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ABSTRACT
This paper presents an evolutionary algorithm for modeling
the arrival dates of document streams, which is any time-
stamped collection of documents, such as newscasts, e-mails,
scientific journals archives and weblog postings. The goal is
to find a frequency curve that fits the data circumventing
the unavoidable noise. Classical dynamic programming al-
gorithms are limited by memory and efficiency requirements,
which can be a problem when dealing with long streams.
This suggests to explore alternative search methods which
although do not guarantee optimality, are far more effi-
cient. Experiments have shown that the designed evolu-
tionary algorithm is able to reach high quality solutions in
a short time. We have also explored different approaches to
infer whether new arrivals increase or decrease interest in
the topic the document stream is about. In particular, we
present a variant of the evolutionary algorithm, which is able
to very quickly fit a stream extended with new data, by tak-
ing advantage of the fit obtained for the original substream.
These mechanisms can be used for real time detection of
changes in the trend of interest in a topic, an important
application of this kind of models.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods

General Terms
Algorithms

Keywords
Online text streams, evolutionary algorithms, event stream
modelling, buzz detection
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1. INTRODUCTION
The analysis of information flow has become a critical

task for many organizations. Constantly evolving websites,
repositories of news, e-mails, chat logs, and scientific pa-
pers are some clear examples of streams whose interpreta-
tion highly depends on the sequence of occurrence of the
documents that constitute it. All these examples have a
temporal dimension that has to be taken into account when
analyzing their content.

One of the first attempts to model the dynamic compo-
nent of a stream of documents was the Topic Detection and
Tracking (TDT) research project [2, 1, 10], which among
other contributions, attempted to settle the different tasks
that can be distinguished in identifying topics in documents
streams. First of all, a distinction is established between
topic, i.e. a general concept, and event, i.e. an occurrence
of a topic in a particular time. Among the distinguished
tasks are the selection of new events, i.e. to identify the oc-
currence of a document discussing a new event; the tracking
of a detected event, i.e. to identify a collection of docu-
ments about the same event, and the segmentation of the
large streams of documents in substreams related to differ-
ent topics. Different kinds of techniques have been applied
to perform these TDT tasks, which involve both, content
similarity analysis and temporal analysis methods.

More recent papers have focused in identifying time seg-
ments in which the appearance of documents of a particular
topic can be considered relatively stable. The frequency of
occurrences can be very noisy, and this hinders the identifi-
cation of intervals of similar frequency. Different statistical
techniques[8, 3, 7] have been applied to analyze temporal
changes in document streams.

Another approach is to focus on studying the rise and
fall of frequencies to detect trends in streams by identify-
ing changes in the frequencies along given periods of time.
Charikar et al. [4] have proposed an algorithm for finding the
most frequent elements in a stream, which is also adapted
to find elements whose frequencies change the most.

All these papers are reviewed by Kleinberg [9], who also
discusses different approaches to the problem.

In this work we are interested in identifying the trends in
streams of documents in a robust and efficient way. This
is a task of great interest for newsmakers, and the society
at large: when large amounts of data are available, it is
difficult to answer the question What is everybody talking
about? Therefore, our problem has some common ground
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Figure 1: Some possible fitting curves for a stream
of documents.

with one of those tackled in [4], although in this case we focus
on the relative change of frequencies of a single and isolated
topic, not different topics as above. Instead of adopting the
approach of analyzing the amount of change for fixed periods
of time, we model the flow in a segment of time for which
enough data are available, following Kleinberg’s approach
[8].

The model is as follows: let us assume a stream of N
documents arriving along a period of time T , and a set of
S frequencies, ranging between 0 and 1. We have a double
goal: determining the most appropriate frequency for each
interval between one arrival and the next one and grouping
together intervals with “similar” frequencies, i.e. relatively
stable, in order to wash out the noise.

Figure 1 shows different possible fitting curves for the fre-
quencies of a sequence of documents which have arrived at
the instants of time marked in the X axis. If the chosen
probabilistic model does not penalize changes of state, the
optimum curve would be the one which assigns to each in-
terval the most appropriate frequency, which, in general,
amounts to a change of state for each arrival. In this case,
the chosen fit for the arrival marked in the X axis in Figure
1 would be the lowest one. However, we want to assign the
same state to consecutive intervals with similar frequency,
ignoring in this way the changes produced by the random-
ness in the arrivals. This can be done by penalizing the
change of state in different manners.

Kleinberg [8], whose method has inspired this work, has
developed a framework which formalizes these ideas. He
proposes a probabilistic automaton to model the frequency
of appearance of documents in different intervals. The state
of the automaton at a particular time determines the ex-
pected frequency of document occurrences, while transitions
between states are probabilistically modeled [5]. A burst of
documents for a topic can therefore be identified by the pe-
riod in which the automaton has stayed in a high frequency
state. Given a stream of documents related to a particular
topic, the Viterbi dynamic programming algorithm [6], can
be applied to determine the sequence of automaton states
which optimizes the measure defined by the chosen proba-
bilistic model. This algorithm was initially designed to find
the most probable path in a Markov chain which produces
a given sequence of tags, and it is now widely applied to a
large range of problems [11].

The streams of document dates to model can be obtained
from different environments, though in many cases they are

long sequences of documents appearing along unlimited pe-
riods of time, such as chats lots, e-mails and news stories.
Since a dynamic programming algorithm is limited by mem-
ory and efficiency constraints, as the length of the stream
or the number of automaton states grows, it makes sense to
explore alternative search methods where a degree of uncer-
tainty is allowed in order to achieve tractability. We have
designed an evolutionary algorithm to perform the search
for the optimal sequence of states according to the selected
model. The approximate solutions provided by evolution-
ary algorithms (EAs) are very appropriate for the problem
since the probabilistic model used to penalize the state tran-
sitions and deal with noisy events, is just an approximation
itself, which can be taken in different ways leading to differ-
ent results. What is interesting for most applications, such
as the detection of trends in streams of documents, is the
detection of significant changes of state, i.e. the detection of
clear changes in the average intensity of document arrivals,
and not obtaining a very precise optimum numerical result
for the cost function. Because of these reasons, this work in-
vestigates the application of evolutionary algorithms to the
problem.

Besides using an alternative algorithm for fitting frequen-
cies, in this paper we have also studied improvements of the
EA to quickly obtain a fit for an extension of a previously
fitted stream. The idea is to use the previous fitting curve
as a seed for the EA which searches the fit of the extended
stream.

The rest of the paper proceeds as follows: section 2 de-
scribes the model proposed by Kleinberg, which has inspired
this work, and the variant we propose here; section 3 is de-
voted to describe an evolutionary algorithm used to find
the optimal fit of frequency assignments; section 4 presents
experiments to find the best evolutionary algorithm param-
eters, section 5 describes methods for dynamic detection of
changes in the document stream trends, and section 6 draws
the main conclusions from this work, and discusses future
lines of research.

2. THE MODEL FOR THE PROBLEM
In order to model the arrival of documents in a stream

we are going to use a finite state automaton (FSA) as in
Kleinberg’s approach [8], inspired in turn in models for net-
work traffic in queuing theory [5] and on Hidden Markov
Models [11]. According to this approach, a source of traffic
emits documents at a rate which depends on the state of
the FSA at a given point in time. A traffic burst begins
with a transition from a state of lower rate of emission to
one of higher rate. Kleinberg chooses an exponential den-
sity function f(x) = αe−αx, α > 0 to model the probability
density of waiting times between arrivals. In the simplest
case, we can distinguish between only two different states,
with high and low frequency respectively. In state q0 the
automaton emits documents at a low rate, which gives rise
to a probability density for the intervals f0(x) = α0e

−α0x,
while state q1 has a higher emission rate, which gives rise to
a probability density for the gaps given by f1(x) = α1e

−α1x,
with α1 > α0. Now the question is how to model the proba-
bility p with which the automaton changes its state between
the emission of two consecutive documents. It is assumed
that p is independent of previous emissions and state transi-
tions. Assuming this probability distribution, we can com-
pute the probability of a sequence q = {q1, · · · , qn} of state
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transitions conditioned to the sequence x = {x1, · · · , xn} of
gaps observed between the n + 1 documents arrived in the
stream. The state sequence which maximizes this proba-
bility P (q|x) is the one which minimizes the cost function
c(q|x) = −lnP (q|x). Applying this condition, Kleinberg ob-
tains the formula

c(q|x) = b ln (
1 − p

p
) +

nX
t=1

−ln fqt(xt) (1)

where b is the number of state transitions done to emit the
sequence, i.e. the number of times in which qt �= qt+1, and
fqt (x) = αqe

−αqx. In formula (1), we can observe that the
fewer state transitions, the smaller the first term, while the
better the state sequence fits the observed sequence of gaps
x, the smaller the second term. Therefore, it is expected that
the optimum sequence of states fits well the gap sequence
with as few changes in the size of the gaps as possible, de-
pending this inertia on the parameter b.

Afterwards, Kleinberg extends this simple two-state model
to one of infinite states, providing a different one for each
possible intensity of emission. Kleinberg proposes an au-
tomaton with an initial state q0 whose corresponding den-
sity function α0e

−α0x is assigned an emission rate α0 = n/T ,
where n is the number of gaps between documents emissions
and T is the total length of the considered period of time;
i.e., α0 corresponds to a perfectly uniform event emission.
For the remaining states q > 0, the assigned emission rate
is αq = α0s

q, where s > 1 is a scaling parameter, i.e. the
smaller the gap, the greater the intensity. Then, by anal-
ogy with the two-state model, the cost function which the
selected sequence of states must minimize, is

c(q|x) =

n−1X
t=0

τ (qt, qt+1) +

nX
t=1

−ln fqt (xt) (2)

where τ (q, q′) represents the cost of a state transition from
the state q at a given time t to the state q′ at time t + 1.
Kleinberg, which considers that the selection of τ (q, q′) is
very flexible, chooses τ (q, q′) in such a way that the cost of
changing from a lower intensity state to a higher intensity
one is proportional to the number of involved states, while
there is no cost for changing for higher to lower intensity
states. Specifically, the cost associated to change from state
q to q′, where q > q′, is defined as (q′ − q)γlnn, γ being
a parameter of the model. A∗

s,γ denotes the automaton of
infinite states with parameters s and γ. The parameter s
controls the scale for the rate values of the states, while γ,
which Kleinberg sets to 1 in his experiments, controls the
resistance to changing state.

Kleinberg shows that computing an optimal state sequence
in an automata A∗

s,γ with infinite states is equivalent to

compute q in one of its finite restrictions Ak
s,γ , obtained

by deleting from the automaton all states but the first k of
them. This result allows establishing algorithms to compute
the sequence of states for the minimum cost. For this pur-
pose, Kleinberg adopts the standard dynamic programming
algorithm used for hidden Markov Models.

However, this penalty function is not the only possible
one. We have studied other penalization functions and con-
cluded that the following measure:j

(q′ − q)γ/lnE if q′ > q
0, if q ≤ q′ (3)

in which E is the total number of automaton states, avoids
the dependency with the number of states and performs bet-
ter than the one proposed by Kleinberg. Accordingly, is the
one used in the experiments of this work.

3. THE EVOLUTIONARY ALGORITHM
Individuals represent sequences of state transitions in the

automaton. The fitness of individuals is the cost function
associated to the sequence of state transitions, and depends
on the chosen probabilistic model.

3.1 Individual representation
Let E the number of states chosen for the automaton.

Let us assume a stream of n + 1 documents arriving along
a period of time T . Then, the individuals of our evolution-
ary algorithm could be represented as the list of automaton
states corresponding to each arrival of a document. Accord-
ingly, an individual would be a list of n genes gi, where
gi ∈ {0, · · · , E} is the state q in which the automaton is
after the arrival of document i.

qt1 qt2 · · · qtn

However, the arrival of a new document does not produce a
state transition in many cases. Therefore, the sequence of
transitions can be represented in a more compact manner.
Thus, an individual is a variable length list, in which each
position, or “gene”, represents the arrival of a subsequence
of documents which do not lead to a change of state. Each
gene is composed of an automaton state and of an identifier
of the last document in the subsequence. Therefore, the in-
dividuals of our evolutionary algorithm could be represented
as the list of state transitions in the automaton caused by
the arrival of the documents.

g1 g2 · · · gf

qt1 , tk1 qtk1+1, tk2 · · · qtf , tn

3.2 The Fitness Function
For the fitness function we take, quite naturally, the cost

function which defines the chosen statistical model. Thus
the goal of our evolutionary algorithm is to find the sequence
of state transitions q = (qi1 , · · · , qin ) which minimizes the
function

c(q|x) =
n−1X
t=0

τ (qt, qt+1) +
nX

t=1

−ln αqte
−αqt xt ,

with the penalty cost τ (q, q′) and the state parameter, αq , of
the chosen statistical model. In particular, τ (q, q′) is given
by equation 3. In order to compute this function, the im-
plicit automaton underlying the model must be completely
defined, i.e. we have to assign values to each αq . We as-
sume that the number of automaton states has previously
been fixed to E. Following Kleinberg’s approach, we es-
tablish a uniform state q = 0, with a document arrival rate
α0 = n/T , which corresponds to uniform document arrivals.
For the remaining states, q > 0, the arrival rate is αq = α0s

q,
where s > 1 is a scaling parameter, i.e. the arrival intensity
increases geometrically with q.

If we knew the value for the rate αq of a particular state,
we could obtain the value for s from:

αq =
n

T
sq.
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By assigning to αE , the maximum arrival rate in the au-
tomaton, a particular value, such as 1, we obtain a value for
s:

s = exp{(ln αE − ln n + ln T )/E}

3.3 Initial Population
Individuals of the initial population represent sequences of

state transitions randomly generated. The simplest way of
creating one such sequence is to choose a few documents at
random and use them to split the whole document stream
into intervals, each of which is assigned a random state.
However, some preliminary experiments we have performed
have shown that such a simple strategy gives rise to a search
space that is too large for the algorithm to be efficient. Ac-
cordingly, we choose for a state transition only those docu-
ments for which the gaps with the previous document and
with the following one are sufficiently different (the size of
one at least 50 % longer than the other). The interval before
the first transition is assigned a random state, and this state
is increased or decreased in successive intervals according to
whether the gaps on the left and right of the partition points
increase or decrease in length, respectively. The size of this
change is randomly chosen.

3.4 Crossover Operator
We have implemented the classic one point crossover, which

creates two offspring by combining two individuals in such
a way that the first part of one parent up to a crossover
point is combined with the second part of the other parent
and vice versa. Afterwards, the best offspring substitutes
the worst parent. This is a steady state, elitist strategy.

The steps to apply this operator are the following:

• In order to select the crossover point, we randomly se-
lect one of the dates of document arrival in the stream.
Then, we search in both parents the gene which con-
tains this document.

• Then, the genes on the right-hand side of the selected
gene in both parents are exchanged.

• For the gene containing the crossover point, we must
decide if the substream of documents —which, in gen-
eral, is different in both parents— is going to be joined
or split. Experiments have shown that taking this de-
cision at random produces bad results. Accordingly, if
the document arrival gaps to the left and to the right
of the crossover point are comparable (they differ less
then 50%), the substream is assigned a single gene
whose state is randomly selected from one of the par-
ents. Otherwise, the substream is split at the crossover
point in two genes, each taking the state from one par-
ent.

3.5 Mutation Operator
The mutation operator is applied to every individual of

the population with a probability given by the mutation
rate. Different variants of mutation have been implemented,
selecting at random the one to apply in each case:

• One of these mutation operators amounts to choosing a
gene at random and randomly increment or decrement
its state by one unit.
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Figure 2: Artificial streams generated to evaluate
the EA.

• Other mutation operator joins two consecutive genes
to produce a single one. The state of the new gene is
randomly taken from one of the original genes.

• The last mutation operator splits a gene in two; each
one is assigned a different state: one of them is given
the state of the original gene and the other one is given
the previous state plus or minus one (plus if the gap
on the left of the partition point is longer than the one
on the right, and minus otherwise). This operator is
only applied if the gaps in both sides of the partition
are different.

4. EVOLUTIONARY ALGORITHM
PARAMETERS

We have performed experiments to investigate the range
of values for the EA parameters which provides best results.
We have used the artificial streams (a), (b) and (c) depicted
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Figure 3: Number of generations required to reach
convergence (as defined in the text) with different
rates of crossover and mutation. Results correspond
to the streams in Figure 2 (a, b and c).

in Figure 2 to study the best parameter settings for the EA.
They are streams for which we know the emission frequen-
cies that generated it. The first one (a) is characterized by
ascending steps. Its length is 220000 dates of document ar-
rivals. Stream (b) presents both, ascending and descending
steps and has a length of 129000 dates. Stream (c), also
presents both kinds of steps, but in this case, the length
of the steps is very different. Figures 3(a) and 3(b) show
the number of iterations required for the EA to reach con-
vergence for the streams (a), (b) and (c) of Figure 2, with
different rates of application of crossover and mutation, re-
spectively. Convergence is achieved if the difference between
the average fitness value of successive generations lies be-
low a threshold for a number of generations. We can ob-
serve that intermediate values of these parameters, such as
a crossover rate of 40 % and a mutation rate of %10, are
enough to quickly reach convergence, which makes the EA
perform efficiently.

Figure 4(a) presents the number of iterations required to
reach the optimum value for the stream depicted in Figure
2 using different population sizes. We can observe that a
population size of 200 individuals is enough. Larger sizes,
although are also valid, increase the execution time. Figure
4(b) shows the value of the cost function as the number of
iterations increases. This chart shows that convergence can
be reached very quickly.

Tables 1 and 2 show the values obtained for the cost func-
tion and the execution time when using a dynamic pro-
gramming algorithm and the EA (best result of five runs,
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Figure 4: Number of generations required to reach
convergence with different population sizes (a) and
evolution of the cost function with the number of
generation (b). Results correspond to the streams
in Figure 2 (a, b and c).

average and standard deviation). It can be observed that
the EA always yields the shortest running time. In some
cases the value obtained for the cost function with both al-
gorithms and the number of states in the automaton is the
same. There are other cases in which the value provided
by Viterbi is slightly better. However, in all these cases the
fitting curve obtained with both algorithms is the same and
the only difference is the absolute state number assigned to
different steps; the relative change of state, and therefore of
frequency, is maintained.

5. DYNAMIC DETECTION OF CHANGES
OF INTEREST IN DOCUMENT STREAMS

In this section, we show how to apply the EA to dynam-
ically model the data streams as new data arrive. Let us

State n. Viterbi
Ex. time Cost

15 2319.36 277402
20 3117.28 277306
25 3835.37 277260

Table 1: Execution time in seconds and value of the
cost function for the stream of Figure 2(b) when
applying the Viterbi algorithm (the classic dynamic
programming one).
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State n. Evo. Alg
Ex. time Cost (Av. Cost, Std. dev.)

15 1678.61 277712 (279385.6, 980.11)
20 2182.12 277528 (278980.4, 1114.91)
25 2033.81 277270 (279472.6, 1116.03)

Table 2: Execution time in seconds and value of the
cost function for the stream of Figure 2(b) when ap-
plying the Evolutionary algorithms to find the op-
timal sequence of states in automata with different
number of states. The EA has been run with a pop-
ulation size of 200 individuals, a maximum number
of 200 iterations, a crossover rate of 40% and a mu-
tation rate of 10%. The values presented for are the
execution time and the cost (best of the five run-
nings), with the average and the standard deviation
appearing in brackets.

assume the fit for a stream has been found, new documents
arrive, and we want to detect possible changes in the trends
of the corresponding topic (or the document stream, in gen-
eral). Clearly, the most accurate way of doing this is to
apply again the algorithm for finding the best fit for the ex-
tended stream, but this solution is costly in terms of time,
and obviously not suitable for real-time applications on the
web, which is its major field of application. That is why
we have investigated ways to predict the trend of the next
arrival, without fitting the whole stream until there is time
to do it.

5.1 Approximation to predict the state of a new
document

Previous substream A. T. Old s. New s. Trend
· · · 38 38 39 41 49 49 52 12 0 ↓
· · · 41 49 49 52 68 69 69 3 4 ↑
· · · 88 89 90 90 91 92 95 0 0 →

Table 3: Results of applying a local approximation
to detect changes in the trend of a stream. A.T.
stands for arrival time, Old s. for old state and New
s. for new state. The first column indicates the
arrival times of the previous documents.

If we need to approximate a new arrival very quickly, we
can perform an approximation based on the idea that the
current trend of the stream is maintained. This can be done
by searching the minimum cost for the new gap x according
to the last state of the previous fit. Thus, if the fit obtained
for the previous stream finished at state qi, we look for the
state qj which minimizes the cost

arg minq′P (q′|q, x) = arg minq′(τ (q, q′) + ln αq′e
−αq′x),

equivalent to a single step of equation 2.
We have chosen one real world stream in order to check if

this “local” approximation is meaningful, the one tracking
the term gmail. It has been obtained from the Blogalia,
weblog hosting site1, by doing a database search on the word
gmail. We have used several partitions of this document
stream to perform the experiments. At each partition point
we assume that we have received the documents preceding

1http://www.blogalia.com
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Figure 5: Fitting curves obtained with the EA and
the local approximation for the stream of documents
called gmail. The results of the local approximation
start at the date whose integer representation is 76.

the partition date and we have found the fitting curve for
them. Then, the remaining documents arrive and we want
to quickly fit them.

Table 3 shows the results on some of these partitions. This
mechanism, which allows us to immediately detect changes
in the trends of a stream, has properly worked in all these
cases, yielding the state that had previously been found by
the fitting algorithms. The problem arises when this ap-

date GA approx.
0(2004-04-02) 7(0.694669)
· · · · · ·
69(2004-06-10) 12(0.766507)
70(2004-06-11) 0(0.605263)
71(2004-06-12) 0(0.556962)
74(2004-06-15) 14(0.797281)
75(2004-06-16) 24(0.970706)
76(2004-06-17) 19(0.87973)

77(2004-06-18) 19(0.87973) 19(0.87973)
78(2004-06-19) 0(0.605263) 19(0.87973)
79(2004-06-20) 0(0.605263) 19(0.87973)
80(2004-06-21) 0(0.605263) 19(0.87973)
81(2004-06-22) 0(0.605263) 19(0.87973)
82(2004-06-23) 0(0.605263) 19(0.87973)

Table 4: Results of applying a local approximation
repeatedly, starting at the date whose integer repre-
sentation is 76. The first column corresponds to the
integer representation of the date, the second one
to the states assigned by the EA that fits the whole
stream (the corresponding frequency in brackets),
and the third one to the state assigned applying the
approximation.

proximation is applied to subsequent dates, a is shown in
Table 4, which shows some states corresponding to the fit-
ting curve obtained by the EA, as well as those resulting the
approximation proposed herein starting at the date 2004-06-
15, which corresponds to the integer representation of 75.
We can see that only the first point has been correctly ap-
proximated. Moreover, Figure 5, which presents the whole
fit for the stream gmail, shows that the divergence of the
results of both methods increases with time. These results
reveal the need of finding a solution that fits, in as little
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time as possible, new arrivals. In the next section we tackle
the problem of fitting the extension of a stream with an EA
which takes advantage of the previous fit.

5.2 A Fast Genetic Algorithm to model new
states

Subst. len. New Subs. len. T. w/out seed T. w/ seed
219900 100

3895.28
141.45 (79.09)

219000 1000 144.75 (81.96)
210000 10000 166.73 (79.32)

Table 5: Time (seconds) spent without seed and us-
ing the previous fit as a seed for some substream
taken from the (artificially generated) stream of Fig-
ure 2(c). Results correspond to the best of five runs.
The first column indicates the length of the pre-
viously fitted substream, and the second one the
length of the stream of documents which has to
be added to the previous one. The third column
presents the time needed to fit the whole stream,
while the last one presents the time spent to reach
convergence by using the previous fit as seed, with
a population size of 200 individuals, a crossover rate
of 40 % and a mutation rate of 10%. The result
for a population size of 100 individuals appears in
parentheses.

In order to quickly obtain the fit for an extension of a pre-
viously fitted stream, we can use the previous fitting curve
as a seed for the EA which searches the fit of the extended
stream. To implement this mechanism, we have modified
the way in which the EA creates the initial population. A
seed individual is created, and extended with a set of genes
corresponding to the new substream of document dates. The
initial population is created by applying the mutation oper-
ator to this seed individual, but in such a way that the last
gene has a higher probability to undergo mutation. Once
the initial population has been created, the EA proceeds as
explained in section 3. Experiments have shown that this
mechanism can save a lot of execution time. Table 5 shows
the time required to fit the stream of Figure 2(c) if a part
of it, whose length appears in the first column, has already
been fitted. We can observe that the time required is very
small.

In order to further evaluate this approach we have tested it
to fit a sequence from the real world formed by the comments
sent to all blogs hosted in Blogalia (http://blogalia.com) dur-
ing the period January 2002-January 2006. Figure 6 shows
the fitting curves obtained by applying the EA to the whole
sequence (Figure 6(a)) and using as seed the fitting curve
of the subsequence which lacks the last 1000 dates (Figure
6(b)). We can see that the curves are very similar, showing
the same intervals of higher interest in the topic. Further-
more, we can observe that the area corresponding to the last
1000 dates is cleaner in the fit obtained from the seed. This
is probably because in this case, due to the way in which the
individuals are created, the search is centered in the area of
the new dates, providing more precise results for it.

Finally, since we are interested in obtaining solutions in
as little a time as possible, several experiments have been
made varying the population size with the sight on striking a
balance between model accuracy (high fitness) and running
time. Figure 7 shows the result of this set of experiments; it

Subst. Len. New Subs. len. T. w/out seed T. w/ seed
3032 100

5048.49

54.6
2632 500 92.247
2132 1000 294.97
1132 2000 570.41

Table 6: Time (seconds) spent fitting the whole
stream using an evolutionary algorithm (w/o seed
column ) and using the previous fit as a seed for
some substream taken from the time sequence of
comments including the word ‘blog’ during the Jan-
uary 2002-January 2006 period. Results correspond
to the best of five runs. The first column indicates
the length of the previously fitted substream, and
the second one the length of the stream of docu-
ments which has to be added to the previous one.
The third column presents the time needed to fit the
whole stream (with a population size of 1000 indi-
vidual, 10000 iterations, crossover rate of 40%, and
mutation rate of 10%), while the last one presents
the time spent to reach convergence by using the
previous fit as seed, with a population size of 1000
individuals, a number of iterations equal to the size
of the new substream, a crossover rate of 40 % and
a mutation rate of 10%.

plots the evolution of the fitness with the generations for dif-
ferent population sizes. We can see that even for small pop-
ulations of 500 individuals, the evolution is fast; no further
achievement is obtained for populations bigger than that;
thus, we can conclude that this population size is more than
enough for models of the size we are dealing with in this
paper.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented the design of a system

devoted to the dynamic detection of changes on the trends
of the topics of a stream of documents, such as newscasts,
e-mails, IRC conversations, scientific journals or weblogs. It
is based on modeling the assignment of frequencies to inter-
vals of document arrivals and obtaining an optimal fit to the
data. We have designed an evolutionary algorithm to im-
plement the model, which allows us to deal with very large
sequences of documents in a reasonable time, obtaining fit-
ting curves with a similar shape to those provided by classic
dynamic algorithms.

We have also designed a version of the evolutionary algo-
rithm which dramatically reduces the time required to find
the optimal fit to a stream which is an extension of a pre-
viously fitted substream. This version of the evolutionary
algorithm uses the previous fit as a seed to generate the ini-
tial population, which can quickly converge if most of the
stream has been previously fitted. In this way, our system
can be applied to dynamically model the document stream,
and thus detect changes on the trends of the correspond-
ing topic in real time. Besides, the fitting curves produced
by the system for a stream of documents can also be useful
for other applications: the fit obtained for streams corre-
sponding to different topics can help to detect correlations
between these topics, to study how a topic affects others,
etc.

For the future we plan to study correlations among doc-
ument streams, to automatically detect the occurrence of
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Figure 6: Fits obtained for the sequence of blog com-
ments including the word blog. In Figure (a) (top)
the EA has been used to fit the whole sequence, with
a population size of 1000 individuals, 10000 genera-
tions, a crossover rate of 40% and a mutation rate
of 10%. Figure (b) shows the results when the EA
is applied to a part of the sequence missing the last
1000 dates (corresponding to the third row of ta-
ble 6), and the result of this fit is used as seed for
another EA which produces the fit of the whole se-
quence. In this case the algorithm has been run with
a population size of 1000 individuals, 1000 genera-
tions, a crossover rate of 40% and a mutation rate
of 10%.

new topics composed of multi-word concepts. This can also
be helped by other techniques, as well as optimization for
real-time operation, including parallelization of the algo-
rithms. We will also perform experiments with more docu-
ment streams, in order to find out which parameters are the
most adequate for each situation, and whether the algorithm
scales and how for larger document streams.
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