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ABSTRACT
Network topology design problems find application in sev-
eral real life scenarios. However, most designs in the past
either optimize for a single criterion like delay or assume sim-
plistic traffic models like Poisson. Such assumptions make
the solutions inapplicable in the practical world.

In this paper, we formulate and solve a multiobjective net-
work topology design problem for a realistic Internet traffic
model which is assumed to be self similar. We optimize for
the average packet delivery delay and network layout cost
to construct realistic network topologies. We present a mul-
tiobjective evolutionary algorithm (MOEA) to obtain the
diverse near-optimal network topologies. For fair compari-
son, we design a multiobjective deterministic heuristic based
on branch exchange – we call the heuristic Pareto Branch
Exchange (PBE). We empirically show that the MOEA used
performs well for real networks of various sizes, and gener-
ated topologies are quite different with significantly larger
delays for the self similar traffic model.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—Heuristic Methods; G.1.6 [Optimization]:
Stochastic programming; J.6 [Computer-Aided Engineer-
ing]: Computer-Aided Design.

General Terms
Algorithm, Design, Experimentation.

Keywords
Optimization methods, combinatorial optimization, genetic
algorithm, multiobjective optimization, heuristics, Pareto
front, network topology design, self-similar traffic.
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1. INTRODUCTION
Single objective network design problems are well studied

and many heuristics exist for obtaining exact/approximate
solutions in polynomial-time [11, 13]. However, in real-life
applications, network design problems generally require si-
multaneous optimization of multiple objectives, subject to
satisfaction of constraints. Moreover, network traffic in real
life applications use traffic models which are far from the
widely used Poisson model.

For example, consider a topology design problem of the
scale of the Internet. Such a topology design should consider
simultaneous optimization of network cost, average delay,
and number of packets delivered subject to reliability, band-
width and/or flow-constraints. Moreover as shown in [12,
24] , the traffic model considered should be self similar in
nature.

Thus, in this work, we formulate a general bi-criteria bi-
constrained communication network topology design prob-
lem, and solve this real-world application (RWA) using a
general multi-objective evolutionary algorithm. We consider
average network delay and network cost as the two optimiza-
tion objectives subject to satisfaction of reliability and flow
constraints. For delay, we consider self-similar traffic mod-
els [12, 24] and compare the topologies with those obtained
through the Poisson model.

The formulation, analysis and evaluation of the multi-
objective evolutionary algorithm for the realistic network
topology design presents three novel research contributions.

• Through an extensive set of simulations on real world
data, this paper presents an analysis of difference in
networks produced by realistic self-similar model to
Poisson traffic model.

• It presents a general, computationally inexpensive tool
for solving NP-Hard multiobjective optimization prob-
lems. The scheme allows a simple and natural selec-
tion process to maintain diversity and assessing con-
vergence.

• The work also presents a deterministic multiobjective
heuristic (Pareto Branch Exchange heuristic) to solve
the above problem.

The rest of the paper is organized as follows. In Section 2
we present a brief review of the communication topology
design and the issues and challenges in solving multiobjec-
tive real-world applications using EAs. We describe, in Sec-
tion 3, the formalization for communication network topol-
ogy optimization problem. In Section 4 we describe the
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evolutionary algorithm used for the topology design. Sec-
tion 5 presents exhaustive search and Pareto Branch ex-
change heuristic. The empirical results are presented in Sec-
tion 6. Finally, conclusions are drawn in Section 7.

2. COMMUNICATION NETWORK DESIGN
– A REVIEW

There are several research monograms in the literature
which formulate heuristics and meta-heuristics for the effi-
cient design of general graph based network topologies. The
primary goal is to design low cost reliable networks. Since
most non-trivial network topology design problems are NP-
hard in nature some heuristics have been used such as branch
exchange, and cut saturation — see Frank and Chou [10] for
a tutorial on the subject. Subsequently, many studies have
been done for optimizing average network delay and design-
ing minimal cost reliable networks, e.g., [3, 14].

Some of these heuristics evaluate trees and thus a large
number of possible solutions are left unexplored. Multi-
criteria spanning tree problem is the most studied special
case of a multicriteria network design problem. For ex-
ample, Deo et al. [7], Raidl and Julstorm [22], and Ravi
et al. [23] present heuristics/approximation algorithms for
solving degree/diameter-constrained spanning trees. Zhou
and Gen [25], Knowles and Corne [15] and Kumar et al. [20]
use multiobjective evolutionary algorithm (MOEA) to ob-
tain multiple solutions simultaneously for bi-objective span-
ning tree problems. However, results on general graphs are
sparse.

Linear and integer programming have been used to a lim-
ited extent for network optimization since the number of
variables grows exponentially with the number of nodes,
e.g., [1, 2]. There are several randomized search techniques
that were used for design of network topologies. Simulated
annealing and tabu search have been used for the design
of network topologies, however, the network architecture is
confined to spanning trees. Greedy randomized adaptive
search procedures (GRASP), a multi-start meta heuristic,
has also been used in network design [8].

In recent years, a lot of interest has been generated among
researchers in using EA for solving communication network
design problems. Ko et al. used EA for the design of mesh
networks but the optimization was limited to the single
objective of cost with minimum network delay as a con-
straint [16].

However, a practical multiobjective optimization approach
should simultaneously optimize multiple objectives subject
to satisfiability of multiple constraints and output a set of
solutions forming a Pareto-front. We presented few initial
results of network topology design for Poisson traffic model
in [17, 18]. In this work, we present a framework using EAs
that simultaneously optimize multiple objectives and pro-
duces a set of non-dominated equivalent solutions that lie
on (near-) optimal Pareto front. Moreover, we use Poisson
and self-similar traffic models to calculate the average delay
in the network showing the applicability of EA to network
topology design using realistic queuing models.

In the multiobjective scenario, EAs often effectively find a
set of mutually competitive solutions without needing much
problem-specific information. However, achieving proper di-
versity in the solution-set while approaching convergence is
a challenge in MOO, especially for problems whose solution

front is not known a priori. Many techniques and operators
have been proposed to achieve diversity. A common metric
for convergence is the distance metric, which finds distance
of the obtained solution front from the true Pareto front;
this is trivial for known problems. Such a metric is based
on a reference front. In real-world search problems, location
of the actual Pareto-front is unknown. A commonly prac-
ticed approach to determine the reference front for unknown
problems is to extract the reference front from the best so-
lutions obtained so far, and the reference is incrementally
updated with every generation using an iterative refinement
based scheme.

3. PROBLEM FORMULATION
Topological design of WANs involve determining the lay-

out of links between nodes – given the mean/peak inter node
traffic. In the solution developed, the total network cost and
average delay on links are minimized simultaneously. We
formally define the network topology problem below.

3.1 Design Parameters
For the design, we use the following network parameters:

• the total number of nodes in the network N ,

• a distance matrix Dij which provides the physical dis-
tance between every pair of nodes i and j,

• a traffic matrix Tij which provides the expected peak
network traffic between every pair of nodes i and j,

• the number of types of network equipment (NE) slabs
available K, and the number of types of link slabs
available M along with the link cost per unit distance
and the link capacity, and

• the traffic delay models used—for example, Poisson
and Self-similar

3.2 Objective Functions
We use two objective functions—network cost and end-to-

end message delivery delay—each of which is approximated
by the following formulation.

3.2.1 Cost

Cost = CostNodes + CostLinks + CostAmps

where,

• CostNodes =
P

i Ci; Ci = cost of the network equip-
ment placed at node i,

• CostLinks =
P

i

P
j Cij ; Cij = cost of the link be-

tween node i and node j, and

• CostAmps = A ×
P

i

P
jbDij/Lc; A = cost of each

amplifier unit, and L = maximum distance for which
the signal is sustained without amplification.

The cost function considers the cost of laying down the
nodes and the links. Further, it also considers the cost of
laying down amplification units on the links for proper at-
tenuation of the signals. Note that amplifier units form an
important part of real networks.
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3.2.2 Average Delay
We model the traffic between nodes as a Poisson and Self-

similar process. Although, Poisson process has been vastly
used in the past to model traffic in conventional networks,
recently it has been shown that Internet traffic exhibits self-
similar bursts [12, 24]. We provide a mathematical formu-
lation for the two traffic models below.

Queuing delay for Poisson Traffic.The delay in a net-
work for the queuing model is mainly due to the queuing of
packets in intermediate nodes. The delay formalization can
be stated as follows:

AvgDelay =

P
i

P
j(Delayij × LinkF lowij)P

i

P
j LinkF lowij

where LinkF lowij =
P

k

P
l Traffickl,∀ k, l nodes in the

network such that the route from node k to node l includes
the link (i, j). From queuing theory, the queuing delay
Delayij using standard M/M/1 (Poisson) queuing model is
given by,

Delayij =
1

Capij − LinkF lowij

where Capij is the capacity of link (i, j). LinkF lowij and
Delayij are 0 if there is no link between nodes i and j.
AvgDelay is ∞ if the network cannot handle the required
traffic pattern with the existing capacities of links and rout-
ing policy adopted.

Queuing Delay for Self-Similar Traffic.For bursty traf-
fic, there is no natural length for a burst; traffic bursts
appear on a wide range of time scales and the traffic is
self-similar over a large time-scale. It has been shown by
many researchers that Internet traffic is better modeled us-
ing self-similar processes, e.g., [21] . There are many mod-
els proposed for such traffic. One of them is the multi-
plexed ON/OFF traffic pattern with Long-Range Dependent
(LRD) properties. Hans-Peter Schwefel, in his Ph.D the-
sis [24], developed techniques for analysing queuing models
for such traffic. We use, in this work, the delay formulation
proposed by Schwefel. The average delay, under certain ap-
proximation [24], is given by,

mPD(MBS) ∼ cmPDMBS2−β

where,

• Maximum Burst Size (MBS) is defined as the approxi-
mate Power Tail (PT) Range of the distribution of the
number of packets. The bursts with more than MBS
packets only happen with very small probability.

• The tail constant cmPD can be obtained as follows:

cmPD ≈ 1

ω
.

ρ

1− ρ
.

i∆

i2−β
0

.np
β−1b2(1−b)i0−1.

[c
(1)
PT (α)]i0

(2− β)(α− 1)i0

where np is the mean number of packets per burst and

c
(1)
PT (α) is the tail constant of normalized PT distribu-

tion.

• ω is defined as the average cell rate. For N sources,
ω = N.κ + ω0, where κ is the average traffic rate of

the ON and OFF times together and ω0 is the rate of
background Poisson traffic.

• The burstiness parameter b is defined as 1− κ
ωp

where

ωp is the peak rate at which traffic is generated during
the ON period of a single source.

• β is the tail exponent and is given by α0(α − 1) + 1
where α is the power exponent.

• If ν is the service-rate, the utilization is defined as
ρ = ω

ν
.

• For ω0 = 0 the blow-up region i0 is given by

i0 =

&
N.

1− ρ

ρ
.
1− b

b

'

• The other parameter i∆ is defined as follows

i∆ = i0 −N.
1− ρ

ρ
.
1− b

b

which has a range 0 ≤ i∆ < 1.

Minimization of cost and delay is done subject to the fol-
lowing constraints:

1. Flow Constraint. Flow along a link (i, j) should not
exceed the capacity of the link. Checking whether the
total traffic along a link exceeds the capacity imposes
this constraint.

2. Reliability Constraint. The network generated has to
be reliable. The number of articulation points is a mea-
sure of how unreliable the network is. An articulation
point of a graph is a vertex whose removal disconnects
the network graph.

Dijkstra’s shortest path algorithm is used to determine the
path to route traffic from a source to a destination [5]. The
weights of the links in the algorithm is taken as proportional
to the link length.

4. MOEA FOR TOPOLOGY DESIGN
The network topology problem formulated above is a com-

plex discrete non-linear NP-Hard problem. It is difficult to
define bounds on the solution space for such a problem –
thus difficult to define convergence criteria for a heuristic.
Moreover, the solution space can be potentially exponential
in size – computationally expensive to search.

There are many MOEAs and their implementations. We
chose the Pareto Converging Genetic Algorithm (PCGA) [19],
which is a steady-state algorithm that has been shown to
perform well across a wide variety of non-linear optimisa-
tion problems.

The PCGA algorithm used in this work is a steady-state
algorithm and can be seen as an example of (µ + 2) –
Evolutionary Strategy (ES) in terms of its selection mech-
anism [4, 6]. In this algorithm, individuals are compared
against the total population set according to a the Pareto-
ranking scheme [9] and the population is selectively moved
towards convergence by discarding the lowest ranked indi-
viduals in each evolution. The process is iterated until a
convergence criterion based on Intra-island rank-ratio and
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Algorithm 1 Pareto Converging GA

1: Input : N - size of initial population and GA parameters
2: Output : a set of (near-) optimal solutions
3: Algorithm:
4: Generate an initial population of size N
5: Compute individual’s objective vector
6: Pareto-rank the population and generate rank-

histogram
7: while Intra-island rank-ratio histogram does not satisfy

stopping criteria do
8: Select two parents using roulette wheel selection

scheme
9: Perform crossover and mutation to generate two off-

spring
10: Compute objective vectors of offspring
11: Pareto-rank the population including offspring
12: Remove the two least fit individuals (with tie resolu-

tion) to keep the size N
13: Generate rank-ratio histogram
14: end while
15: One while-loop for Inter-island rank-histogram satisfy-

ing stopping criterion
16: Output set of solutions

Inter-island rank histogram is achieved [19]. The pseudo
code of the baseline PCGA is included in Algorithm 1.

The initial population is generated through a mix of ran-
domization and a deterministic algorithm. The network
equipments (NE) at the nodes are randomly assigned and
maintained in the chromosome. Assuming that the network
is fully connected, a minimal spanning tree is generated us-
ing Prim’s algorithm [5]. All co-tree links are then removed.
A random number of links is then added from the co-tree
set to the spanning tree. Through the links of the spanning
tree topology the algorithm takes leverage of the fact that all
optimal topology would be supersets of spanning tree. How-
ever, randomization is introduced in the initial population
to eliminate the possibilities of the algorithm being trapped
within a subset of spanning tree topologies – a local optima.

Each chromosome encodes a possible network topology.
A set of such chromosomes forms the population. Each
chromosome consists of a constant length bit string. The
structure of the chromosome is illustrated in Figure 1. The
chromosome comprises of two portions — the first portion
contains details of the network equipments at each of the
nodes and the second portion the details of the links. The
size of chromosome depends on the types of network nodes,
and the number of nodes in the network. If there are T types
of nodes, then dlog2T e bits are used to encode a node. Thus,
the first portion of the chromosome will have dlog2T e × N
bits. If a link is present between nodes 1 and 2 then the
first bit position in the link portion is set to 1. The second

portion of the chromosome, therefore, will have N×(N−1)
2

bits. For example, consider the network topology in Figure
1, 2 bits are used to encode 4 types of nodes. The first part,
hence contains 12 bits and the second part of the chromo-
some contains 15 bits.

Fitness of a chromosome is evaluated based on princi-
ple of Pareto ranking. Pareto-rank [9] of each individual
is equal to one more than the number of individuals domi-
nating it. All non-dominated individuals are assigned rank
one. Network cost and average delay is used to evaluate

the rank of an individual chromosome using the principle of
Pareto dominance. The fitness of an individual is given by
Fitness = 1

(Rank)2
. We verified through experimentation

that an inverse quadratic relation produces the best results.
Parent chromosomes for crossover is selected using the

roulette wheel process. Since, the chromosome consists of
two distinct parts, separate crossover is used for the two
parts. For the first half of the chromosome, the crossover
point can lie at any position of the chromosome irrespective
of the boundaries of the bit encoding Since, the chromosome
consists of two distinct parts, separate crossover is used for
the two parts. For the first half of the chromosome, the
crossover point can lie at any position of the chromosome
irrespective of the boundaries of the bit encoding. Dur-
ing the first few iterations, the node type values are not
preserved to ensure maximum exploration of the solution
space. As the algorithm proceeds, the probability of getting
a crossover point within a node’s equipment-type boundary
in the chromosome is reduced to exploit the collected expe-
rience regarding optimal values of NE types so far. In this
case only the existing equipment-types in the parents can
be present in the children.

In the link portion of the chromosome, the crossover point
is chosen uniformly at random. We use multi-point crossover;
the number of crossover points depends on the problem-size.
In addition to crossover, a chromosome is mutated using
random uniform mutation of every bit.

As a result of the crossover and mutation, unconnected
networks can be generated as offsprings. We maintain a
pool of unconnected networks. We argue that such a pool
might have useful genetic material and consequently may
give rise to optimal networks.

Convergence is assessed using Intra-Island rank-histogram
for each epoch of the genetic evolution. However, it is likely
that the solution may get trapped in a local optima or a
plateau of sub-optimal solutions. To ensure that the algo-
rithms does not get trapped within a plain of sub-optimal
solutions, we use a multi-island approach that monitors the
Pareto-front using Inter-Island rank histogram – for details
see [19].

5. DETERMINISTIC PARETO HEURISTIC
Heuristic approaches used in the past for network topol-

ogy design produce spanning/Steiner tree topologies which
effectively optimize only one criterion — the average delay
or the cost of the network. For example, Deo et al. [7], and
Ravi et al. [23] presented approximation algorithms for op-
timizing one criterion that satisfy the degree/diameter con-
straint. In this section, we present a heuristic search algo-
rithm which is multiobjective and tries to simultaneously
minimizes average cost and the delay of the network — this
heuristic is adapted from Branch Exchange algorithm [10],
we call it Pareto Branch Exchange (PBE) heuristic.

Before presenting the PBE, we present the exhaustive
search approach to obtain the Pareto-front. The solutions
obtained is used to compare the those obtained from EA
and PBE results obtained for smaller networks.

5.1 Pareto Exhaustive Search
In this method all possible networks are evaluated and

Pareto ranked to obtain the set of Pareto-optimal networks.
The complexity of the exhaustive search turns out to be
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Figure 1: Encoding scheme for the chromosome. The left sub figure illustrates the network and the type of
network equipment at each node. The right sub figure shows the chromosome structure.

O(2N2
), where N is the number of nodes in the network.

Thus, we could apply this method for networks of smaller
sizes only.

5.2 Pareto Branch Exchange Heuristic
We generalize the conventional single objective branch ex-

change to the multiobjective case. The algorithm should
serve dual purpose; one, it should simultaneously optimize
the two objectives cost and delay, second, it should satisfy
the flow and reliability constraints. Therefore, the algorithm
has two phases. In the first phase, the algorithm constructs
all possible spanning trees which are (near-) optimal with re-
spect to the objective functions. However, such a topology
may not assure bi-connectivity and satisfy flow constraints.
Hence, in the second phase, edges are added to assure bi-
connectivity.

PBE Heuristic : Phase 1

• It is assumed that the given network is a complete
graph G. The traffic is routed between the required
sources and destinations using the shortest path algo-
rithm.

• For all the edges in the graph the cost and the delay
is evaluated. Thus, we have a duple of cost and delay
for each possible edge of the network.

For all nodes Ni in the network. {

– Construct a Spanning Tree Si with Ni as the root;

– Initialize an archive Ai which stores the non-dominated
topologies.

– The center of the tree is found and the paths from
the leaves of the tree to the center is enumerated
as P1, P2, ..., Pk;

– For each path Pi {
∗ The leaf node L is considered;

∗ Its nearest neighbor Nl lying on a different
path (say Pj) is taken and an edge is added
between L and Nl , thus creating a cycle in
the topology;

∗ All the edges in the cycle and its associated
duple (C, D) is considered for all the edges;

(? C refers to the sum of the cost of the nodes
connected by the edge, the edge cost and the
amplification cost while the D refers to the
queuing delay corresponding to the edge. ?)

∗ The edges are ranked using the Pareto rank-
ing scheme and the highest ranked edge is
removed creating a new tree topology; (? If
more than one edge have the same rank, the
edge to be removed is selected at random. ?)

∗ For the new topology the duple (C, D) is
calculated;

∗ If it dominates the previous topology, the
topology is replaced and the new topology is
stored in archive Ai;

∗ Else If it is dominated by the previous topol-
ogy, no change is made to the archive Ai;

∗ Else If both the topologies are incomparable,
both the topologies are stored in Ai;

}

}

• The archive set A = {A1, A2, ..., AN} is sorted by the
Pareto ranks and the non-dominated topologies are
taken as the solution.

End of Phase 1.

PBE Heuristic : Phase 2

• The non dominating spanning tree topologies from Phase
1 are taken as input.

• An archive R is initialized which stores the non-dominated
reliable topologies.

• Assume that the given network as a complete graph
G. The traffic is routed between the required source
and destinations using the shortest path algorithm as
in phase 1.

• For all the edges in the topology the duple (C, D) is
evaluated for the graph G.

• All the edges thus formed are sorted according to their
decreasing rank value and increasing fitness value in an
archive Gm. Fitness is defined as 1

Rank
.
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For all the spanning tree topologies Ti in A. {

– EDGES Label : Consider the edges ( say set Si)
which are not present in the spanning tree Ti

– Add edges in the topology according to the de-
scending order of the sorted pool Gm to the span-
ning tree.

– Reroute the traffic checking the flow constraint
and evaluate the duple (C, D) for the topology.
If topology dominates the previous topology or is
incomparable to it goto TEST Label , Else goto
EDGES Label.

– TEST Label : Test for reliability. If the topol-
ogy is biconnected, then add topology to R . Else goto
EDGES Label.

}

• All topologies in R, evaluate duple (C, D) and do a
Pareto ranking on all the topologies. The dominated
topologies are removed from the archive R and the
remaining are kept in R. R forms the final set of solu-
tions.

End of Phase 2.

The PBE is a deterministic multiobjective heuristic and
no approximation factor has been proven for the heuristic.

6. RESULTS & DISCUSSION
We carried-out an extensive set of simulations on real data

set comprised of communication network data from (i) Net-
work of 10 Chinese cities, (ii) Network of 21 U.S. cities, and
(iii) Network of 36 European cities [16]. These data sets
consisted of average communication traffic, and the average
distance between nodes in the network. All simulations were
run on an Intel Pentium P-IV, 1.7 MHz machine.

The input parameters to the EA – for example, the pop-
ulation size, the crossover and mutation probability – were
tuned through a large number of runs. We used a small pop-
ulation of 100 individuals for the 10 and 21 node networks
while a population of 250 chromosomes were used for the
36 node network. A larger population was chosen for the
larger network to facilitate quicker search of the larger solu-
tion space. Each bit in the chromosome was mutated with a
uniform probability of 0.01 for the 10 node network and with
a probability of 0.02 for the larger networks. The mutation
probabilities were chosen such that, on expectation, at least
one bit gets mutated for smaller networks. However, for
larger networks, the algorithm might possibly get trapped
in a local optimal plateau surrounded by non-dominating so-
lutions. Hence, a larger number of mutations are warranted
to obtain the optimal solutions. The crossover probability is
set to in the range of 0.7 to 1.0 to facilitate faster exploration
of the search space.

For the 10 node network, with a set of initial population
of size 100, good solutions evolved quickly within the first
100 epochs, and then the improvement was marginal for
both the delay models. The rate of improvement was ob-
served, on the Intra-island rank histogram, to be very slow.
Figure 2 depicts the obtained Pareto-front for the Poisson
delay models. The stopping criterion for the EA was judged
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Figure 2: Comparison of results from exhaustive
search (optimal) and EA for 10 node problem using
Poisson traffic.
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Figure 3: Solution sets (three tribes and a merged
one) from EA using self similar traffic for 10 node
problem.

using the intra-island rank ratio histogram technique. The
simulation was run to its near-convergence for each of the
tribes; it took epochs in the range of 600 – 800 runs for
each of the tribes. We conducted experiments with multiple
tribes. The number of tribes to be merged was based on the
tail of Inter-island rank histogram. The merged solutions for
Poisson and Self-similar delay models are included in Fig-
ures 2 and 3, respectively. It can be seen from the plots in
obtained in Figure 3 that the combined curve is superior to
the individual tribes as this contained genetic material from
multiple-tribes. The topologies obtained for self similar traf-
fic model exhibit much larger delay than those obtained by
Poisson traffic.

For the small network, we also ran the Pareto exhaus-
tive search to obtain the Pareto-optimal front. The front
obtained from the exhaustive search is depicted in Figure 2
along with the combined-front obtained by merging the tribes
using EA. The exhaustive search is superior to EA. How-
ever, the EA took approximately 10 minutes to obtain the
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Figure 4: Solution sets (three tribes and a merged
one) from EA using Poisson traffic for 36 node prob-
lem.

front while exhaustive technique needed around 40-hours. A
marked difference in the two obtained solutions is that EA
was not able to find good solutions in the low cost region
which is a considerably steeper region.

We carried out experiments with the 36 node European
city network. The experiment tests the scalability of the
proposed heuristics. For each of the tribes, it took much
more computational resources to obtain the near optimal
front. The experiment started with a population of 250
and we could get nearly converged solution space approx-
imately with 900th epochs —Figure 4 depicts the solution
fronts obtained for the Poisson model for three tribes. In
the combined solution from all the three tribes in Figure 4,
the high cost region is an outcome of the genetic material
from tribe 2 while tribe 3 contributes significantly to the
obtained topologies in the low cost region.

The behavior of the population dynamics was quite sim-
ilar in all the cases considered above. However, we could
not employ exhaustive search for larger networks as it is
practically infeasible to run the exhaustive search algorithm
for such networks. Therefore, we compared the solutions
with those of the PBE heuristic. Results for the self-similar
model are included in Figure 5. For both the traffic models,
PBE results were inferior to those of EA results.

6.1 Characteristics of the Pareto front
For larger networks, the solution-fronts can be partitioned

into three distinct regions – (i) Low Cost High Delay Region
(LCHD), (ii) Medium Cost Medium Delay Region (MCMD),
and (iii) High Cost Low Delay Region (HCLD). Solutions to
the Low Cost High Delay (LCHD) Regions are easier to
obtain. This is because they correspond to the spanning
tree topologies. Most deterministic algorithms easily obtain
this part of the front. However, obtaining the Medium Cost
Medium Delay (MCMD) and High Cost Low Delay (HCLD)
regions requires exploration of the larger solution space. It
is clear from the solutions obtained, that the EA is able to
efficiently explore the entire solution space and potentially
obtain most of the Pareto-optimal solutions.

Although deterministic algorithms fail to obtain the entire
solution front, yet the PBE obtains a good approximation
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Figure 5: Comparison of the fronts of EA with the
PBE for the 36 Node network for self similar traffic.

of the solution front. This is because, the decisions to make
a deterministic step forward in the algorithm is made on
the basis of Pareto ranking. Therefore, the solutions are
not limited to the LCHD regions but are spread across the
(near-)optimal front.

The solutions obtained from the Poisson and Self-similar
delay models are also shown to be different. For the same
network cost, the delay introduced by the Self Similar traffic
model is an order of magnitude larger than the Poisson delay
model. Experimentation through different delay costs shows
that the EA is able to obtain (near-) optimal solutions even
for larger values of delay. This implies that the EA solution
can be applied to optimization problems with a wide range
of delay cost values.

Most deterministic heuristics which consider spanning trees
only optimize for the network cost and get trapped in re-
gions of high average delay and low network costs. Us-
ing ε−constraint methods, or using multi-start deterministic
heuristics do not help, since they are directed towards ob-
taining solutions in close vicinity of the original solutions.
However, MOEA through use of random hops in the solu-
tion space is likely to explore the solutions space faster and
more completely.

In complex non-linear optimization problems, like the net-
work topology design problem the exploration process can
get trapped in: (1) a sub-optimal solution, and/or (2) a
plateau of local optimal solutions surrounded by sub-optimal
solutions. Though a deterministic algorithm can possibly
find its way from a sub-optimal solution to a an optimal
solution, it is extremely difficult for many deterministic so-
lution to detect that it is trapped in a plateau of locally opti-
mal solution, surrounded by suboptimal data points. How-
ever, EA, can use global mutation (i.e., flipping every bit
of the chromosome with a random uniform probability) or
uniform crossover, to jump from a plateau of locally optimal
solutions to a global optimal solution. Another important
problem faced in such hard non-linear multiojective opti-
mization is the diversity of the solutions obtained. Different
starts of the EA can lead to multiple tribes of solutions on
the Pareto front. However, the multi-start multi-tribe ap-
proach ensures that the genetic material from different tribes
can be used to form the entire Pareto-optimal front.
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7. CONCLUSIONS
In this work, a set of deterministic and stochastic/ ran-

domized (EA) heuristics were presented for solving the mul-
tiobjective network topology design problem for realistic
traffic models. We argue that combining different objectives
into one objective and using a single objective optimization
method to solve such problems is not very useful in this
scenario. Therefore, there is a need to use tools which pre-
serve the general nature of the problem and solve it using
no a priori knowledge of the solution space. We show in the
paper, that the EA heuristic generally provides better so-
lutions than its deterministic counterparts. The topologies
generated are reliable in case of single link failure and it is
guaranteed that the maximum packet load on any link will
not exceed the link capacity. Thus, the network is two-edge
connected and satisfies the flow constraint. Topologies gen-
erated for self similar traffic have much higher delays than
those of Poisson traffic. Therefore, through a mix of effi-
cient random search and initial hybridization, EAs can be
used as a general tool to solving such hard multiobjective
optimization problems.
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