
Coupling EA and High-level Metrics for the Automatic
Generation of Test Blocks for Peripheral Cores

L. Bolzani
Politecnico di Torino

Corso Duca degli Abruzzi, 24
Torino, Italy

+39 0115647091
leticia.veirasbolzani@polito.it

E. Sanchez
Politecnico di Torino

Corso Duca degli Abruzzi, 24
Torino, Italy

+39 0115647091
edgar.sanchez@polito.it

M. Schillaci
Politecnico di Torino

Corso Duca degli Abruzzi, 24
Torino, Italy

+39 0115647091
massimiliano.schillaci@polito.it

G. Squillero
Politecnico di Torino

Corso Duca degli Abruzzi, 24
Torino, Italy

+39 0115647091
giovanni.squillero@polito.it

ABSTRACT
Test of peripheral modules has not been deeply investigated by
the research community. When embedded in a system on chip,
however, peripherals pose accessibility problems that may make
traditional test approaches ineffective. In this paper an
evolutionary methodology, based upon coverage metrics at high-
level, is described to automatically generate test sets for
peripheral modules in a SoC. A general-purpose evolutionary tool,
able to cultivate composite individuals, has been developed and is
used for the test set generation. This tool is described and its basic
concepts explained. The method compares favorably with results
obtained by hand.

Categories and Subject Descriptors
B.8.1 [Performance And Reliability]: Reliability, Testing, and
Fault-Tolerance

General Terms
Algorithms, Design, Experimentation.

Keywords
Peripheral testing, test programs, test blocks, SBST.

1. INTRODUCTION
Modern methodologies in industrial production of electronic
circuits attempt to reuse and integrate as much as possible mature
devices. The goal is that of decreasing both production costs and
time-to-market. Since the mid ’90s, the System-on-Chip (SoC)
paradigm is successfully being employed for integration and reuse
of electronic devices. Indeed, SoC based applications are now
used in practically every consumer electronics device around the
world.
Generally, a SoC integrates at least one processor core, some
peripherals devices, and a few memory cores into a single chip.
While simplifying the design and verification phases, the SoC
architecture increases the complexity of the test process because it
decreases the accessibility of each functional module into the
chip. Thus, the increasing use of SoCs is leading to new issues on
production testing methodologies.
Different software-based and hardware-based techniques have

been proposed to test SoCs and the cores they embed. Hardware-
based techniques are commonly based on scan chains or built-in
self-test (BIST) insertion [13]. These methods are easy to
implement and scale well with increasing complexity; however,
they may generate high area overhead, impair performance, and
require unacceptably long application times. In addition, at-speed
testing of the SoC is not always economically feasible using scan
chains, but test application with a reduced clock speed
considerably decreases the efficiency of test vectors [8].
One of the less intrusive and more promising techniques is based
on exploiting the processor core embedded into the SoC to
execute a special program, which is able to test the processor, and
other cores accessible by it [1]. This technique, called Software-
based Self-Test, or SBST, has several advantages with respect to
traditional hardware-based ones: it allows cheap at-speed testing
of the SoC; it is relatively fast and flexible; it has very limited, if
any, requirements in terms of additional hardware for the test; it is
applicable even when the structure of a core is not known, or can
not be modified. As stated above, SBST is based on the execution
of a test program previously loaded in an internal memory. This
test program is not intended to perform any functionality but only
to test a specific module or core internal to the SoC. The result
produced by the system is checked by monitoring what is
produced on specified output ports or memory variables. On the
downside, SBST raises the issue of how to generate effective test
programs.
Appropriate test programs have been successfully exploited not
only for manufacturing tests, but also for design validation or
verification, incoming inspection, and on-line testing [2].
SBST techniques have been largely exploited on testing
microprocessor cores; traditional methodologies resort to
functional approaches based on exciting specific functions and
resources of the processor [3]. New techniques, instead, differ on
the basis of the kind of description they start from: in some case
only the information coming from the processor functional
description are required [1]; in other cases, a pre-synthesis RT-
level description is required [6]; most often, the gate-level
description is exploited to generate an efficient set of test
programs [5], especially if aimed at manufacturing test.
Peripheral testing had not received the same attention that
processor cores testing did. In fact, testing peripherals embedded
in a SoC is an overlooked problem. However, the reduced
accessibility of peripheral modules inside a chip may make the
use of traditional testing methodologies, aimed at stand-alone
peripheral chips, ineffective.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

1912

In this paper, we face the problem of testing peripheral
components in a SoC resorting to a software-based approach. The
presented methodology exploits RT-level Code Coverage Metrics
(CCMs) on the generation of the test sets.
The generation problem is approached resorting to the new
implementation of an evolutionary algorithm (EA). The described
methodology is applied to automatically generate test blocks for
two peripheral cores embedded in a SoC that includes a Motorola
6809 processor core. For the sake of completeness, this paper
compares the automatic approach with the manual one described
in [12].
The rest of the paper is organized as follows: section 2 recalls
some background concepts, describes the RT-level coverage
metrics suitable for test generation, and introduce some
considerations regarding the generation process; section 3 outlines
the methodology adopted for the generation of test set for
peripheral testing. Section 4 introduces the experimental setup,
describing the case study and detailing the workflow.
Additionally, this section brings implementation details on the test
generation process. Finally, section 5 draws some conclusions.

2. PERIPHERAL TESTING
Generally speaking, a basic SoC is composed of a microprocessor
core, some peripheral components, a few memory modules, and
possibly customized cores. Figure 1 shows the basic block
diagram of a typical SoC. An external Automatic Test Equipment
(ATE) is supposed to be available for test application; it may
interact with the SoC through the interface modules. Additional
ports may be available to the ATE to access the SoC (e.g., an
IEEE 1149.1 TAP port), but methodologies that use them are out
of the scope of this paper.

Figure 1. Block diagram of a SoC

Test program generation for SBST may benefit from cross-
fertilization with the area of design validation. In fact, design
validation during the pre-silicon phase is also performed resorting
to suitable test programs. In [6] test programs are composed of
dynamic sequences of code segments and are generated for
simulation at the RT-level to verify application behaviors and
detect hardware design bugs; once generated, these programs can
be fruitfully exploited for later manufacturing test. However, the
authors do not state a relationship between the test programs
generated at high level and low-level fault coverage.
In [7] the authors define a fault model at high level strongly
correlated with the traditional low-level stuck-at fault. The
presented methodology exploits the so called observability-
enhanced statement coverage metric and models single stuck-at
bit faults on all assignment targets of the executed statements that
respect a defined set of rules. These rules are defined to identify
redundant faults in the fault list in order to increase the correlation
between RT-level (high level) and gate-level fault coverage (low
level).

Despite the efforts, the correlation between high-level and low-
level metrics still remains vague in the general case, especially
when large combinational blocks exist in the design, whose
testability can barely be forecast when resorting to high-level
metrics, only.
Regarding test application, [4] and [5] describe suitable
architectures able to support SBST. The approaches require an
easily accessible RAM memory of sufficient size available into
the SoC. An ATE is in charge of loading the test program into the
memory when required, and the processor core is forced to
execute it. Some mechanism must also be available to retrieve and
check the results. Test execution is always performed at-speed,
independently on the speed of the mechanisms used for loading
the RAM and checking results: low-cost ATEs can thus be
exploited, greatly reducing the cost for test.
Peripheral testing problem has not been as deeply investigated as
microprocessor testing. Some important reasons could motivate
this fact: peripheral cores are usually smaller than processors by
at least one factor of magnitude; stand-alone peripherals are
reasonably easy to test; when the testing methodology is based on
hardware insertion, the area overhead required to test peripherals
is negligible. However, testing of peripheral cores embedded in a
SoC leads to new issues even for hardware-based approaches:
first of all, peripherals become less accessible due to the SoC
structure; if the SoC design uses multiple clocks, scan insertion is
complicated and may not obtain the expected coverage; finally, if
SoC architecture exploits internal tristate buses to share resources
among different modules, this requires the definition of quite
complex constraints to properly generate scan vectors.
Therefore, a software-based strategy for peripheral testing that
uses a high-level model of the peripheral in the generation phase
could be a suitable solution to overcome new testing issues on
SoCs. Remarkably, there is special value in devising techniques
starting from high-level descriptions, since they can be exploited
even by soft-cores users (and not only by core developers) and
make test reuse easier. On the other side, this is only possible if a
well-known relationship exists between high-level and low-level
metrics.
In order to support the generation process of the test sets for
peripheral cores, let us assume that a complete test set for
peripheral cores is composed of some test blocks defined as basic
test units composed of two parts: a configuration and a functional
part. The configuration part includes a program fragment that
defines the configuration modes used by the peripheral, and the
functional part contains one or more program fragments that
exercise the peripheral functionalities as well as the data set
provided/read by the external test machine. Figure 2 shows the
conceptual scheme of a test block.

Figure 2. Conceptual scheme of a test block

1913

Test set generation process exploits both the CCMs and the basic
functionalities of each peripheral core to drive the generation
process.
The code coverage metrics suitable for guiding the development
of the test sets for peripheral cores embedded in a SoC are listed
in the following (and their definition briefly summarized for sake
of completeness).

• Statement coverage (SC) is the most basic form of code
coverage: statement coverage is a measure of the number of
executable statements within the model that have been
exercised during the simulation run. Executable statements
are those that have a definite action during runtime and do
not include comments, compile directives or declarations.
Statement coverage counts the execution of each statement
on a line individually, even if there are multiple statements
on that line.

• Branch coverage (BC) reports whether Boolean expressions
tested in control structures (such as the if- and while-
statement) are evaluated to both true and false. The entire
Boolean expression is considered one true-or-false predicate
regardless of whether it contains logical-and or logical-or
operators. Branch coverage is sometimes called decision
coverage.

• Condition coverage(CC) reports the true or false outcome of
each Boolean sub-expression, separated by logical-and and
logical-or if they occur. It is an extension of branch
coverage. Condition coverage measures the sub-expressions
independently of each other.

• Expression coverage (EC) is the same as condition coverage,
but instead of covering branch decisions it covers concurrent
signal assignments. It builds a focused truth table based on
the inputs to a signal assignment using the same technique as
condition coverage.

• Toggle coverage (TC) reports the number of bits that toggle
at least once from 0 to 1 and at least once from 1 to 0 during
the logical simulation of the device. At the RT-level registers
are targeted and, since RT-level registers correspond to
memory elements with an acceptable degree of
approximation, the toggle coverage is an objective measure
of the activity of the design.

According to the above definitions, maximizing all coverage
metrics helps to better exercise the peripheral cores. However, it
is essential to carefully choose the set of metrics to be maximized
to reduce redundant efforts on the test set generation.
Many authors hold that it is not possible to accept a single
coverage metric as the most reliable and complete one [9]; thus, a
coverage of 100% on any particular metric can hardly guarantee a
100% fault coverage. Nowadays, thanks to modern logic
simulators features, different metrics can be exploited to
guarantee better performance of the test sets. Therefore, the test
set generation trend is to combine multiple coverage metrics
together to obtain better results. Consequently, it is extremely
useful to complete the test sets by reaching complete coverage on
different metrics [10].
Among the listed metrics, statement coverage deserves special

attention because this one has been considered until now the most
popular coverage metric to evaluate the effectiveness of test sets.
In fact, statement coverage could be considered as the first metric
to be maximized since this is the single most effective measure of
design utilization during performance tuning. It is, however, not
reliable for test coverage purposes.
The selection of the sequence of other coverage metrics must be
based on an analysis of the RT-level description of the targeted
peripheral. As mentioned before, the first metric to be considered
is normally the statement coverage; the successive metrics are
strongly related to the description style used to write the
peripheral model at high-level. For example, if the high-level
description is based on a case or if-then structure the second
coverage metric to be targeted is the branch metric. On the other
side, if the description uses a set of variables computed on logical
operations and Boolean expressions, we should consider the
expression coverage as the most suitable metric.
Let us consider the following VHDL code fragment to clarify the
results that can be obtained using different metrics:
CONTROL: process (INPUT)

begin

case INPUT is

when (3 | 5) =>

Z <= A and B;

when 1 =>

Z <= A or B;

when others =>

null;

end case;

end process CONTROL;

Let assume that there are two available sets of patterns for the
control variable INPUT ranging from 0 to 7:

set1 = {(0), (1), (3)}

set2 = {(0), (1), (3), (5)};

For both input sets, the statement coverage and the branch
coverage equal 100%; however, set2 reaches a higher value in
the condition coverage, since this set of stimuli thoroughly
exercises the statement “when (3 | 5) =>”.

2.1 Traditional approaches
The manual method [12] is based on the experience of a test
engineer and resorts to a preliminary evaluation of the peripheral
high-level description. The test engineers must also select the
order in which the CCMs will be maximized. The order followed
in the description of the CCMs is acceptable in most situations.
The general scheme for manual test-set generation is shown in
figure 3. In the first step, an initial test set is generated targeting
to maximize the statement coverage; the first test block is only
based on functional information about the targeted peripheral.
Then, the generated test block is simulated using a RT-level
description, gathering the first code coverage metrics figures.
Following the selection of the most suitable metric (according to
the considerations of the previous sub-section) a new set of test
blocks looking for the saturation of the considered metric is
devised. Once the first coverage metric is saturated, another one is

1914

tackled in order to increase the testing capabilities of the
generated test set [10].
This process is repeated until sufficiently high coverage values
are obtained for all the chosen metrics. Remarkably, it must be
taken into consideration that in some cases the metrics chosen as
critical may also differ, as well as the number of considered
CCMs for sufficient code coverage.

FIRST STEP

Target metric

selection

Test block geneartion

Evaluation

INITIAL
TEST
SET

INTERMEDIATE
TEST SET

FINAL
TEST
SET

If metric i > X% Other metrics

NO

YES

NO

YES

FIRST STEP

Target metric

selection

Test block geneartion

Evaluation

INITIAL
TEST
SET

INTERMEDIATE
TEST SET

FINAL
TEST
SET

If metric i > X% Other metrics

NO

YES

NO

YES

Figure 3. Test set generation scheme

The target value for each code metric is denoted by X% in figure
3. It should be carefully identified based on the description style:
100% code coverage is not always reachable, as explained in [9].
Differently from the manual method, in [11] a pseudo-exhaustive
approach to generate functional programs for peripheral testing
was presented. The proposed method generates a functional
program for each possible operation mode of the peripheral core
in order to generate control sequences which would place the
peripheral in all possible functional modes. The method exploits
the capacity of the embedded microprocessor to test peripheral
cores at-speed. The pseudo-exhaustive approach was employed to
test an Intel 8251 Universal Synchronous Asynchronous Receiver
Transmitter peripheral core and about 68% of fault coverage was
obtained.

The pseudo-exhaustive approach [11] gives rise to a large number
of functional programs, since one has to be written for every
operation mode; this implies a large application time and a
considerable memory occupation.

3. PROPOSED APPROACH
Fault coverage is a distinctly nonlinear function of the input
patterns for most digital circuits, and peripheral modules are no
exception. Moreover, the cases to cover for effective testing may
be too numerous for a test engineer to handle without support.
Although humans may cleverly identify critical corner cases for
the operation of a circuit, in fact, they are not generally renowned
for reliably considering large numbers of alternatives and
selecting suitable subsets from those. These considerations make
the test pattern generation amenable to the use of evolutionary
algorithms.

For every peripheral core into the SoC a test set is devised by

using the high-level description of the component. It is worth
noting that in the generation process only the CCMs have been
used as feedback information. A fault simulation is subsequently
performed to validate the generated test sets.
Since the testing methodology presented here is based on a
software-based approach, it is necessary to generate suitable test
blocks containing program fragments able to not only configure,
but also to exercise the peripheral core while working in normal
mode operation. Additionally, it must be clear that the chosen
data to be received/transmitted by the peripheral may also impact
the final testing results. These data could be included into the test
program or provided by the external test machine. Therefore, both
test programs and data must be carefully combined in order to
obtain high coverage figures.

3.1 Evolutionary tool
For the automatic generation of the test blocks an evolutionary
tool named μGP3 has been employed. μGP3 is a general-purpose
approach to evolutionary computation, derived from a previous
version specifically aimed at test program generation. The
problem of test program generation had already been tackled in
the past by some of the authors [14] [15]. The efforts led to the
implementation of a versatile evolutionary tool with a strong
emphasis on assembly program generation, named μGP. This tool
was successfully employed for test program generation, and
proved versatile enough for such diverse activities as corewar
program evolution, antenna array optimization, expression
evolution.

During several years the successive versions of μGP have been
improved with numerous features to improve its performance.
These include aging and eventual death of the individuals, a
configurable size for the elite (individuals that never age), self-
adaptation of many evolutionary parameters such as operator
activation probability and strength and of tournament size; an
entropy fitness hole has also been added, as has clone detection
and optional scaling/extermination.

However, it reached a development point in which it was difficult
to extend it and to work collaboratively on its enhancement;
moreover, there was the need for a more comprehensive tool that
allowed tackling different problems and experimenting
evolutionary techniques untried before, such as support for
multiple populations, possibly with different topologies, and for
true multi-objective optimization.

These considerations led to the decision to completely redesign
the tool and implement it from scratch, basing its development on
sound software engineering techniques and taking advantage of
existing software and established standards. The tool was thus
implemented in C++, and all input/output, except for the
phenotype of the individuals to evaluate, is performed using XML
with XSLT.

The current version of the μGP3 comprises about 40,000 lines of
C++ code, 85 classes, 108 header files and 103 C++ files1.

1 μGP3 is available under the terms of GNU public license from

SourceForge (http://ugp3.sourceforge.net/)

1915

3.2 Evolutionary concepts
3.2.1 Evolution unit
μGP3 bases its evolutionary process on the concept of constrained
tagged graph, that is a directed graph every element of which
may own one or more tags, and that in addition has to respect a
set of constraints. A tag is a name-value pair whose purpose is to
convey additional information about the element to which it
belongs, such as its name. Tags are used to add semantic
information to graphs, augmenting the nodes with a number of
parameters, and also to uniquely identify each element during the
evolution. The constraints may affect both the information
contained in the graph elements and its structure. Graphs are
initially generated in a random fashion; subsequently, they may
be modified by genetic operators, such as the classical mutation
and recombination, but also by different operators, as required.
The tool architecture has been specially thought for easy addition
of new genetic operators as needed by the application. The
activation probability and strength for every operator is an
endogenous parameter.

The genotype of every individual is described by one or more
constrained tagged graphs, each of which is composed by one or
more sections. Sections allow to define a global structure for the
individuals that closely follows the structure of any candidate
solution for the problem.

3.2.2 Constraints
The purpose of the constraints is to limit the possible productions
of the evolutionary tool, and also provide them with semantic
value.

The constraints are provided through a user-defined library that
provides the genotype-phenotype mapping for the generated
individuals, describes their possible structure and to define which
values the existing parameters (if any) can take. Constraint
definition is left to the user to increase the generality of the tool.

The constraints are divided in sections, every section of the
constraints matching a corresponding section in the individuals.
The constraints may specify every section as compulsory,
meaning that the sections have to exist in every individual, or
optional. Every section may also be composed of subsections: for
each a minimum and a maximum number may be specified.
Finally, the subsections are composed of macros, of which a
minimum and maximum number can also be set.

Constraint definition is flexible enough to allow the definition of
complex entities, such as the test blocks described above, as
individuals. Different sections in the constraints, and
correspondingly in the individual, can map to different entities
such as the configuration part of the program, the functional part,
and the external data. No special tweaking of the tool is needed to
handle these different concepts.

3.2.3 Fitness
Individual fitnesses are computed by means of an external
evaluator: this is usually a script that runs a simulation using the
individual as input and collects the results, but may be any
program able to provide the evolutionary core with proper
feedback. This complete decoupling between the evolutionary
engine and the fitness evaluator makes it possible to use μGP3
with most existing simulation tools.

The fitness of an individual is represented by a sequence of
floating point numbers optionally followed by a comment string.
This is currently used in a prioritized fashion: one fitness A is
considered greater than another fitness B if the n-th component of
A is greater than the n-th component of B and all previous
components (if any) are equal; if all components are equal then
the two fitnesses are considered equal. The two value sequences
may then be considered symbols in a string, and the fitnesses may
be thought of as such strings, which are then compared
lexicographically. For uniform comparison all those strings have
to be equal length, meaning that the number of values in the
individual fitness has to be specified before every run. It may,
however, vary between one run and the next.

3.2.4 Evolutionary scheme
The evolutionary tool is currently configured to cultivate all
individuals in a single panmictic population, although it can be
configured to use an island model. The population is ordered by
fitness. Choice of the individuals for reproduction is performed by
means of a tournament selection; the tournament size τ is also
endogenous. The population size μ is set at the beginning of a run,
and the tool employs a variation on the plus (µ+λ) strategy: a
configurable number λ of genetic operators are applied on the
population. Since different operators may produce different
number of offspring the number of individuals added to the
population is variable. All new unique individuals are then
evaluated, and the population resulting from the union of old and
new individuals is sorted by decreasing fitness. Finally, only the
first μ individuals are kept.

To ensure that only different individuals are evaluated a hash is
computed for each individual, only comparing individuals for
equality if their hashes are the same. To promote diversity,
individuals that are genetically equal to already existing ones,
called clones, may have their fitness scaled by a fixed value in the
range [0.0,1.0].

The possible termination conditions for the evolutionary run are: a
target fitness value is achieved by the best individual; no fitness
increase is registered for a predefined number of generations; the
evolution process is executed for the maximum number of
generations.

At the end of every generation the internal state of the algorithm
is saved in XML format for subsequent analysis. This also
provides a minimal measure of tolerance to system crashes.

The use of XML with XSLT for all input and output allows the
use of standard tools, such as browsers, for inspection of the
constraint library, the populations and the configuration options
[16].

4. CASE STUDY
In order to experimentally demonstrate the suitability of the
presented methodology, a SoC was implemented including a
Motorola 6809 microprocessor, a serial communication peripheral
(Universal Asynchronous Receive and Transmit, UART), a
parallel communication peripheral (Peripheral Interface Adapter,
PIA) and a RAM memory core. The system used derives from one
available on an open source site [17]. Figure 4 shows the
schematic view of the considered SoC.

1916

The high-level description of every component was written in
VHDL at RT-level; the whole SoC is described in about 12,000
lines of code, and the synthesized circuit contains approximately
20,000 equivalent gates. The following table summarizes
implementation characteristics of the peripheral cores presented in
the SoC, and it includes some facts at high and low levels of
description.

Figure 4. Case study architecture

Table 1 shows details of both peripherals the PIA and the UART,
including information at high and low-level. Rows 2 to 6 present
CCMs information, such as the number of statement of the RT-
level descriptions of the peripherals. The reader should be aware
that in the case of the PIA there are no available expressions to be
considered; this is due to the specific design style used to describe
the peripheral at RT-level. At low level (i.e., at gate level), rows 7
and 8 illustrate the number of gates counted on the synthesized
devices and the number of collapsed faults for the stuck-at model,
respectively.

Table 1. Implementation characteristics

Description measure PIA UART
statements 149 383
branches 134 182
condition 75 73
expression N/A 54

RT-level

toggle bits 77 203
gates 1,016 2,247

Gate level
faults 1,938 4,054

Both the PIA and the UART peripherals can be configured to
work in two functional modes with different communication
schemes.
The PIA can be used with the following characteristics:

• polling or interrupt mode
• parallel data communication (transmit and receive) with

different control schemes.
In the case of the UART, the following configuration modes can
be used:

• polling or interrupt mode
• serial data communication (transmit and receive) with

different data bit numbers, with or without parity, and with 1
or 2 stop bits

• serial transmit and receive using different communication
rate ratios.

To more thoroughly assess the proposed methodology, a test set
for each peripheral core was generated resorting to both the
manual and EA-based methodology. In both cases, the generation
process uses only, as feedback or fitness values, information
extracted from the RT-level simulation of the SoC (i.e., the high
level metrics described in section 2.2). The manual method has
been completely performed by an expert test engineer.
The fault coverage figures reported in the following sections
target the stuck-at fault model, and the gate-level fault simulations
required were performed at the end of the generation processes in
order to bring the reader the possibility to clearly assess the
proposed methodology.

4.1 Manual methodology setup
The test set for each peripheral core is composed of many test
blocks, each including two elements: the first one (configuration
part) defines the operation mode to be adopted by the peripheral;
the second element (functional part) exploits the peripheral
functionalities (i.e., transmitting/receiving data).
Based only on the functional analysis of the targeted
communication peripheral, a first test block was developed. A
RT-level simulation was then performed to collect the initial code
coverage values.
The development of each successive test block is based on
analyzing the VHDL code style to identify the most suitable
metric, and on its optimization.
The analysis of the PIA’s VHDL description resulted in choosing
the statement coverage metric as the most suitable to be targeted.
This choice is justified by the fact that in the considered code the
dominant structures can be categorized as statements. This means
that most of the statements are not associated with any structure
of the branch or condition types. When we had achieved
satisfying statement coverage we could also observe acceptable
percentages of coverage in the other metrics.
Differing from the PIA, the UART required explicitly targeting
several metrics to achieve useful results. Since the considered
VHDL description models use several case instructions, the most
suitable metric to be targeted after the statement is the branch
coverage. As stated in [10], maximizing the branch coverage
leads to almost fully maximized statement coverage, also.
After the maximization of the branch metric, we analyzed the
code coverage values of the other metrics and we observed that
the value of the condition coverage was also sufficiently high; on
the other side, the values obtained on the expression coverage
were still relatively low.
We found that the reason for this was mainly due to the fact that
the transmission control is performed by reading the status
register. The code lines performing this control can be classified
as expressions. For this reason, the third metric we considered
was the expression coverage. New test blocks were thus devised
and iteratively improved until the expression coverage reached a
reasonably high value.

4.2 EA based methodology setup
To adequately handle the requirements on peripheral testing, two
constraints libraries were devised, one for each peripheral core.
To quickly generate satisfactory test blocks it has been decided to

1917

reduce as much as possible the size of the search space for the
evolutionary tool. Basically, the constraints libraries were
implemented using two sections: the first one concerning program
generation, and the second one data generation.

Program sections include two subsections, one for each operation
mode: polling and interrupt. In both cases, the generated macros
resemble the structure of a hand-written program: the initial
section configures the peripheral core via a small number of fixed
initialization sequences, whereas the second one applies or asks
some data. It is clear that in the case of interrupts, the second part
of the program is adequately placed in memory in order to
correctly resolve an interrupt request. In the end a fixed
observation sequence is provided.

The configuration sections are multiple because the final goal is
to generate a set of test blocks that collectively test the peripheral,
not just one that does everything. Test blocks are sequentially
generated until their cumulative coverage for all the listed CCMs
is satisfactory.

Data sections, on the other hand, contain some macros able to
bring the peripheral core with input data, as well as with
appropriate control signals in order to exercise the peripheral
inputs. External data does not undergo any arbitrary restriction.
Additionally, a waiting macro was included in order to better
match timing constraints.

As mentioned before, the evolutionary tool used as fitness values
a sequence of floating point values representing the CCMs figures
obtained by RT-level simulation. All the available coverage
values were fed back to the evolutionary tool in the order
specified above, in order to simultaneously optimize all of them.
The experiments were launched using a multi-run scheme,. Thus,
once the steady state was reached a new run is launched excluding
the elements covered during the previous experiments. This
scheme is followed until no further progress is possible.

4.3 Comparison of the results
The following tables compare the results obtained for each
peripheral core following the manual and EA-based methods.
Tables illustrate the percentage value of the different coverage
metrics obtained at each step of the elaboration as well as the
attained fault coverage (FC). For clarity, the intermediate results
of the EA-based experiments are reported. Since they are only
used to validate the evolutionary methodology, in the case of the
manual method, only the final results are reported.

Table 2. PIA – manual method

Step SC BC CC EC TC FC
8 100.0 96.9 89.3 N/A 100.0 89.78

Applying the manual methodology to generate test blocks for the
PIA, eight different steps were required to obtain a satisfactory
coverage on the CCMs. The 8 resulting test blocks are composed
of 8 programs sizing about 200 bytes. Additionally, the final data
set contains 19 input data and the duration of the complete set of
test blocks requires 800 clock cycles.

For the experiment a constraints library was written with about
200 lines of XML. The evolutionary parameters were µ=50 and
λ=70, whereas the steady state parameter was set to 10
generations for each run.

Table 3. PIA – EA based method

Step SC BC CC EC TC FC
1 81.1 73.4 73.3 N/A 94.8 80.50
2 93.0 86.7 88.0 N/A 100.0 88.67
3 97.2 92.2 89.3 N/A 100.0 89.45
4 99.3 96.1 89.3 N/A 100.0 89.73
5 100.0 96.9 90.7 N/A 100.0 90.20

The automatic method left us with 5 test blocks to test the PIA.
The size of the generated programs is about 480 bytes, and the
data set contains 80 input data. To apply the complete sequence of
test blocks 5,800 clock cycles are required. It is interesting to see
that the final values reported by both tables are almost identical;
however, in the case of the EA-based method the FC is higher and
the CC metric has been saturated.

Table 4. UART – manual method

Step SC BC CC EC TC FC
7 95.5 92.9 97.3 72.2 89.2 80.96

Manually written programs amount to about 250 bytes. The final
data set contains 10 input data and the duration of the complete
set of test blocks involves about 5,000 clock cycles. The manual
methodology produced 7 test blocks. The manual method was not
able to reach higher coverage figures because of time constraints.

Table 5. UART – EA based method

Step SC BC CC EC TC FC
1 99.2 97.3 98.6 85.2 100.0 76.86
2 100.0 98.9 98.6 92.6 100.0 91.16
3 100.0 98.9 98.6 94.5 100.0 91.43

A setup similar to that used for the PIA was implemented to
generate the test sets for the UART: the constraints library counts
about 440 lines of XML; µ was set to 30 and λ to 40, and the
steady state parameter was, as above, 10 generations. It is
important to note that the values of the evolutionary parameters in
both experiments were selected to obtain quite similar generation
times. Increasing the values of the evolutionary parameters would
result in more accurate test blocks, but at the cost of longer
generation times.

The run resulted in 3 test blocks. The total size of the generated
programs is about 1,380 bytes, and the data set contains 231 input
data. The time required to apply the test set is 101,685 clock
cycles.

Setup time comprises the activities of analysis of the SoC, setting
up the work environment and, for the EA-based methodology,
writing of the constraints library and some support scripts,
whereas generation time includes generation and simulation of
test blocks.

Table 6. PIA – Timing figures for both generation methods

Times Manual EA-based

Setup [h] 30 54

Generation [h] 30 2

Total [h] 60 56

1918

Table 7. UART – Timing facts for both generation methods

Times Manual EA-based

Setup [h] 30 60

Generation [h] 60 1.7

Total [h] 90 61.5

Table 6 and 7 clearly show that the total time for EA-based test
generation is lower than for the manual methodology. A longer
setup time is in fact more than offset by the shorter generation.

5. CONCLUSIONS
This paper presented an evolutionary approach to the generation
of test sets for peripheral modules in SoCs driven by high-level
Code Coverage Metrics (CCMs). The employed methodology
allows direct comparison with an existing manual workflow, and
compares favorably against it.
The EA-based method achieves better results in terms of CCMs
and fault coverage, and is cheaper than manual method in terms of
memory occupation and generation time. An EA, able to manage
flexible individual representations and to concurrently generate
mixed but highly correlated individuals, has been devised and is
also described.
For the purpose of evaluating the relation among RT- and gate-
level metrics, during the development of the PIA’s and UART’s
test sets the authors performed some gate-level fault simulations.
These simulations have confirmed that increasing RT-level code
coverage values always mean increasing gate-level fault coverage
values, and to conclude that a correlation between these two
groups of metrics exists.

Currently, the authors are working on an improvement of the
presented evolutionary method in order to reduce the required
setup time.

6. ACKNOWLEDGMENTS
The authors thank Alessandro Aimo, Luca Motta and Alessandro
Salomone for their invaluable help in designing the μGP3, and
Alberto Cerato for performing most of the experiments.

7. REFERENCES
[1] N. Kranitis, A. Paschalis, D. Gizopoulos, G. Xenoulis,

“Software-based self-testing of embedded processors”, IEEE
Transactions on Computers, Vol 54, issue 4, pp 461 – 475,
April 2005.

[2] A. Manzone, P. Bernardi, M. Grosso, M. Rebaudengo, E.
Sanchez, M. Sonza Reorda, "Integrating BIST techniques for
on-line SoC testing," IOLTS 2005: IEEE International On-
line Testing Symposium, 2005, pp. 235-240

[3] S.Thatte, J.Abraham, “Test Generation for Microprocessors”,
IEEE Transactions on Computers, Vol. C-29, pp 429-441,
1980

[4] C.A. Papachristou, F. Martin, M. Nourani, “Microprocessor
Based Testing for Core-Based System on Chip”, ACM/IEEE
Design Automation Conference, pp 586-591, 1999

[5] F. Corno, M. Sonza Reorda, G. Squillero, M. Violante, “On
the Test of Microprocessor IP Cores”, IEEE Design,
Automation & Test in Europe, pp 209-213, 2001

[6] A. Cheng, A. Parashkevov, and C.C. Lim, “A Software Test
Program Generator for Verifying System-on-Chip”, 10th
IEEE International High Level Design Validation and Test
Workshop 2005 (HLDVT’05), Napa Valley, California
USA: IEEE Computer, 2005, pp. 79-86

[7] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero, “An
RT-level Fault Model with High Gate Level Correlation”,
HLDVT2000: IEEE International High Level Design
Validation and Test Workshop, The Claremont Resort &
Spa, Berkeley, California, November 8-10 2000

[8] P. C. Maxwell, R. C. Aitken, V. Johansen, I. Chiang, “The
effect of different test sets on quality level prediction: When
is 80% better than 90%?”, IEEE proc. of the International
Test Conference, Oct. 1991, pp. 358-364

[9] Jimmy Liu Chien-Nan, Chang Chen-Yi, Jou Jing-Yang, Lai
Ming-Chih, Juan Hsing-Ming, “A novel approach for
functional coverage measurement in HDL Circuits and
Systems”, ISCAS2000: The 2000 IEEE International
Symposium on Circuits and Systems, pp 217-220, 2000

[10] E. Sanchez, M. Sonza Reorda and G. Squillero, “Test
Program Generation From High-level Microprocessor
Descriptions”, Test and validation of hardware/software
systems starting from system-level descriptions, Ed. M.
Sonza Reorda, M. Violante, Z. Peng, Springer publisher, 179
p, ISBN: 1-85233-899-7, pp. 83-106, Dec. 2004

[11] K. Jayaraman, V. M. Vedula and J. A. Abraham, “Native
Mode Functional Self-test Generation for System-on-Chip”,
IEEE International Symposium on Quality Electronic Design
(ISQED’02), pp. XX-XX, 2002

[12] E. Sanchez, L. Veiras Bolzani, M. Sonza Reorda, “On Test
Program Generation for Peripheral Components in a SoC
Resorting to High-Level Metrics”, [accepted for publication
on] 8th IEEE Latin-American Test Workshop, LATW2007.

[13] R. Chandramouli and S. Pateras, “Testing Systems on a
Chip,” IEEE Spectrum, Nov. 1996, pp. 1081-1093.

[14] F. Corno, G. Cumani, M. Sonza Reorda, G. Squillero,
“Efficient Machine-Code Test-Program Induction”,
CEC2002: IEEE Congress on Evolutionary Computation,
Honolulu, Hawaii (USA), pp. 1486-1491

[15] F. Corno, E. Sanchez, G. Squillero, “Evolving Assembly
Programs: How Games Help Microprocessor Validation”,
IEEE Transactions on Evolutionary Computation, Special
Issue on Evolutionary Computation and Games, Dec. 2005,
vol. 9, pp. 695-706

[16] http://aspspider.org/alexsalo/
[17] http://www.opencores.org

1919

