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ABSTRACT
This work presents a novel approach to filter synthesis on
a field programmable analog array (FPAA) architecture us-
ing a genetic algorithm (GA). First, a Matlab model of the
FPAA is created and verified for compliance with transistor-
level simulations of the FPAA. Using this model, different
filter structures are built using an active-RC approach and
evaluated. Secondly, a robust genetic algorithm is imple-
mented in Matlab, which allows synthesis of analog filters
on the given structure. Optimal parameters and operators
of the genetic algorithm are identified by gradual adapta-
tion and performance evaluation, and the general feasibility
is shown. Finally, the GA is used to overcome quantization-
limitations of the FPAA structure and find configurations
of filters, which would not have been achievable with tradi-
tional synthesis methods.

The system is not only a platform for theoretical inves-
tigation of filter structures on the given chip structure but
also provides a framework for evolution and instantiation of
filters on actual chip hardware.

Categories and Subject Descriptors
I.6.3 [Simulation and Modeling]: Applications;
I.2.8 [Artificial Intelligence]: Heuristic Methods;
J.2 [Computer Applications]: Electronics.

General Terms
Algorithms, Design.

Keywords
computer aided design, evolvable hardware, genetic algo-
rithm, hardware realization, microelectronics, synthesis.

1. INTRODUCTION
Full-custom analog design of integrated circuits is time-

consuming and their verification expensive. Many attempts
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have been made to apply rapid-prototyping techniques known
from the digital domain to analog designs. Several field pro-
grammable analog arrays (FPAAs) have been developed,
which differ hugely in complexities and capabilities. Al-
though FPAAs are not comparable to their digital coun-
terparts (FPGAs) with respect to flexibility, development
tools, usability, or market share, there are some commer-
cial products available for specialized applications as well as
ongoing research at universities.

The goal of the presented work is to develop an FPAA,
which is suitable for reconfigurable implementation of ana-
log continuous-time (CT) high-frequency filters on an in-
tegrated circuit. This would enable designers to immedi-
ately verify the structure and coefficient selection of a fil-
ter in hardware and provide a working prototype. When
being used as a verification tool for system-level designers,
only a prototype would be implemented on the FPAA and
deliver the proof-of-concept. The knowledge gained would
then be used to accomplish an integrated design for mass-
production. Moreover, the FPAA structure could be used
as reconfigurable hardware platform in itself, to achieve a
filter which is adaptable in the field to varying requirements
or environmental conditions.

When comparing the proposed architecture with field pro-
grammable analog circuits being reported in literature, the
meanings of field programmability and analog array have to
be classified first. The simplest form of field programmabil-
ity in filters are adjustable filters with fixed structures and
programmable coefficients (e.g. [6]). More ambitious designs
extend the meaning of programmability to the reconfigura-
tion of circuits beyond the presetting of a structure. Thus,
field programmability in the context of this paper is to be
understood in terms of both reconfigurable and adjustable.

Concerning the number and granularity of analog ele-
ments on an FPAA, there are structures with few but large
configurable analog blocks (CABs) [3], up to designs with
hundreds of very small elements [7, 5]. The CABs have to
be designed in a way that they provide both all the basic
analog features needed, and allow reasonable partitioning for
the desired application. The network of the analog blocks
needs to be so generic that designers are enabled to invent
new structures and instantiate them on an analog fabric.
This work aims for a large number of analog elements so
that both the coefficients and the structure of the analog
part are freely reconfigurable. An architecture has to be
found that features a good compromise between dedicated
features for the implementation of CT filters and the free-
dom to implement new building blocks.
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In the following, we shortly review an analog array struc-
ture with many degrees of freedom, which will provide the
basis for instantiation of arbitrary filter structures. Upon
that, basic methods of filter synthesis are applied to the
FPAA and feasibility of the array is shown. The main part
of this paper describes the use of a genetic algorithm to
achieve mapping of given filter specifications to the FPAA
structure. Because of the specific design and granularity of
the array structure, it is not only possible to use the result
of an evolution for instantiation of that filter in hardware; a
main feature of the structure is that the description of the
filter is close to a human abstraction level. Therefore, results
are likely to be easy to analyze so that working principles
can be understood and included into new designs.

2. FPAA-STRUCTURE
The original FPAA structure as presented in [2] consists

of a two-dimensional array of CABs, which include Gm cells
as active transconductors. The arrangement in a hexago-
nal layout as depicted in figure 1 allows routing of signals
throughout the chip. Series and parallel connection as well
as feedback of any order is indispensable for instantiation of
filters and is thus provided by the structure.

Every CAB has six branches connecting to the respective
neighbor CABs and one for self-feedback. Each branch con-
sists of a tunable transconductor, which is built by parallel
connection of unit Gm cells (differential transconductance
amplifiers). The massive parallel connections of both par-
asitic input capacitances as well as parasitic output capac-
itances at the input nodes of each CAB sum up to capaci-
tances in an order of magnitude such that they are suitable
as integrating capacitances for the filter [4]. Therefore, each
filter stage is made up of the tunable transconductance of
one branch and the capacitance of the center node of the
next CAB [1].

2.1 Building a MATLAB-Model
In order to investigate the whole FPAA on the system

level, it is beneficial to have a model representation assem-
bled from the most basic transfer function blocks. It was
chosen to implement the model in Matlab due to the nu-
merous signal processing and filter toolboxes available.

Figure 1: Hexagonal array topology of FPAA.
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Figure 2: 1st order integrator with different settings
of the tunable transconductor.

Through setting of the Gm cell transconductance, filter
characteristics can be tuned as figure 2 demonstrates for
the case of the simple integrator. The parameter tuned
here is the corner frequency, which depends directly on the
transconductance tuning setting n = [1..6] :

T (s) =
A0

1 + s
ωc

with ωc =
n ·Gm

CL ·A0
and A0 = Gm · rout (1)

As can be seen in figure 2, the transfer function has a
2nd pole at about 300 MHz. This pole is intrinsic to the
Gm cell and stems from its internal realization as differen-
tial amplifier with folded cascode. Ideally the frequency of
this parasitic pole should be high enough that it does not
influence the transfer function of the filters to be realized on
the FPAA. The pole is nevertheless included in the FPAA
model to have a precise representation of the real FPAA and
to be able to determine its influence on the different filter
types examined in the next section.

The building blocks can be broken down to the following
four basic elements: The Gm cell’s transconductance Gm,
its output resistance rout, the aforementioned parasitic pole
at the frequency ω2, and the combined input and output
capacitances of the 7 outgoing and incoming Gm cells that
form the constant load capacitance CL at the center node
of a CAB. Figure 3 shows the realization of a single Gm-C
stage as electrical circuit and transfer function blocks.

Figure 3: Conversion of the basic electrical CAB
elements to transfer function blocks in Matlab.
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Figure 4: Assembly of the FPAA as state-space
model from the basic elements in Matlab.

The parasitic input and output capacitances are not mod-
eled separately, because their exact value has no direct in-
fluence on the realized filter function. Only the value of
the sum of all parasitic capacitances at the center node that
forms CL has an influence on the filter function. It can be
easily calculated from the location of the dominant pole in
the simulation of a single stage Gm lowpass.

The Gm cell properties can be modeled as a transfer func-
tion block with:

TGm(s) = n ·Gm · 1
s

ω2
+ 1

(2)

The output resistance, which lies in parallel to the output
capacitance, cannot be modeled as a separate transfer func-
tion and is accounted for in the CL transfer function.

When connecting multiple cells in parallel, the output
conductances of all Gm cells have to be summed up at the
center node. Therefore, the output resistances of all inward
facing Gm cells have been combined with the resulting load
capacitance CL to a separate block with:

TCL(s) =
1

s ·CL + 1P
rout

(3)

The resulting transfer function is:

T (s) = n ·Gm · 1
s

ω2
+ 1

· 1

s ·CL + n
rout

(4)

The state-space model for a specific FPAA configuration
can then be assembled programmatically in Matlab from
these building blocks (figure 4), by connecting the corre-
sponding transfer function blocks and keeping account of
Gm cell settings and output resistances. The transfer func-
tions are then converted to a single multiple-input/multiple-
output (MIMO) model, from which transfer functions be-
tween arbitrary inputs and outputs can be extracted.

2.2 Verification and Parameter Extraction
In order to verify that the FPAA model built in the pre-

vious section is a valid representation, it was compared with
a transistor-level Spectre simulation of the chip. First, the
model parameters Gm, CL, A0, rout, and ω2 were extracted.
Then, a set of example FPAA filter structures were simu-
lated using both the Matlab model and Spectre, and their
results compared.
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Figure 5: Comparison of the Matlab model with
Spectre simulations (1st order lowpass).

The parameter values were extracted from the 1st order
lowpass simulation (figure 5). Since the two poles of the
transfer function are far enough apart from each other, their
frequency can be approximated by the points of −45 and
−135 degrees phase shift, respectively. Combining the rela-
tions of (1), the equation system has 2 degrees of freedom.
A0 can be extracted from a separate DC simulation. The
last parameter (CL or Gm) was approximated by curve fit-
ting. Final parameter values are summarized in table 1.

Gm A0 rout CL ω2

2.87 mS 62.7 dB 480 kΩ 14.75 pF 293 MHz

Table 1: Parameters of the Gm cell.

A cascaded 4th order bandpass was simulated using dif-
ferent configurations in order to verify the model and the
extracted parameters against a higher order function. As
can be seen in figure 6, the Matlab model fits the transistor-
level simulation well, which proves that it is indeed a valid
representation of the FPAA, and that all significant effects
have been factored in. This allows system-level characteri-
zation of the FPAA using the Matlab model while retaining
the confidence that the results gained by simulation will hold
when applied to the FPAA hardware.
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Figure 6: Comparison of the Matlab model with
Cadence simulation (4th order bandpass).
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The Matlab model is more flexible because - once instan-
tiated for a given configuration - it allows to extract transfer
functions between arbitrary inputs and outputs, in contrast
to parameter sweeps using Cadence, which only yield the
nodes phase and magnitude values. Furthermore, due to the
high complexity of the transistor-level simulation, it takes
a significant amount of time and CPU resources (several
hours) compared to the model assembly in Matlab, which is
almost instantaneous (under 1 second).

3. CLASSICAL FILTER SYNTHESIS
A straightforward technique to implement analog filters

on the FPAA-structure is the replication of passive RLC-
circuits with active elements such as Op-Amps, or in this
case, Gm cells. Filters made from passive circuits are well
understood and a large number of different approaches for
filter design and transformation have been described in lit-
erature. Identifying blocks on the FPAA that correspond to
passive filter elements would therefore make this knowledge
available for filter design.

First of all, 1st and 2nd order building blocks of basic filter
functions can be identified, which can then be cascaded to
achieve higher order functions. In general, all 2nd or higher
order filter functions can be expressed as a product of 1st
and 2nd order functions. The basic elements of the FPAA,
as described in the latter section, are the Gm cell transcon-
ductor and the load capacitance CL. These elements can be
used to build a “library” of simulated passive elements that
can be combined to higher order filters.

The most basic filter element of the FPAA is the Gm-C
integrator, which corresponds directly to a 1st order R-C
lowpass. The corner frequency of the filter is tunable in a
range from 22.6 kHz to 135.6 kHz in steps of 22.6 kHz, with a
gain bandwidth product between 31.0 MHz and 185.3 MHz.
By connecting several of these stages in series, higher order
lowpass filters can be created. The corner frequency and
GBW of these stay the same for any order, while the number
of possible Gm cell combinations increases, and therefore the
minimal step size for tuning of both corner frequency and
GBW decreases with each additional filter stage, leading to
a more fine-grained tunability for higher order filters.
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Figure 7: Magnitude plot of 1st / 2nd order lowpass.

Figure 7 shows the frequency response for selected 1st
and 2nd order configurations, both for the theoretical (ideal)
model, as represented by the transfer function derived above,
and the Matlab model of the FPAA which includes the para-
sitic pole of the Gm cell, thereby providing a more accurate
representation of the real hardware. The influence of this
pole in the model can be seen above unity-gain frequency,
where the steepness of the curve increases. Otherwise, the
ideal model is a good approximation.

It can be shown that a number of different lowpass and
bandpass filters can be synthesized on the FPAA using this
approach. Basic blocks have been identified and their re-
alization on the FPAA proven. A problem that remains
with the current architecture is that the Gm cell pole is
too close to the desired operating frequency, which makes it
more complicated to design higher order filters using classi-
cal analog design methods.

Incorporating the parasitic pole as a separate integrator
into the Gm cell transfer function, as has been done for the
Matlab model of the FPAA, would lead to transfer func-
tions of very high order, and make it cumbersome to find
structures that correspond to classical filter designs, due to
the absence of simple block connections without integrating
behavior. A practical approach to find desired filter config-
urations is to build up filters using the identified building
blocks directly on the FPAA model. Thereby, the resulting
transfer function in which all non-ideal effects are already
contained can be simulated instantly. The designer can then
try to work around the unwanted effects by tuning selected
filter parameters.

A filter design GUI has been programmed in Matlab al-
lowing the user to build up higher order filters step-by-step
using predefined stages and to analyze the resulting trans-
fer function, which is calculated by instantiating the filter on
the Matlab model of the FPAA. The user can then fine-tune
the filters properties by changing selected Gm cell parame-
ters, while being able to constantly monitor the influence of
the changes on the final filter function.

Another approach, namely employing a genetic algorithm
to find suitable filter parameters and topologies for a set of
given filter requirements is presented in the following.

4. GA IMPLEMENTATION IN MATLAB
To apply genetic algorithms to filter synthesis, the Matlab

model of the FPAA introduced in the previous section was
used. It has been shown to be a good representation of
the FPAA, so the results gained here are expected to be
applicable to the final hardware of the FPAA as well.

4.1 Representation of filter
A filter on the FPAA is represented through the setting of

all configuration switches of the chip. Each of the 7 CABs
has 7 branches so that the configuration is stored in a 7 × 7
matrix. Each entry in this matrix is an integer [1 .. 6] for
the transconductance parameter, leading sign for inverting/
non-inverting output, or 0 for switched off. In terms of evo-
lutionary algorithms, this matrix defines the genome of an
individual on the FPAA. Since it is known from simula-
tions in the previous section that the transfer function of a
given configuration as calculated by Matlab matches quite
well with the behavior of the actual circuit, it is sufficient
to analyze how changes in the genome change this transfer
function. This is the basis of a fitness function for a GA.
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cab ∈ [−6.. + 6]

Figure 8: Matrix representation of one individual.

4.2 Generation of first population
At first, a population needs to be created. The first gen-

eration is built from randomly initialized configurations. A
basic approach is to fill the matrix evenly with values from
the definition range. Although this is possible, it is more
advantageous to include some knowledge about the filter to
be implemented into the preparation of the first generation:
Looking at the CAB matrix for hand-made, working filter
configurations, it is unusual that is is completely filled with
active coefficients. Usually, only few CABs are active and
route the signal through the array, whereas most transcon-
ductors are switched off. This is contradictory to an evenly
distributed random configuration and the result of the evo-
lution can be improved, when the first generation consists of
sparsely filled matrices rather than fully populated matrices.

4.3 Definition of goal and fitness
In order to compare a configuration with the desired goal

definition, a fitness function has to be set up, which allows
to rank the individuals within a generation and select the
best for further evolution. The fitness function is one of
the most important parts of the algorithm because it de-
fines which parameters of a configuration are taken into ac-
count for evolution and how they are defined, measured,
and weighted. To evaluate the fitness of a configuration, the
transfer functions from each input to each output of the chip
are calculated and rated. In the following, a list of criteria
for instantiation of filters on the FPAA is given.

Goal points
Points in the frequency vs magnitude plot can be specified,
which the resulting transfer function curve should match as
closely as possible. The mean square error (i.e. the deviation
at each point) of the filter’s curve is added to the fitness
penalty. This allows to provide the general shape of the
filter, while still being able to weight critical regions stronger
by increasing the number of points per frequency in this
region. An exemplary filter description with spline through
the goal points and one individual is depicted in figure 9.

Figure 9: Amplitude plot with goal points.

Frequency windows
Another way of specifying filter requirements is by marking
windows in the frequency vs magnitude plot that the filter
transfer function must be above or below of. In terms of the
GA, this means the total deviation is summed up and added
to the fitness penalty. The lower the overall fitness value for
transfer function matching is, the better is the matching of
the filter to the goal. It is a main part of the fitness func-
tion and sufficient to build a working GA. However, there
are some other characteristics of filters that can be added
in order to achieve more robust and feasible filters on the
FPAA.

Pole-zero placement
Sometimes a filter function can be better expressed in terms
of the placement of its poles and zeroes. This feature allows
to specify the locations of the dominant poles and zeros,
both real and complex-conjugate. As with the goal points,
the fitness penalty in this case is the mean square of the total
deviation of the actual poles and zeroes from the specified
locations.

Filter order
The filter order is an important parameter, because it in-
fluences two major characteristics of the filter: firstly, it is
proportional to the number of active transconductors and
therefore related to the space- and power-consumption. If
the same functionality can be achieved by filters of different
order, the lower order configuration is preferred. Secondly,
the orders of the nominator and denominator of the transfer
function can be read as the number of zeros and poles of a
filter, which are a measure for the number of possible inflec-
tion points of a transfer function. Figure 10 (a) shows how
a function with a high number of poles makes use of sudden
inflections to meet the goal very well at the defined points
but is very jagged in between. In general it is more desirable
to have a filter with smoother shape even if it has a slightly
larger variance to the goal. Smoothness can be forced by a
lower number of poles as depicted in figure 10 (b).

(a) Filter with high order

(b) Filter with low order

Figure 10: Filters of different order.
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Other requirements
Since the genetic algorithm only optimizes for the fitness
value, it must include even the most trivial requirements,
such as that the filter must be stable. This is achieved by
specifying penalty values that get added to the fitness value
for every pole on or to the right of the imaginary axis in the
pole-zero diagram. Although it might be tempting to set
these values as large as possible, one must keep in mind that
the fitness value represents the sum of all these requirements.
Each parameter must be weighed carefully to prevent the
GA from optimizing towards the wrong goal.

4.4 Parameters of the GA
A genetic algorithm is defined by the genetic operators

and techniques used, as well as global parameters like popu-
lation size, crossover and mutation rates. These parameters
and their interactions influence the performance of the ge-
netic algorithm in complex ways, which also depend on the
problem to which the GA is applied. For some parameters,
like the mutation rate, the range of reasonable values can
be estimated. Others, like the crossover and selection oper-
ators, are more problem dependent and therefore have to be
found by experimentation.

To compare the performance of different GA variants ap-
plied to the same goal specification, the fitness of the best
individual in the population plotted versus the generation
number is used. This is a good measure for the GA perfor-
mance, because it allows to compare both the best fitness
reached, as well as the convergence speed. Since the out-
comes of a GA may vary greatly between two runs, each
GA was run for 20 times in a row and the average and me-
dian fitness per generation were compared. To determine
the best set of parameters for the specific problem of find-
ing filters on the FPAA, example goal functions were chosen,
against which each GA was tested. Numerous different pa-
rameter sets were tested against different goal functions and
only a summary of the final result can be presented here.

Table 2 summarizes a parameter set for the GA with a fast
and yet very robust behavior. It uses tournament selection
with tournaments of size 2, a uniform crossover operator and
creeping mutation with maximum mutation distance of 2.

In summary, the genetic algorithm proves to be a good
alternative to classical methods of filter synthesis, especially
since it is, due to its nature, completely unhindered by the
non-ideal properties of the FPAA, like for example the par-
asitic poles. Through the more abstract search-space ap-
proach, instead of designing filter functions using ideal as-
sumptions and trying to compensate for non-idealities after-
wards, the FPAA is viewed as-is, and properties normally
regarded as interference might even contribute positively to
the realization of the desired function. This shall be further
investigated in the following section.

Population size 50
Initialization Random, with 50% zeros
Selection operator Tournament selection with size 2
Crossover operator Uniform crossover
Mutation operator Creeping mutation with max. 2
Crossover rate 70%
Mutation rate 5%

Table 2: Parameters for best performance of GA.

5. SYNTHESIS RESULTS
As mentioned in the introduction, the structure of the

FPAA has deliberately been set up to allow backtracking
of evolved configurations. A current research topic is to
create and investigate previously unknown filter structures
on the FPAA. In the following section some results will be
presented, which outline how the use of a GA as synthe-
sis tool enriches and exceeds the possibilities of traditional
techniques.

Figure 11 shows a goal definition with frequency window
specifications (red), which give a typical description of a
bandpass design-problem. Some transfer functions of con-
figurations found by the GA are plotted in the windows and
although they have different shapes and orders, they all ful-
fill the given specifications within the boundaries. Obvi-
ously, the problem description leaves some room for diverse
solutions and the designer would have to chose by additional
criteria which configuration is the best.

Figure 12 shows a graphical representation of the two in-
dividuals with the best fitness value on the FPAA structure.
Figure 12 (a) depicts the characteristics of a biquad band-
pass configuration with the two gyrators from CABs n1/n4
and n2/n3 being connected in series. This is a configu-
ration, which could have been designed by use of classical
filter synthesis and is a well known standard implementa-
tion. In figure 12 (b), the function has been realized by the
GA using another approach, namely a filter composed of a
lowpass stage n1 and 2 integrators in series (n4 and n3 )
with a distributed feedback network over n2.
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Figure 11: Bandpass goal specifications and results.
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Figure 12: Solutions found for the bandpass goal
specification.
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Figure 13: Intermediate values for bandpass.

As shown by these very different solutions for the same
problem, the genetic algorithm explores the search space in
a way that is not biased towards a specific realization, and
might well be able to find solutions not within the reach of
traditional design methods.

Another interesting field of application is to overcome lim-
itations of parameter quantization by generation of interme-
diate values. As depicted in figures 2, 5, 6, 7, and equation
(2), the quantization of the transconductance parameter of
each branch from n = [1..6] leads to a quantization of the
achievable transfer functions. Once a filter structure is set,
it is very easy to move characteristic poles by sweeping of
parameters but the sweep can only be done in discrete steps.
It might however be desirable to move e.g. the center of a
bandpass to a frequency, which would refer to a non-integer
value of a parameter. It is almost impossible to amend a
structure by hand to resemble such behavior and the ques-
tion arises, whether the regions in the design-space between
integer values are not accessible at all.

In order to investigate this problem, goal functions have
been set up in Matlab, which represent the theoretical filter
properties of intermediate values. The GA has then been
run in order to find configurations that match these transfer
functions. Figure 13 shows transfer-functions of the biquad
bandpass configuration from the previous section with val-
ues 3 and 4 in the stages of the pure biquad structure. The
functions for 3.25, 3.5, and 3.75 have been calculated by
Matlab and given to the GA for evolution. The plots in fig-
ure 13 are results from the GA, which look very similar to a
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Figure 14: Bandpass solutions for 3.25 and 3.75.
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Figure 15: Designspace exploration of one bandpass.

continuous sweep of parameters. However, there are slight
variances from the ideal function shape, which can be seen
where the lines are not fully in parallel. The line for 3.25
even crosses several other lines for higher frequencies, which
is another sign that this is no true parameter sweep.

When examining the best individuals as in figure 14, it can
be seen that the biquad structure of cells n1/n5 and n2/n4
has been preserved as dominating shape of the filter. Only
slight variations in the parameter values and an additional
2nd order lowpass path over n3 lead to the amendments
necessary to resemble the intermediate values 3.25 and 3.75.
This example shows how valuable the enhancement of tradi-
tional synthesis methods by genetic algorithms can be. The
knowledge gained from the implementations found with the
GA can be understood on the system-level and made avail-
able as guidelines and inspiration to designers.

Finally, figure 15 shows how the whole design space can be
made accessible by approximations to intermediate values.
The dotted lines depict integer values n = [1..6] and the
solid lines solutions of the GA, which smoothly fill the voids
of quantization. The combination of a widely reconfigurable
architecture with a robust genetic algorithm is therefore a
powerful and versatile design tool for the synthesis of analog
filters.

6. OUTLOOK
As mentioned before, the Matlab model of the FPAA

structure presented here is derived from a transistor-level
model of a microchip recently fabricated in a 130nm CMOS
technology. When the basic validation and characterization
of the prototypes is finished, the design environment pre-
sented is immediately usable with the real hardware. Config-
uration of the device can be done via USB-interface and fit-
ness evaluation through a test-board and network analyzer.
Evolution on hardware will deliver working prototypes of
filters, which could be used in analog signal processing.

The experiments to come will have to prove that the re-
sults gained from simulation hold for real hardware. Also, it
will be interesting to see whether the GA stays with perfect
system-level building-blocks or makes use of the fabrication
process variations of the individual pieces of hardware. An
investigation of these variations would then lead to either
deliberate facilitation of those properties or amendments to
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the GA such that these individual variations get cancelled
out. It would be possible to run parallel fitness evaluation
on several different chips, in order to average over process
variations.

7. CONCLUSION
A reconfigurable platform well suited for artificial evolu-

tion of continuous-time analog filters has been presented.
It consists of a dedicated hardware in the form of a field
programmable analog array, for which both transistor- and
system-level models exist. A genetic algorithm implemented
in Matlab delivers synthesis on the dedicated hardware struc-
ture from behavioral descriptions of filter transfer functions.

It has been shown that the task of synthesizing higher-
order filters on the FPAA can not feasibly be done by tradi-
tional design techniques. Instead, it can successfully be ac-
complished using a genetic algorithm. The heuristics-based
approach shows a number of very promising properties com-
pared to more traditional methods: It allows for exploration
of the design space unhindered of quantization limitations
and non-idealities of the hardware, and can be used for au-
tomated synthesis of filter structures on the FPAA.

While it is too early to report on new filter structures that
were derived from evolved filters, recent research on this sub-
ject seems very promising. Ongoing work includes testing
of the FPAA prototypes and implementing the complete ge-
netic algorithm in hardware, which will lead to greatly im-
proved performance, and will allow to study how the evolu-
tion copes with intrinsic effects of the underlying hardware.
The structures evolved in this way will also be directly us-
able as working hardware samples.
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