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ABSTRACT 
Test of peripheral modules has not been deeply investigated by 
the research community. When embedded in a system on chip, 
however, peripherals pose accessibility problems that may make 
traditional test approaches ineffective. In this paper an 
evolutionary methodology, based upon coverage metrics at high-
level, is described to automatically generate test sets for 
peripheral modules in a SoC. A general-purpose evolutionary tool, 
able to cultivate composite individuals, has been developed and is 
used for the test set generation. This tool is described and its basic 
concepts explained. The method compares favorably with results 
obtained by hand. 

Categories and Subject Descriptors 
B.8.1 [Performance And Reliability]: Reliability, Testing, and 
Fault-Tolerance 

General Terms 
Algorithms, Design, Experimentation. 

Keywords 
Peripheral testing, test programs, test blocks, SBST. 

1. INTRODUCTION 
Modern methodologies in industrial production of electronic 
circuits attempt to reuse and integrate as much as possible mature 
devices. The goal is that of decreasing both production costs and 
time-to-market. Since the mid ’90s, the System-on-Chip (SoC) 
paradigm is successfully being employed for integration and reuse 
of electronic devices. Indeed, SoC based applications are now 
used in practically every consumer electronics device around the 
world. 
Generally, a SoC integrates at least one processor core, some 
peripherals devices, and a few memory cores into a single chip. 
While simplifying the design and verification phases, the SoC 
architecture increases the complexity of the test process because it 
decreases the accessibility of each functional module into the 
chip. Thus, the increasing use of SoCs is leading to new issues on 
production testing methodologies. 
Different software-based and hardware-based techniques have 

been proposed to test SoCs and the cores they embed. Hardware-
based techniques are commonly based on scan chains or built-in 
self-test (BIST) insertion [13]. These methods are easy to 
implement and scale well with increasing complexity; however, 
they may generate high area overhead, impair performance, and 
require unacceptably long application times. In addition, at-speed 
testing of the SoC is not always economically feasible using scan 
chains, but test application with a reduced clock speed 
considerably decreases the efficiency of test vectors [8]. 
One of the less intrusive and more promising techniques is based 
on exploiting the processor core embedded into the SoC to 
execute a special program, which is able to test the processor, and 
other cores accessible by it [1]. This technique, called Software-
based Self-Test, or SBST, has several advantages with respect to 
traditional hardware-based ones: it allows cheap at-speed testing 
of the SoC; it is relatively fast and flexible; it has very limited, if 
any, requirements in terms of additional hardware for the test; it is 
applicable even when the structure of a core is not known, or can 
not be modified. As stated above, SBST is based on the execution 
of a test program previously loaded in an internal memory. This 
test program is not intended to perform any functionality but only 
to test a specific module or core internal to the SoC. The result 
produced by the system is checked by monitoring what is 
produced on specified output ports or memory variables. On the 
downside, SBST raises the issue of how to generate effective test 
programs. 
Appropriate test programs have been successfully exploited not 
only for manufacturing tests, but also for design validation or 
verification, incoming inspection, and on-line testing [2]. 
SBST techniques have been largely exploited on testing 
microprocessor cores; traditional methodologies resort to 
functional approaches based on exciting specific functions and 
resources of the processor [3]. New techniques, instead, differ on 
the basis of the kind of description they start from: in some case 
only the information coming from the processor functional 
description are required [1]; in other cases, a pre-synthesis RT-
level description is required [6]; most often, the gate-level 
description is exploited to generate an efficient set of test 
programs [5], especially if aimed at manufacturing test. 
Peripheral testing had not received the same attention that 
processor cores testing did. In fact, testing peripherals embedded 
in a SoC is an overlooked problem. However, the reduced 
accessibility of peripheral modules inside a chip may make the 
use of traditional testing methodologies, aimed at stand-alone 
peripheral chips, ineffective. 
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In this paper, we face the problem of testing peripheral 
components in a SoC resorting to a software-based approach. The 
presented methodology exploits RT-level Code Coverage Metrics 
(CCMs) on the generation of the test sets. 
The generation problem is approached resorting to the new 
implementation of an evolutionary algorithm (EA). The described 
methodology is applied to automatically generate test blocks for 
two peripheral cores embedded in a SoC that includes a Motorola 
6809 processor core. For the sake of completeness, this paper 
compares the automatic approach with the manual one described 
in [12]. 
The rest of the paper is organized as follows: section 2 recalls 
some background concepts, describes the RT-level coverage 
metrics suitable for test generation, and introduce some 
considerations regarding the generation process; section 3 outlines 
the methodology adopted for the generation of test set for 
peripheral testing. Section 4 introduces the experimental setup, 
describing the case study and detailing the workflow.  
Additionally, this section brings implementation details on the test 
generation process.  Finally, section 5 draws some conclusions. 

2. PERIPHERAL TESTING 
Generally speaking, a basic SoC is composed of a microprocessor 
core, some peripheral components, a few memory modules, and 
possibly customized cores. Figure 1 shows the basic block 
diagram of a typical SoC. An external Automatic Test Equipment 
(ATE) is supposed to be available for test application; it may 
interact with the SoC through the interface modules. Additional 
ports may be available to the ATE to access the SoC (e.g., an 
IEEE 1149.1 TAP port), but methodologies that use them are out 
of the scope of this paper. 

 
Figure 1. Block diagram of a SoC 

Test program generation for SBST may benefit from cross-
fertilization with the area of design validation. In fact, design 
validation during the pre-silicon phase is also performed resorting 
to suitable test programs. In [6] test programs are composed of 
dynamic sequences of code segments and are generated for 
simulation at the RT-level to verify application behaviors and 
detect hardware design bugs; once generated, these programs can 
be fruitfully exploited for later manufacturing test. However, the 
authors do not state a relationship between the test programs 
generated at high level and low-level fault coverage. 
In [7] the authors define a fault model at high level strongly 
correlated with the traditional low-level stuck-at fault. The 
presented methodology exploits the so called observability-
enhanced statement coverage metric and models single stuck-at 
bit faults on all assignment targets of the executed statements that 
respect a defined set of rules. These rules are defined to identify 
redundant faults in the fault list in order to increase the correlation 
between RT-level (high level) and gate-level fault coverage (low 
level). 

Despite the efforts, the correlation between high-level and low-
level metrics still remains vague in the general case, especially 
when large combinational blocks exist in the design, whose 
testability can barely be forecast when resorting to high-level 
metrics, only.  
Regarding test application, [4] and [5] describe suitable 
architectures able to support SBST. The approaches require an 
easily accessible RAM memory of sufficient size available into 
the SoC. An ATE is in charge of loading the test program into the 
memory when required, and the processor core is forced to 
execute it. Some mechanism must also be available to retrieve and 
check the results. Test execution is always performed at-speed, 
independently on the speed of the mechanisms used for loading 
the RAM and checking results: low-cost ATEs can thus be 
exploited, greatly reducing the cost for test. 
Peripheral testing problem has not been as deeply investigated as 
microprocessor testing. Some important reasons could motivate 
this fact: peripheral cores are usually smaller than processors by 
at least one factor of magnitude; stand-alone peripherals are 
reasonably easy to test; when the testing methodology is based on 
hardware insertion, the area overhead required to test peripherals 
is negligible. However, testing of peripheral cores embedded in a 
SoC leads to new issues even for hardware-based approaches: 
first of all, peripherals become less accessible due to the SoC 
structure; if the SoC design uses multiple clocks, scan insertion is 
complicated and may not obtain the expected coverage; finally, if 
SoC architecture exploits internal tristate buses to share resources 
among different modules, this requires the definition of quite 
complex constraints to properly generate scan vectors.  
Therefore, a software-based strategy for peripheral testing that 
uses a high-level model of the peripheral in the generation phase 
could be a suitable solution to overcome new testing issues on 
SoCs. Remarkably, there is special value in devising techniques 
starting from high-level descriptions, since they can be exploited 
even by soft-cores users (and not only by core developers) and 
make test reuse easier. On the other side, this is only possible if a 
well-known relationship exists between high-level and low-level 
metrics. 
In order to support the generation process of the test sets for 
peripheral cores, let us assume that a complete test set for 
peripheral cores is composed of some test blocks defined as basic 
test units composed of two parts: a configuration and a functional 
part. The configuration part includes a program fragment that 
defines the configuration modes used by the peripheral, and the 
functional part contains one or more program fragments that 
exercise the peripheral functionalities as well as the data set 
provided/read by the external test machine. Figure 2 shows the 
conceptual scheme of a test block. 

 
Figure 2. Conceptual scheme of a test block 
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Test set generation process exploits both the CCMs and the basic 
functionalities of each peripheral core to drive the generation 
process. 
The code coverage metrics suitable for guiding the development 
of the test sets for peripheral cores embedded in a SoC are listed 
in the following (and their definition briefly summarized for sake 
of completeness). 

• Statement coverage (SC) is the most basic form of code 
coverage: statement coverage is a measure of the number of 
executable statements within the model that have been 
exercised during the simulation run. Executable statements 
are those that have a definite action during runtime and do 
not include comments, compile directives or declarations. 
Statement coverage counts the execution of each statement 
on a line individually, even if there are multiple statements 
on that line. 

• Branch coverage (BC) reports whether Boolean expressions 
tested in control structures (such as the if- and while-
statement) are evaluated to both true and false. The entire 
Boolean expression is considered one true-or-false predicate 
regardless of whether it contains logical-and or logical-or 
operators. Branch coverage is sometimes called decision 
coverage. 

• Condition coverage(CC) reports the true or false outcome of 
each Boolean sub-expression, separated by logical-and and 
logical-or if they occur. It is an extension of branch 
coverage. Condition coverage measures the sub-expressions 
independently of each other. 

• Expression coverage (EC) is the same as condition coverage, 
but instead of covering branch decisions it covers concurrent 
signal assignments. It builds a focused truth table based on 
the inputs to a signal assignment using the same technique as 
condition coverage. 

• Toggle coverage (TC) reports the number of bits that toggle 
at least once from 0 to 1 and at least once from 1 to 0 during 
the logical simulation of the device. At the RT-level registers 
are targeted and, since RT-level registers correspond to 
memory elements with an acceptable degree of 
approximation, the toggle coverage is an objective measure 
of the activity of the design. 

 
According to the above definitions, maximizing all coverage 
metrics helps to better exercise the peripheral cores. However, it 
is essential to carefully choose the set of metrics to be maximized 
to reduce redundant efforts on the test set generation. 
Many authors hold that it is not possible to accept a single 
coverage metric as the most reliable and complete one [9]; thus, a 
coverage of 100% on any particular metric can hardly guarantee a 
100% fault coverage. Nowadays, thanks to modern logic 
simulators features, different metrics can be exploited to 
guarantee better performance of the test sets. Therefore, the test 
set generation trend is to combine multiple coverage metrics 
together to obtain better results. Consequently, it is extremely 
useful to complete the test sets by reaching complete coverage on 
different metrics [10]. 
Among the listed metrics, statement coverage deserves special 

attention because this one has been considered until now the most 
popular coverage metric to evaluate the effectiveness of test sets. 
In fact, statement coverage could be considered as the first metric 
to be maximized since this is the single most effective measure of 
design utilization during performance tuning. It is, however, not 
reliable for test coverage purposes. 
The selection of the sequence of other coverage metrics must be 
based on an analysis of the RT-level description of the targeted 
peripheral. As mentioned before, the first metric to be considered 
is normally the statement coverage; the successive metrics are 
strongly related to the description style used to write the 
peripheral model at high-level. For example, if the high-level 
description is based on a case or if-then structure the second 
coverage metric to be targeted is the branch metric. On the other 
side, if the description uses a set of variables computed on logical 
operations and Boolean expressions, we should consider the 
expression coverage as the most suitable metric.  
Let us consider the following VHDL code fragment to clarify the 
results that can be obtained using different metrics: 
CONTROL: process (INPUT) 

begin 

case INPUT is 

when (3 | 5) => 

Z <= A and B; 

when 1 => 

Z <= A or B; 

when others => 

null; 

end case; 

end process CONTROL; 

Let assume that there are two available sets of patterns for the 
control variable INPUT ranging from 0 to 7: 

set1 = {(0), (1), (3)} 

set2 = {(0), (1), (3), (5)}; 

For both input sets, the statement coverage and the branch 
coverage equal 100%; however, set2 reaches a higher value in 
the condition coverage, since this set of stimuli thoroughly 
exercises the statement “when (3 | 5) =>”. 

2.1 Traditional approaches 
The manual method [12] is based on the experience of a test 
engineer and resorts to a preliminary evaluation of the peripheral 
high-level description. The test engineers must also select the 
order in which the CCMs will be maximized. The order followed 
in the description of the CCMs is acceptable in most situations. 
The general scheme for manual test-set generation is shown in 
figure 3. In the first step, an initial test set is generated targeting 
to maximize the statement coverage; the first test block is only 
based on functional information about the targeted peripheral. 
Then, the generated test block is simulated using a RT-level 
description, gathering the first code coverage metrics figures. 
Following the selection of the most suitable metric (according to 
the considerations of the previous sub-section) a new set of test 
blocks looking for the saturation of the considered metric is 
devised. Once the first coverage metric is saturated, another one is  
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tackled in order to increase the testing capabilities of the 
generated test set [10].  
This process is repeated until sufficiently high coverage values 
are obtained for all the chosen metrics. Remarkably, it must be 
taken into consideration that in some cases the metrics chosen as 
critical may also differ, as well as the number of considered 
CCMs for sufficient code coverage.  
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Figure 3. Test set generation scheme 

The target value for each code metric is denoted by X% in figure 
3. It should be carefully identified based on the description style: 
100% code coverage is not always reachable, as explained in [9]. 
Differently from the manual method, in [11] a pseudo-exhaustive 
approach to generate functional programs for peripheral testing 
was presented. The proposed method generates a functional 
program for each possible operation mode of the peripheral core 
in order to generate control sequences which would place the 
peripheral in all possible functional modes. The method exploits 
the capacity of the embedded microprocessor to test peripheral 
cores at-speed. The pseudo-exhaustive approach was employed to 
test an Intel 8251 Universal Synchronous Asynchronous Receiver 
Transmitter peripheral core and about 68% of fault coverage was 
obtained. 

The pseudo-exhaustive approach [11] gives rise to a large number 
of functional programs, since one has to be written for every 
operation mode; this implies a large application time and a 
considerable memory occupation. 

3. PROPOSED APPROACH 
Fault coverage is a distinctly nonlinear function of the input 
patterns for most digital circuits, and peripheral modules are no 
exception. Moreover, the cases to cover for effective testing may 
be too numerous for a test engineer to handle without support. 
Although humans may cleverly identify critical corner cases for 
the operation of a circuit, in fact, they are not generally renowned 
for reliably considering large numbers of alternatives and 
selecting suitable subsets from those. These considerations make 
the test pattern generation amenable to the use of evolutionary 
algorithms. 

For every peripheral core into the SoC a test set is devised by 

using the high-level description of the component. It is worth 
noting that in the generation process only the CCMs have been 
used as feedback information. A fault simulation is subsequently 
performed to validate the generated test sets. 
Since the testing methodology presented here is based on a 
software-based approach, it is necessary to generate suitable test 
blocks containing program fragments able to not only configure, 
but also to exercise the peripheral core while working in normal 
mode operation. Additionally, it must be clear that the chosen 
data to be received/transmitted by the peripheral may also impact 
the final testing results. These data could be included into the test 
program or provided by the external test machine. Therefore, both 
test programs and data must be carefully combined in order to 
obtain high coverage figures. 

3.1 Evolutionary tool 
For the automatic generation of the test blocks an evolutionary 
tool named μGP3 has been employed. μGP3 is a general-purpose 
approach to evolutionary computation, derived from a previous 
version specifically aimed at test program generation. The 
problem of test program generation had already been tackled in 
the past by some of the authors [14] [15]. The efforts led to the 
implementation of a versatile evolutionary tool with a strong 
emphasis on assembly program generation, named μGP. This tool 
was successfully employed for test program generation, and 
proved versatile enough for such diverse activities as corewar 
program evolution, antenna array optimization, expression 
evolution. 

During several years the successive versions of μGP have been 
improved with numerous features to improve its performance. 
These include aging and eventual death of the individuals, a 
configurable size for the elite (individuals that never age), self-
adaptation of many evolutionary parameters such as operator 
activation probability and strength and of tournament size; an 
entropy fitness hole has also been added, as has clone detection 
and optional scaling/extermination. 

However, it reached a development point in which it was difficult 
to extend it and to work collaboratively on its enhancement; 
moreover, there was the need for a more comprehensive tool that 
allowed tackling different problems and experimenting 
evolutionary techniques untried before, such as support for 
multiple populations, possibly with different topologies, and for 
true multi-objective optimization. 

These considerations led to the decision to completely redesign 
the tool and implement it from scratch, basing its development on 
sound software engineering techniques and taking advantage of 
existing software and established standards. The tool was thus 
implemented in C++, and all input/output, except for the 
phenotype of the individuals to evaluate, is performed using XML 
with XSLT. 

The current version of the μGP3 comprises about 40,000 lines of 
C++ code, 85 classes, 108 header files and 103 C++ files1. 

                                                                 
1 μGP3 is available under the terms of GNU public license from 

SourceForge (http://ugp3.sourceforge.net/) 
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3.2 Evolutionary concepts 
3.2.1 Evolution unit 
μGP3 bases its evolutionary process on the concept of constrained 
tagged graph, that is a directed graph every element of which 
may own one or more tags, and that in addition has to respect a 
set of constraints. A tag is a name-value pair whose purpose is to 
convey additional information about the element to which it 
belongs, such as its name. Tags are used to add semantic 
information to graphs, augmenting the nodes with a number of 
parameters, and also to uniquely identify each element during the 
evolution. The constraints may affect both the information 
contained in the graph elements and its structure. Graphs are 
initially generated in a random fashion; subsequently, they may 
be modified by genetic operators, such as the classical mutation 
and recombination, but also by different operators, as required. 
The tool architecture has been specially thought for easy addition 
of new genetic operators as needed by the application. The 
activation probability and strength for every operator is an 
endogenous parameter. 

The genotype of every individual is described by one or more 
constrained tagged graphs, each of which is composed by one or 
more sections. Sections allow to define a global structure for the 
individuals that closely follows the structure of any candidate 
solution for the problem. 

3.2.2 Constraints 
The purpose of the constraints is to limit the possible productions 
of the evolutionary tool, and also provide them with semantic 
value.  

The constraints are provided through a user-defined library that 
provides the genotype-phenotype mapping for the generated 
individuals, describes their possible structure and to define which 
values the existing parameters (if any) can take. Constraint 
definition is left to the user to increase the generality of the tool. 

The constraints are divided in sections, every section of the 
constraints matching a corresponding section in the individuals. 
The constraints may specify every section as compulsory, 
meaning that the sections have to exist in every individual, or 
optional. Every section may also be composed of subsections: for 
each a minimum and a maximum number may be specified. 
Finally, the subsections are composed of macros, of which a 
minimum and maximum number can also be set. 

Constraint definition is flexible enough to allow the definition of 
complex entities, such as the test blocks described above, as 
individuals. Different sections in the constraints, and 
correspondingly in the individual, can map to different entities 
such as the configuration part of the program, the functional part, 
and the external data. No special tweaking of the tool is needed to 
handle these different concepts. 

3.2.3 Fitness 
Individual fitnesses are computed by means of an external 
evaluator: this is usually a script that runs a simulation using the 
individual as input and collects the results, but may be any 
program able to provide the evolutionary core with proper 
feedback. This complete decoupling between the evolutionary 
engine and the fitness evaluator makes it possible to use μGP3 
with most existing simulation tools. 

The fitness of an individual is represented by a sequence of 
floating point numbers optionally followed by a comment string. 
This is currently used in a prioritized fashion: one fitness A is 
considered greater than another fitness B if the n-th component of 
A is greater than the n-th component of B and all previous 
components (if any) are equal; if all components are equal then 
the two fitnesses are considered equal. The two value sequences 
may then be considered symbols in a string, and the fitnesses may 
be thought of as such strings, which are then compared 
lexicographically. For uniform comparison all those strings have 
to be equal length, meaning that the number of values in the 
individual fitness has to be specified before every run. It may, 
however, vary between one run and the next. 

3.2.4 Evolutionary scheme 
The evolutionary tool is currently configured to cultivate all 
individuals in a single panmictic population, although it can be 
configured to use an island model. The population is ordered by 
fitness. Choice of the individuals for reproduction is performed by 
means of a tournament selection; the tournament size τ is also 
endogenous. The population size μ is set at the beginning of a run, 
and the tool employs a variation on the plus (µ+λ) strategy: a 
configurable number λ of genetic operators are applied on the 
population. Since different operators may produce different 
number of offspring the number of individuals added to the 
population is variable. All new unique individuals are then 
evaluated, and the population resulting from the union of old and 
new individuals is sorted by decreasing fitness. Finally, only the 
first μ individuals are kept. 

To ensure that only different individuals are evaluated a hash is 
computed for each individual, only comparing individuals for 
equality if their hashes are the same. To promote diversity, 
individuals that are genetically equal to already existing ones, 
called clones, may have their fitness scaled by a fixed value in the 
range [0.0,1.0].  

The possible termination conditions for the evolutionary run are: a 
target fitness value is achieved by the best individual; no fitness 
increase is registered for a predefined number of generations; the 
evolution process is executed for the maximum number of 
generations. 

At the end of every generation the internal state of the algorithm 
is saved in XML format for subsequent analysis. This also 
provides a minimal measure of tolerance to system crashes. 

The use of XML with XSLT for all input and output allows the 
use of standard tools, such as browsers, for inspection of the 
constraint library, the populations and the configuration options 
[16]. 

4. CASE STUDY 
In order to experimentally demonstrate the suitability of the 
presented methodology, a SoC was implemented including a 
Motorola 6809 microprocessor, a serial communication peripheral 
(Universal Asynchronous Receive and Transmit, UART), a 
parallel communication peripheral (Peripheral Interface Adapter, 
PIA) and a RAM memory core. The system used derives from one 
available on an open source site [17]. Figure 4 shows the 
schematic view of the considered SoC. 
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The high-level description of every component was written in 
VHDL at RT-level; the whole SoC is described in about 12,000 
lines of code, and the synthesized circuit contains approximately 
20,000 equivalent gates. The following table summarizes 
implementation characteristics of the peripheral cores presented in 
the SoC, and it includes some facts at high and low levels of 
description. 
 

 
Figure 4. Case study architecture 

Table 1 shows details of both peripherals the PIA and the UART, 
including information at high and low-level. Rows 2 to 6 present 
CCMs information, such as the number of statement of the RT-
level descriptions of the peripherals. The reader should be aware 
that in the case of the PIA there are no available expressions to be 
considered; this is due to the specific design style used to describe 
the peripheral at RT-level. At low level (i.e., at gate level), rows 7 
and 8 illustrate the number of gates counted on the synthesized 
devices and the number of collapsed faults for the stuck-at model, 
respectively. 

Table 1. Implementation characteristics 

Description measure PIA UART 
statements 149 383 
branches 134 182 
condition 75 73 
expression N/A 54 

RT-level 

toggle bits 77 203 
gates 1,016 2,247 

Gate level 
faults 1,938 4,054 

Both the PIA and the UART peripherals can be configured to 
work in two functional modes with different communication 
schemes.  
The PIA can be used with the following characteristics: 

• polling or interrupt mode 
• parallel data communication (transmit and receive) with 

different control schemes.  
In the case of the UART, the following configuration modes can 
be used:  

• polling or interrupt mode 
• serial data communication (transmit and receive) with 

different data bit numbers, with or without parity, and with 1 
or 2 stop bits 

• serial transmit and receive using different communication 
rate ratios. 

To more thoroughly assess the proposed methodology, a test set 
for each peripheral core was generated resorting to both the 
manual and EA-based methodology. In both cases, the generation 
process uses only, as feedback or fitness values, information 
extracted from the RT-level simulation of the SoC (i.e., the high 
level metrics described in section 2.2). The manual method has 
been completely performed by an expert test engineer. 
The fault coverage figures reported in the following sections 
target the stuck-at fault model, and the gate-level fault simulations 
required were performed at the end of the generation processes in 
order to bring the reader the possibility to clearly assess the 
proposed methodology. 

4.1 Manual methodology setup 
The test set for each peripheral core is composed of many test 
blocks, each including two elements: the first one (configuration 
part) defines the operation mode to be adopted by the peripheral; 
the second element (functional part) exploits the peripheral 
functionalities (i.e., transmitting/receiving data). 
Based only on the functional analysis of the targeted 
communication peripheral, a first test block was developed. A 
RT-level simulation was then performed to collect the initial code 
coverage values.  
The development of each successive test block is based on 
analyzing the VHDL code style to identify the most suitable 
metric, and on its optimization.  
The analysis of the PIA’s VHDL description resulted in choosing 
the statement coverage metric as the most suitable to be targeted. 
This choice is justified by the fact that in the considered code the 
dominant structures can be categorized as statements. This means 
that most of the statements are not associated with any structure 
of the branch or condition types. When we had achieved 
satisfying statement coverage we could also observe acceptable 
percentages of coverage in the other metrics.  
Differing from the PIA, the UART required explicitly targeting 
several metrics to achieve useful results. Since the considered 
VHDL description models use several case instructions, the most 
suitable metric to be targeted after the statement is the branch 
coverage. As stated in [10], maximizing the branch coverage 
leads to almost fully maximized statement coverage, also.  
After the maximization of the branch metric, we analyzed the 
code coverage values of the other metrics and we observed that 
the value of the condition coverage was also sufficiently high; on 
the other side, the values obtained on the expression coverage 
were still relatively low.  
We found that the reason for this was mainly due to the fact that 
the transmission control is performed by reading the status 
register. The code lines performing this control can be classified 
as expressions. For this reason, the third metric we considered 
was the expression coverage. New test blocks were thus devised 
and iteratively improved until the expression coverage reached a 
reasonably high value.  

4.2 EA based methodology setup 
To adequately handle the requirements on peripheral testing, two 
constraints libraries were devised, one for each peripheral core. 
To quickly generate satisfactory test blocks it has been decided to 
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reduce as much as possible the size of the search space for the 
evolutionary tool. Basically, the constraints libraries were 
implemented using two sections: the first one concerning program 
generation, and the second one data generation. 

Program sections include two subsections, one for each operation 
mode: polling and interrupt. In both cases, the generated macros 
resemble the structure of a hand-written program: the initial 
section configures the peripheral core via a small number of fixed 
initialization sequences, whereas the second one applies or asks 
some data. It is clear that in the case of interrupts, the second part 
of the program is adequately placed in memory in order to 
correctly resolve an interrupt request. In the end a fixed 
observation sequence is provided. 

The configuration sections are multiple because the final goal is 
to generate a set of test blocks that collectively test the peripheral, 
not just one that does everything. Test blocks are sequentially 
generated until their cumulative coverage for all the listed CCMs 
is satisfactory. 

Data sections, on the other hand, contain some macros able to 
bring the peripheral core with input data, as well as with 
appropriate control signals in order to exercise the peripheral 
inputs. External data does not undergo any arbitrary restriction. 
Additionally, a waiting macro was included in order to better 
match timing constraints.  

As mentioned before, the evolutionary tool used as fitness values 
a sequence of floating point values representing the CCMs figures 
obtained by RT-level simulation. All the available coverage 
values were fed back to the evolutionary tool in the order 
specified above, in order to simultaneously optimize all of them. 
The experiments were launched using a multi-run scheme,. Thus, 
once the steady state was reached a new run is launched excluding 
the elements covered during the previous experiments. This 
scheme is followed until no further progress is possible.  

4.3 Comparison of the results 
The following tables compare the results obtained for each 
peripheral core following the manual and EA-based methods. 
Tables illustrate the percentage value of the different coverage 
metrics obtained at each step of the elaboration as well as the 
attained fault coverage (FC). For clarity, the intermediate results 
of the EA-based experiments are reported. Since they are only 
used to validate the evolutionary methodology, in the case of the 
manual method, only the final results are reported.  

Table 2. PIA – manual method 

Step SC BC CC EC TC FC 
8 100.0 96.9 89.3 N/A 100.0 89.78

Applying the manual methodology to generate test blocks for the 
PIA, eight different steps were required to obtain a satisfactory 
coverage on the CCMs. The 8 resulting test blocks are composed 
of 8 programs sizing about 200 bytes. Additionally, the final data 
set contains 19 input data and the duration of the complete set of 
test blocks requires 800 clock cycles. 

For the experiment a constraints library was written with about 
200 lines of XML. The evolutionary parameters were µ=50 and 
λ=70, whereas the steady state parameter was set to 10 
generations for each run.  

Table 3. PIA – EA based method 

Step SC BC CC EC TC FC 
1 81.1 73.4 73.3 N/A 94.8 80.50
2 93.0 86.7 88.0 N/A 100.0 88.67
3 97.2 92.2 89.3 N/A 100.0 89.45
4 99.3 96.1 89.3 N/A 100.0 89.73
5 100.0 96.9 90.7 N/A 100.0 90.20

The automatic method left us with 5 test blocks to test the PIA. 
The size of the generated programs is about 480 bytes, and the 
data set contains 80 input data. To apply the complete sequence of 
test blocks 5,800 clock cycles are required. It is interesting to see 
that the final values reported by both tables are almost identical; 
however, in the case of the EA-based method the FC is higher and 
the CC metric has been saturated. 

Table 4. UART – manual method 

Step SC BC CC EC TC FC 
7 95.5 92.9 97.3 72.2 89.2 80.96

Manually written programs amount to about 250 bytes. The final 
data set contains 10 input data and the duration of the complete 
set of test blocks involves about 5,000 clock cycles. The manual 
methodology produced 7 test blocks. The manual method was not 
able to reach higher coverage figures because of time constraints. 

Table 5. UART – EA based method 

Step SC BC CC EC TC FC 
1 99.2 97.3 98.6 85.2 100.0 76.86
2 100.0 98.9 98.6 92.6 100.0 91.16
3 100.0 98.9 98.6 94.5 100.0 91.43

A setup similar to that used for the PIA was implemented to 
generate the test sets for the UART: the constraints library counts 
about 440 lines of XML; µ was set to 30 and λ to 40, and the 
steady state parameter was, as above, 10 generations. It is 
important to note that the values of the evolutionary parameters in 
both experiments were selected to obtain quite similar generation 
times. Increasing the values of the evolutionary parameters would 
result in more accurate test blocks, but at the cost of longer 
generation times. 

The run resulted in 3 test blocks. The total size of the generated 
programs is about 1,380 bytes, and the data set contains 231 input 
data. The time required to apply the test set is 101,685 clock 
cycles.  

Setup time comprises the activities of analysis of the SoC, setting 
up the work environment and, for the EA-based methodology, 
writing of the constraints library and some support scripts, 
whereas generation time includes generation and simulation of 
test blocks. 

Table 6. PIA – Timing figures for both generation methods 

Times Manual EA-based 

Setup [h] 30 54 

Generation [h] 30 2 

Total [h] 60 56 
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Table 7. UART – Timing facts for both generation methods 

Times Manual EA-based 

Setup [h] 30 60 

Generation [h] 60 1.7 

Total [h] 90 61.5 

Table 6 and 7 clearly show that the total time for EA-based test 
generation is lower than for the manual methodology. A longer 
setup time is in fact more than offset by the shorter generation. 

5. CONCLUSIONS 
This paper presented an evolutionary approach to the generation 
of test sets for peripheral modules in SoCs driven by high-level 
Code Coverage Metrics (CCMs). The employed methodology 
allows direct comparison with an existing manual workflow, and 
compares favorably against it. 
The EA-based method achieves better results in terms of CCMs 
and fault coverage, and is cheaper than manual method in terms of 
memory occupation and generation time. An EA, able to manage 
flexible individual representations and to concurrently generate 
mixed but highly correlated individuals, has been devised and is 
also described. 
For the purpose of evaluating the relation among RT- and gate-
level metrics, during the development of the PIA’s and UART’s 
test sets the authors performed some gate-level fault simulations. 
These simulations have confirmed that increasing RT-level code 
coverage values always mean increasing gate-level fault coverage 
values, and to conclude that a correlation between these two 
groups of metrics exists.  

Currently, the authors are working on an improvement of the 
presented evolutionary method in order to reduce the required 
setup time. 
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