi-agent
approach to the air traffic flow problem, the airspace is bro-
ken down into agents by assigning each agent to a “fix,” a
specific location in 2D. Because aircraft flight plans consist
of a sequence of fixes, this representation allows localized
fixes (represented by agents) to have direct impact on the
flow of air traffic1. In this approach, the agents’ actions
are to set the separation distances that approaching aircraft
are required to keep. This simple agent-action pair allows
the agents to slow down or speed up local traffic and allows
agents to a have significant influence on system performance.
Agents maintain a population of separation distances and
use an evolutionary algorithm to evolve the population to
determine the most appropriate separation action for their
location.

Representative

Agent 1

Representative Representative

Full Solution

Air Traffic Flow Control

Population 1

Member
Member

Member

Agent 2

Population 2

Member
Member

Member

Agent n

Population n

Member
Member

Member

System
Evaluation

Agent-Specific
Evaluations

Figure 1: Schematic of agent-specific evaluations.
Each agent has its own population of partial so-
lutions. For each trials those partial solutions are
put together to form a full solution to the air traf-
fic problem. The solution is then used for that trial.
The full system performance is evaluated and agents
then receive an agent-specific evaluation which eval-
uates the partial solutions chosen by each agent.

The advantage of deploying a system where each agent
evolves its own population is in having an extra degree of
freedom: we can now have a separate evaluation function
for each agent. Of course, this extra freedom comes at a
potential cost. If the agent evaluation functions are not se-
lected carefully, there is no reason to assume that each agent

1We discuss how flight plans with few fixes can be handled
in more detail in Section 2.

optimizing its own evaluation function will also optimize the
system evaluation function. One of the most natural evalu-
ation functions for an agent to use is the system evaluation,
where each agent uses the identical evaluation function used
to rate the performance of the entire system. Though this
approach provides acceptable solutions, it is slow to converge
can scale poorly [18]. We show how improved performance
can be obtained when each agent uses its own agent-specific
evaluation function based on collectives [20]. In this paper
we focus on how an agent-specific evaluation dubbed the
“difference evaluation” can be used in this domain [1].

Previous work in this domain fell into one of two dis-
tinct categories: (i) The first principles based modeling ap-
proaches used by domain experts [4, 9, 11, 15] ; and (ii)
algorithmic approaches explored by the learning, evolution
and/or agents community [19, 5, 10, 14]. In [4] “geomet-
ric optimization” was proposed, where the geometry of a
particular air space pattern was utilized to create policies
that reduced conflict. In [9] dynamic programming was
used over a model of air traffic routes. In [10] a multi-agent
approach to the “free flight” problem was proposed, where
agents used utilities that balanced their local needs with the
system goals. Closely related to the domain of this paper,
in [19] a reinforcement learning approach was introduced to
relieve air traffic congestion in a distributed way. The work
presented in this paper fits in the second category, but in or-
der to show the real world applicability of our approach, we
use FACET, a simulator introduced and widely used (i.e.,
over 40 organizations and 5000 users) by work in the first
category [3, 13].

In this paper we present a new way to evolve a distributed
air traffic flow management algorithm that can be readily
implemented and test that algorithm using the FACET air
traffic simulator. In Section 2, we describe the air traffic flow
problem and the simulation tool, FACET. In Section 4, we
present the evaluation function characteristic and the agent-
based approach, focusing on both the selection of the agents
and the selection of their evaluation functions. In Section 5
we present results from a domain with three hundred air-
craft and two points of congestion, explore different trade-
offs of the system objective function, and discuss the scaling
properties of the different agent evaluations. Finally, in Sec-
tion 6, we discuss the implications of these results and how
the described work can enable the FAA to reach its stated
goal of increasing the traffic volume by threefold without
significantly modifying the existing infrastructure.

2. AIR TRAFFIC FLOW MANAGEMENT
With over 40,000 flights operating within the United States

airspace on an average day, the management of traffic flow
is a complex and demanding problem. Not only are there
concerns for the efficiency of the system, but also for fair-
ness (e.g., different airlines), adaptability (e.g., developing
weather patterns), reliability and safety (e.g., airport man-
agement). In order to address such issues, the management
of this traffic flow occurs over four hierarchical levels: 1) Sep-
aration assurance (2-30 minute decisions); 2) Regional flow
(20 minutes to 2 hours); 3) National flow (1-8 hours); and 4)
Dynamic airspace configuration (6 hours to 1 year). Because
of the strict guidelines and safety concerns surrounding air-
craft separation, we will not address that control level in
this paper. Similarly, because of the business and political
impact of dynamic airspace configuration, we will not ad-

1889

dress the outermost flow control level either. Instead, we will
focus on the regional and national flow management prob-
lems, restricting our impact to decisions with time horizons
between twenty minutes and eight hours. The proposed al-
gorithm will fit between long term planning by the FAA and
the very short term decisions by air traffic controllers.

The continental US airspace consists of 20 regional centers
(handling 200-300 flights on a given day) and 830 sectors
(handling 10-40 flights). The flow control problem has to
address the integration of policies across these sectors and
centers, account for the complexity of the system (e.g., over
5200 public use airports and 16,000 air traffic controllers)
and handle changes to the policies caused by weather pat-
terns. Two of the fundamental problems in addressing the
flow problem are: (i) modeling and simulating such a large
complex system as the fidelity required to provide reliable re-
sults is difficult to achieve; and (ii) establishing the method
by which the flow management is evaluated, as directly min-
imizing the total delay may lead to inequities towards par-
ticular regions or commercial entities. Below, we discuss
how we addressed both issues, namely, we describe FACET,
a widely used simulation tool, and discuss our system eval-
uation function.

Figure 2: FACET screen-shot displaying traffic
routes and air flow statistics.

2.1 FACET
FACET (Future ATM Concepts Evaluation Tool), a physics

based model of the US airspace was developed to accurately
model the complex air traffic flow problem [3]. It is based on
propagating the trajectories of proposed flights forward in
time. FACET can be used to either simulate and display air
traffic (a 24 hour slice with 60,000 flights takes 15 minutes to
simulate on a 3 GHz, 1 GB RAM computer) or provide rapid
statistics on recorded data (4D trajectories for 10,000 flights
including sectors, airports, and fix statistics in 10 seconds on
the same computer) [13]. FACET is extensively used by the
FAA, NASA and industry (over 40 organizations and 5000
users) [13].

FACET simulates air traffic based on flight plans and
through a graphical user interface allows the user to analyze
congestion patterns of different sectors and centers (Figure
2). FACET also allows the user to change the flow patterns
of the aircraft through a number of mechanisms, including
metering aircraft through fixes. The user can then observe
the effects of these changes to congestion. In this paper,
agents use FACET directly through “batch mode”, where

agents send scripts to FACET asking it to simulate air traf-
fic based on metering orders imposed by the agents. The
agents then produce their evaluations based on feedback re-
ceived from FACET about the impact of these meterings.

2.2 System Evaluation
The system performance evaluation function we use in

this paper focuses on delay and congestion but does not
account for fairness impact on different commercial entities.
Instead it focuses on the amount of congestion in a particular
sector and on the amount of measured air traffic delay. The
linear combination of these two terms gives the full system
evaluation function, G(z) as a function of the full system
state z. More precisely, we have:

G(z) = −((1 − α)B(z) + αC(z)) , (1)

where B(z) is the total delay penalty for all aircraft in the
system, and C(z) is the total congestion penalty. The rela-
tive importance of these two penalties is determined by the
value of α, and we explore various trade-offs based on α in
Section 5.

The total delay, B, is a sum of delays over a set of sectors
S and is given by:

B(z) =
X
s∈S

Bs(z) (2)

where

Bs(z) =
X

t

Θ(t − τs)kt,s(t − τs) , (3)

where ks,t is the number of aircraft in sector s at time t, τs

is a predetermined time, and Θ(·) is the step function that
equals 1 when its argument is greater or equal to zero, and
has a value of zero otherwise. Intuitively, Bs(z) provides
the total number of aircraft that remain in a sector s past
a predetermined time τs, and scales their contribution to
count by the amount by which they are late. In this manner
Bs(z) provides a delay factor that not only accounts for all
aircraft that are late, but also provides a scale to measure
their “lateness”. This definition is based on the assumption
that most aircraft should have reached the sector by time
τs and that aircraft arriving after this time are late. In
this paper the value of τs is determined by assessing aircraft
counts in the sector in the absence of any intervention or
any deviation from predicted paths.

Similarly, the total congestion penalty is a sum over the
congestion penalties over the sectors of observation, S:

C(z) =
X
s∈S

Cs(z) (4)

where

Cs(z) = a
X

t

Θ(ks,t − cs)e
b(ks,t−cs) , (5)

where a and b are normalizing constants, and cs is the ca-
pacity of sector s as defined by the FAA. Intuitively, Cs(z)
penalizes a system state where the number of aircraft in a
sector exceeds the FAA’s official sector capacity. Each sector
capacity is computed using various metrics which include the
number of air traffic controllers available. The exponential
penalty is intended to provide strong feedback to return the
number of aircraft in a sector to below the FAA mandated
capacities.

1890

3. EVALUATION FUNCTION PROPERTIES
While the goal of the system is to maximize the system

evaluation function, the individual agents are designed to
maximize their own agent-specific evaluation functions. Our
goal is to create agent-specific evaluation functions so that
agents that evolve to discover solutions that are deemed
“good” by their own evaluation functions, also provide solu-
tions deemed “good” by the system evaluation function. To
help with this task we first illustrate some important prop-
erties of agent-specific evaluation functions based on work
described in [20] and in the context of previous multi-agent
control work described in [1] and [18].

3.1 Factoredness and Agent Sensitivity
Let the system evaluation function be given by G(z),

where z is the state of the full system (e.g., the actions of
the agents along with the environmental state). Let the
agent evaluation function for agent i be given by gi(z).
First we want the agent-specific evaluation functions of each
agent to have high factoredness with respect to G, intuitively
meaning that an action taken by an agent that improves its
agent-specific evaluation function also improves the system
evaluation function (i.e. G and gi are aligned). Formally,
the degree of factoredness between G and gi is given by:

Fgi =

R
z

R
z′ u[(gi(z) − gi(z

′)) (G(z) − G(z′))]dz′dzR
z

R
z′ dz′dz

(6)

where z′ is a state which only differs from z in the state of
agent i, and u[x] is the unit step function, equal to 1 when
x > 0. Intuitively, a high degree of factoredness between gi

and G means that an agent evolved to maximize gi will also
maximize G.

Second, the agent evaluation function must be more sen-
sitive to changes in that agent’s fitness than to changes in
the fitness of all the other agents. Formally we quantify the
agent-sensitivity of evaluation function gi, at z as:

λi,gi(z) = Ez′

» ‖gi(z) − gi(z − zi + z′
i)‖

‖gi(z) − gi(z′ − z′
i + zi)‖

–
, (7)

where Ez′ [·] provides the expected value over possible values
of z′, and (z−zi+z′

i) notation specifies the state vector where
the components of agent i have been removed from state z
and replaced by the components of agent i from state z′. So
at a given state z, the higher the agent-sensitivity, the more
gi(z) depends on changes to the state of agent i, i.e., the
better the associated signal-to-noise ratio for i. Intuitively
then, higher agent-sensitivity means there is “cleaner” (e.g.,
less noisy) selective pressure on agent i. Ideally we want
evaluation functions that are both factored and highly agent-
sensitive (Figure 3).

As an example, consider the case where the agent evalu-
ation function of each agent is set to the system evaluation
function, meaning that each agent is evaluated based on the
fitness of the full system. Such a system will be factored
by the definition of Equation 6. However, the agent fit-
ness functions will have low agent-sensitivity, because the
fitness of each agent will depend on the fitness of all other
agents, leading to a small numerator and large denominator
in Equation 7.

3.2 Difference Evaluations
Instead of using the system evaluation for agent evolution,

we can use agent-specific evaluation functions that are more

System Evaluation

G(z)

High Factoredness

Low Sensitivity
Low Factoredness

High Sensitivity

High Factoredness

High Sensitivity

Agent-Specific Evaluation

gi(z)
Agent

Agent

Agent

Agent
Agent

Agent

Agent

Agent

Figure 3: Properties of Agent-Specific Evaluations.
Direction of an arrow represents the goal of evalua-
tion function. Size of an arrow represents sensitivity
of the evaluation to agent’s action. As a system de-
signer we are concerned with maximizing the system
evaluation function (left). For agents to be able to
effectively maximize system evaluation, their evalu-
ations should be aligned with the system evaluation
(high factoredness) and supply a strong signal (high
sensitivity).

sensitive to the actions of the agent. Consider difference
evaluation functions, which are of the form [18, 20]:

Di ≡ G(z) − G(z − zi + ci) , (8)

where zi is the action of agent i. All the components of
z that are affected by agent i are replaced with the fixed
constant ci

2.
In many situations it is possible to use a ci that is equiv-

alent to taking agent i out of the system. Intuitively this
causes the second term of the difference evaluation to eval-
uate the performance of the system without i and therefore
D evaluates the agent’s contribution to the system perfor-
mance. There are two advantages to using D: First, because
the second term removes a significant portion of the impact
of other agents in the system, it provides an agent with a
“cleaner” signal than G. This makes the evaluation function
more agent-sensitive. Second, because the second term does
not depend on the actions of agent i, any action by agent i
that improves D, also improves G. The difference evaluation
is therefore fully factored.

4. AGENT BASED AIR TRAFFIC FLOW
The multi-agent approach to air traffic flow management

we present is predicated on agents evolving independent so-
lutions that maximize the system evaluation function dis-
cussed above. To that end, there are three critical decisions
that need to be made:

• Agent selection;

2This notation uses zero padding and vector addition rather
than concatenation to form full state vectors from partial
state vectors. The vector “zi” in our notation would be ziei

in standard vector notation, where ei is a vector with a value
of 1 in the ith component and is zero everywhere else.

1891

• Agent action set selection; and

• Agent evolution algorithm selection.

In this section, we provide a detailed description for each of
these decisions.

4.1 Agent Selection
Selecting the aircraft as agents is perhaps the most ob-

vious choice for defining an agent. That selection has the
advantage that agent actions can be intuitive (e.g., change of
flight plan, increase or decrease speed and altitude) and offer
a high level of granularity, in that each agent can have its
own policy. However, there are several problems with that
approach. First, there are in excess of 40,000 aircraft in a
given day, leading to a massively large multi-agent system.
Second, as each agent would take relatively few actions, it
would not be able to sample its environment sufficiently, re-
sulting in a prohibitively slow evolutionary process. As an
alternative, we assign agents to individual ground locations
throughout the airspace called “fixes.” Each agent is then
responsible for any aircraft going through its fix. Fixes offer
many advantages as agents:

1. Their number can vary depending on need. The sys-
tem can have as many agents as required for a given sit-
uation(e.g., agents coming “live” around an area with
developing weather conditions).

2. Because fixes are stationary, collecting data and match-
ing behavior to evaluation is easier.

3. Because aircraft flight plans consist of fixes, agents will
have the ability to affect traffic flow patterns.

4. Because fixes are part of the current flight management
procedures, algorithms that modify them directly can
be readily deployed (e.g., as tools to help air traffic
controllers rather than compete with or replace them).

Figure 4 shows a schematic of this agent based system.
Agents surrounding a congestion or weather condition affect
the flow of traffic to reduce the burden on particular regions.

4.2 Agent Actions
The second issue that needs to be addressed, is determin-

ing the action set of the agents. Again, an obvious choice
may be for fixes to “bid” on aircraft approaching their loca-
tion, affecting their flight plans. Though appealing from a
free flight perspective, that approach makes the flight plans
too unreliable and significantly complicates the scheduling
problem (e.g., arrival at airports and the subsequent gate
assignment process).

Instead, we set the actions of an agent to determine the
separation distance (distance between aircraft) that aircraft
have to maintain, when going through the agent’s fix. This
is known as setting the “Miles in Trail” or MIT. When an
agent sets the MIT value to d, aircraft going towards its
fix are instructed to line up and keep d miles of separation
(though aircraft will always keep a safe distance from each
other regardless of the value of d). When there are many
aircraft going through a fix, the effect of issuing higher MIT
values is to slow down the rate of aircraft that go through
the fix. By increasing the value of d, an agent can limit
the amount of air traffic downstream of its fix, reducing
congestion at the expense of increasing the delays upstream.

Sector

With

Possible

Congestion

Agent 1

Agent 2

Agent 3

Agent 4Agent 5

Agent 6

Agent 7

Figure 4: Schematic of agent architecture. The
agents corresponding to fixes surrounding a possi-
ble congestion become “live” and start setting new
separation times.

4.3 Agent Evolution
The objective of each agent is to evolve the best values

of the miles in trail distance d that will lead to the best
system evaluation, G. In this paper we assume that each
agent evolves using its own evolutionary algorithm with its
own population of values of d. Since each member of the
population is comprised of a single number, a sophisticated
genetic algorithm is not needed. Instead each agent uses a
simple evolutionary algorithm to evolve its population us-
ing its own fitness evaluation function. The evolutionary
algorithm is based on a population of fixed sized. At the
beginning of each trial the agent chooses the best member
of the population with probability (1 − ε) and a random
member of the population with probability ε. At the end of
the trial it replaces the worst member of the population and
a copy of the best member and mutates the the copy with
probability ε.

5. EXPERIMENTS
In this paper we test the performance of our agent based

air traffic optimization method on a series of simulations us-
ing the FACET air traffic simulator. In all experiments we
test the performance of three different evolutionary meth-
ods. The first method is an evolutionary algorithm with one
agent. With this method there is one population for the
entire system, and each member of the population contains
a full solution, specifying the mile in trail distances for all
the fixes. The other two methods are agent based meth-
ods where the agents are maximizing one of the following
evaluations:

1. The system evaluation, G(z), as define in Equation 1.

2. The difference evaluation Di(z), assuming that agents
can calculate counterfactuals.

In the agent based methods, each agent has its own popula-
tion of miles in trail values and an agent’s action is to choose
one of these values at the beginning of a trial. The miles in

1892

trail values for all the agents constitute a policy for the air
space.

These methods are tested on an air traffic domain with
300 aircraft. The aircraft are going through two points of
congestion over a four hour simulation, with 200 going over
one point of congestion and 100 going through the other
point of congestion. The second congestion is less severe
than the first one, so agents have to form different policies
depending which point of congestion they are influencing.
The points of congestion are created by setting up a series
of flight plans that cause the number of aircraft in the sectors
of interest to be significantly more than the number allowed
by the FAA. Agents are responsible for reducing congestion
while trying to minimize delay.

In all experiments the goal of the system is to maximize
the system performance given by G(z) with the parameters,
a = 50, b = 0.3, c1 = 18, c2 = 15, τs1 equal to 200 minutes
and τs1 equal to 175 minutes. These values of τ are obtained
by examining the time at which most of the aircraft leave
the sectors, when no congestion control is being performed.
Except where noted, the trade-off between congestion and
lateness, α is set to 0.5. Expanding equation 1 and plugging
in the constants we get the following equation for the system
evaluation used in the experiments:

G(z) = − 1

2

X
t

Θ(t − 200)kt,1(t − 200)

− 1

2

X
t

Θ(t − 175)kt,2(t − 175)

− 25
X

t

Θ(kt,1 − 18)e0.3(kt,1−18)

− 25
X

t

Θ(kt,2 − 15)e0.3(kt,2−15) . (9)

In the experiments the evolution parameter ε is set to 0.25.
In all experiments the best policies chosen by the agents
are used in the results. All results are an average of fifty
independent experiments with the differences in the mean
(σ/

√
n) shown as error bars, though in most cases the error

bars are too small to see. All conclusions are statistically
significant with p < 0.01.

-1000

-900

-800

-700

-600

-500

-400

-300

-200

 0 50 100 150 200 250 300 350 400 450 500

M
ax

im
um

 S
ys

te
m

 E
va

lu
at

io
n

A
ch

ie
ve

d

Number of Trials

Difference Evaluation
System Evaluation

System Evaluation - One Agent

Figure 5: Performance on two congestion problem,
with 300 Aircraft, 20 Fixes and α = .5.

5.1 Results
The results displayed in Figures 5 show the performance of

the four algorithms when there are twenty fixes (and there-
fore 20 agents, except for the one agent solution). Clearly
the centralized solution using a single agent with a single
evolutionary algorithm performs the worst. This is not sur-
prising since it is difficult for the single evolutionary algo-
rithm to evolve a solution with twenty coupled variables. In
contrast both the agent based methods performed signifi-
cantly better than the straight (single agent) evolutionary
algorithm.

Among the agent based methods, agents using difference
evaluations perform better than agents using the system
evaluation. Again this is not surprising, since with twenty
agents, an agent directly trying to maximize the system eval-
uation has difficulty determining the effect of its actions on
its own evaluation. Even if an agent takes an action that
reduces congestion and lateness, other agents at the same
time may take actions that increase congestion and late-
ness, causing the agent to wrongly believe that its action
was poor. In contrast agents using the difference evaluation
have more influence over the value of their own evaluation,
therefore when an agent takes a good action, the value of
this action is more likely to be reflected in its evaluation.

-1000

-900

-800

-700

-600

-500

-400

-300

-200

 0 50 100 150 200 250 300 350 400 450 500

M
ax

im
um

 S
ys

te
m

 E
va

lu
at

io
n

A
ch

ie
ve

d

Number of Trials

Difference Evaluation
System Evaluation

System Evaluation - One Agent

Figure 6: Performance on two congestion problem,
with 300 Aircraft, 50 Fixes and α = .5.

To verify that the performance improvement of our meth-
ods is maintained when there is a different number of agents,
we perform additional experiments where we increased the
number of agents used by the agent based solutions. We
did this by creating a domain with 50 fixes instead of 20,
thereby increasing the number of agents to 50 in the agent
based solutions. The results displayed in Figure 6 show that
indeed the relative performances of the methods are compa-
rable when the number of agents is increased to 50. Figure 7
shows scaling results and demonstrates that the conclusions
hold over a wide range of number of agents.

5.2 Varying Agents per Fix
In the previous experiments using the system utility, ei-

ther one agent is assigned per fix or a single agent is assigned
to all of the fixes. To test the performance of the multi-agent
system between these extremes, we conduct an experiment
where the number fixes assigned to a particular agent varies.

1893

-800

-700

-600

-500

-400

-300

-200

 10 15 20 25 30 35 40 45 50

M
ax

im
um

 S
ys

te
m

 E
va

lu
at

io
n

A
ch

ie
ve

d

Number of Fixes

Difference Evaluation
System Evaluation

System Evaluation - One Agent

Figure 7: Impact of number of agents on system per-
formance. Two congestion problem, with 300 Air-
craft and α = .5. Except for “One Agent” solution,
there is one agent per fix.

The results for a twenty fix problem are shown in Figure 8.
It is clear from the figure that there is nothing special about
the two extremes. In this domain the results show that it is
generally better to have more agents.

-600

-550

-500

-450

-400

-350

-300

 2 4 6 8 10 12 14 16 18 20

M
ax

im
um

 S
ys

te
m

 E
va

lu
at

io
n

A
ch

ie
ve

d

Number of Fixes per Agent

System Evaluation (varying number of agents)

Figure 8: Impact of number of fixes assigned to each
agent on system performance. Two congestion prob-
lem, with 300 Aircraft, α = .5. and 20 fixes.

5.3 Penalty Tradeoffs
Recall that the system evaluation function used in the

experiments is G(z) = −((1−α)D(z)+αC(z)), which com-
prises of penalties for both congestion and lateness. This
evaluation function forces the agents to tradeoff these rela-
tive penalties depending on the value of α. With high α the
optimization focuses on reducing congestion, while with low
α the system focuses on reducing lateness.

Next, we perform a series of experiments where α ranges
from 0.0 to 1.0 . Figure 9 shows the results which lead to
three interesting observations:

• First, there is a zero congestion penalty solution. This
solution has agents enforce large MIT values to block

all air traffic, which appears viable when the system
evaluation does not account for delays. All algorithms
find this solution, though it is of little interest in prac-
tice due to the large delays it would cause.

• Second, if the two penalties were independent, an op-
timal solution would be a line from the two end points.
Therefore, unless D is far from being optimal, the two
penalties are not independent. Note that for α = 0.5
the difference between D and this hypothetical line is
as large as it is anywhere else (statistically equivalent
to α = 0.75), making α = 0.5 a good choice for testing
the algorithms in a difficult setting.

• Evolution using the system evaluation is particularly
poor at handling multiple objectives. For both the
single-agent and multi-agent solution, the performance
degrades significantly for mid-ranges of α.

-600

-500

-400

-300

-200

-100

 0

 0 0.2 0.4 0.6 0.8 1

M
ax

im
um

 S
ys

te
m

 E
va

lu
at

io
n

A
ch

ie
ve

d

Alpha

Difference Evaluation
System Evaluation

System Evaluation - One Agent

Figure 9: Tradeoff between objectives on two con-
gestion problem, with 300 Aircraft and 20 Fixes.
Note that evolution with the system evaluation is
particularly bad at handling multiple objectives.

6. DISCUSSION
In this paper we show how evolutionary computation can

be effectively used to solve a difficult air traffic flow prob-
lem. The key to our success in this domain is in breaking
up the full problem into local problems and addressing each
local problem with an agent that evolves its own population
using its own evaluation function. The distributed agent ap-
proach where each agent uses the system evaluation achieves
a 40% increase in performance over a single evolutionary
algorithm. Furthermore, we show that an additional 30%
increase in performance is obtained by having the agents
evolve using the “difference evaluation” function. Agents us-
ing the difference evaluation are more successful, because
the value of their evaluation is more sensitive to their own
actions. At the same time the difference evaluation is still
fully “factored”, so that while each agent evolves a solution
that maximizes its own difference evaluation, as a whole the
system is producing a solution that maximizes the system
evaluation.

1894

While the difference evaluation is highly useful, we have
not directly addressed how to compute it, or the computa-
tion costs associated with computing it. In many cases it
is computable using knowledge of the functional form of the
system evaluation, without the need to recompute the entire
system evaluation. For example, in the FACET air traffic
simulator, there are mechanisms to update a change to a
flight plan once a simulation has been run, that produce a
result faster than running the entire simulation from scratch.
In other cases a close approximation to the difference eval-
uation can be computed with very little computational cost
over the initial evaluation of the system utility. In fact, it
has previously been shown that after the system evaluation
is computed, the difference evaluation can be quickly esti-
mated using no additional runs of the FACET simulator,
with only a small loss of system performance [19].

This paper has shown how a multi-agent system can evolve
an effective solution to a specific air traffic flow configu-
ration involving the metering of aircraft through fix loca-
tions. While this specific application can be used in many
situations to relieve congestion, the multi-agent paradigm
is highly flexible and can be used in numerous other air
traffic flow configurations. For instance we are currently
investigating how agents can evolve policies that regulate
flow through sectors instead of fixes, which provides a more
direct, one-to-one interface between sector controllers and
agents. In addition agents can evolve in heterogeneous envi-
ronments where different agents may have different controls.
In such environments, air traffic operators could choose to
“turn on” the agents they are the most comfortable with for
local conditions within the airspace. The long term objec-
tive of this work is to both identify the best agent insertion
points within the next generation air traffic systems and to
use good evolutionary computation methods to provide so-
lutions/recommendation to improve air traffic flow.

Acknowledgments: The authors thank Banavar Srid-
har for his invaluable help in describing both current air
traffic flow management and NGATS, and Shon Grabbe for
his detailed tutorials on FACET.

7. REFERENCES
[1] A. Agogino and K. Tumer. Efficient evaluation

functions for multi-rover systems. In The Genetic and
Evolutionary Computation Conference, pages 1–12,
Seatle, WA, June 2004.

[2] E. J. Anderson and M. C. Ferris. Genetic algorithms
for combinatorial optimization: The assembly line
balancing problem. OSRA Journal on Computing,
6:161–173, 1994.

[3] K. D. Bilimoria, B. Sridhar, G. B. Chatterji, K. S.
Shethand, and S. R. Grabbe. Facet: Future atm
concepts evaluation tool. Air Traffic Control
Quarterly, 9(1), 2001.

[4] Karl D. Bilimoria. A geometric optimization approach
to aircraft conflict resolution. In AIAA Guidance,
Navigation, and Control Conference and Exhibit,
Denver, CO, 2000.

[5] Martin S. Eby and Wallace E. Kelly III. Free flight
separation assurance using distributed algorithms. In
Proceedings of Aerospace Conference, 1999, Aspen,
CO, 1999.

[6] FAA OPSNET data Jan-Dec 2005. US Department of
Transportation website.

[7] D. Floreano and F. Mondada. Automatic creation of
an autonomous agent: Genetic evolution of a
neural-network driven robot. In Proc. of Conf. on
Simulation of Adaptive Behavior, 1994.

[8] F. Gomez and R. Miikkulainen. Active guidance for a
finless rocket through neuroevolution. In Proceedings
of the Genetic and Evolutionary Computation
Conference, Chicago, Illinois, 2003.

[9] S. Grabbe and B. Sridhar. Central east pacific flight
routing. In AIAA Guidance, Navigation, and Control
Conference and Exhibit, Keystone, CO, 2006.

[10] Jared C. Hill, F. Ryan Johnson, James K. Archibald,
Richard L. Frost, and Wynn C. Stirling. A cooperative
multi-agent approach to free flight. In AAMAS ’05:
Proceedings of the fourth international joint conference
on Autonomous agents and multiagent systems, pages
1083–1090, New York, NY, USA, 2005. ACM Press.

[11] P. K. Menon, G. D. Sweriduk, and B. Sridhar.
Optimal strategies for free flight air traffic conflict
resolution. Journal of Guidance, Control, and
Dynamics, 22(2):202–211, 1999.

[12] Daniel Merkle, Martin Middendorf, and Hartmut
Schmeck. Ant colony optimization for
resource-constrained project scheduling. IEEE
Transactions on Evolutionary Computation,
6(4):333–346, 2002.

[13] 2006 NASA Software of the Year Award Nomination.
FACET: Future ATM concepts evaluation tool. Case
no. ARC-14653-1, 2006.

[14] M. Pechoucek, D. Sislak, D. Pavlicek, and M. Uller.
Autonomous agents for air-traffic deconfliction. In
Proceedings of the Fifth International Joint
Conference on Autonomous Agents and Multi-Agent
Systems, Hakodate, Japan, May 2006.

[15] B. Sridhar, G. Chatterji, and S. Grabbe. Benefits of
direct-to in national airspace system. In AIAA
Guidance, Navigation, and Control Conference and
Exhibit, Denver, CO, 2000.

[16] K. Stanley and R. Miikkulainen. Efficient
reinforcement learning through evolving neural
network topologies. In Proceedings of the Genetic and
Evolutionary Computation Conference
(GECCO-2002), San Francisco, CA, 2002.

[17] C. Tomlin, G. Pappas, and S. Sastry. Conflict
resolution for air traffic management. IEEE
Transaction on Automatic Control, 43(4):509–521,
1998.

[18] K. Tumer and A. Agogino. Coordinating multi-rover
systems: Evaluation functions for dynamic and noisy
environments. In The Genetic and Evolutionary
Computation Conference, Washington, DC, June 2005.

[19] K. Tumer and A. Agogino. Distributed agent-based air
traffic flow management. In Proceedings of the Sixth
International Joint Conference on Autonomous Agents
and Multi-Agent Systems, Honolulu, Hawaii, May
2007. to appear.

[20] K. Tumer and D. Wolpert, editors. Collectives and the
Design of Complex Systems. Springer, New York, 2004.

1895

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

