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ABSTRACT
In this paper, we propose a new approach that consists of the
extended compact genetic algorithm (ECGA) and split-on-
demand (SoD), an adaptive discretization technique, to eco-
nomic dispatch (ED) problems with nonsmooth cost func-
tions. ECGA is designed for handling problems with deci-
sion variables of the discrete type, while the decision vari-
ables of ED problems are oftentimes real numbers. Thus, in
order to employ ECGA to tackle ED problems, SoD is uti-
lized for discretizing the continuous decision variables and
works as the interface between ECGA and the ED problem.
Furthermore, ED problems in practice are usually hard for
traditional mathematical programming methodologies be-
cause of the equality and inequality constraints. Hence, in
addition to integrating ECGA and SoD, in this study, we
devise a repair operator specifically for making the infeasi-
ble solutions to satisfy the equality constraint. To examine
the performance and effectiveness, we apply the proposed
framework to two different-sized ED problems with nons-
mooth cost function considering the valve-point effects. The
experimental results are compared to those obtained by var-
ious evolutionary algorithms and demonstrate that handling
ED problems with the proposed framework is a promising
research direction.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global opti-
mization, constrained optimization; J.0 [Computer Appli-
cations]: General

General Terms
Algorithms, Management, Performance

Keywords
Economic dispatch, Valve-point effect, Genetic algorithm,
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1. INTRODUCTION
As the energy crisis is coming in the foreseeable future,

especially the shortage of oil and other natural resources,
studies on power systems become more and more impor-
tant. Among all aspects of power systems, including gener-
ation, reservation, distribution, transmission, etc., the eco-
nomic dispatch (ED) problem, consisting of several different
aspects, is an important function in the power system oper-
ation. Economic dispatch refers to the problem of appropri-
ately allocating generation among the generators to satisfy
the specified constraints, such as the minimum output and
maximum output of each generator, as well as to meet the
exact given power demand. Traditional mathematical ap-
proaches, such as Lagrangian multipliers, cannot be used to
solve the ED problem for modern generation units because
the cost function for modern generation units does not pos-
sess the property required by the traditional approaches,
such as monotonic increase. Moreover, the cost function of
the ED problem is usually highly nonlinear and has a lot of
local optima. As a consequence, even if there exists some
way to transform the cost function to certain form that can
be handled by a traditional method, the obtained solutions
may still be the local optima instead of the global one due
to the approximation or relaxation.

Thanks to the importance of and the challenge posed by
the ED problem, researchers have been making numerous
attempts to find or to develop suitable methodologies for
obtaining better solutions. Among the promising sets of op-
timization techniques for tackling the ED problem are the
methods proposed in the domain of evolutionary computa-
tion (EC). According to the optimization paradigm of most
EC methods, the cost function of an ED problem can be
simply considered as a black-box to optimize, and there-
fore, no special requirement for the cost function to satisfy.
There have been a number of studies on the use of EC meth-
ods to handle the ED problem, including evolutionary pro-
gramming (EP) [15, 9, 12], genetic algorithms (GAs) [14,
11, 4, 13, 2], and particle swarm optimization (PSO) [8],
and the like. In this research project, we continue to ex-
plore the possibilities along the line and successfully employ
a new integrated framework in the domain of evolutionary
computation. In particular, the framework consists of an
optimization engine: the extended compact genetic algo-
rithm (ECGA), designed for binary variables, and an in-
terface: split-on-demand (SoD), discretizing the continuous
variables. The integration of ECGA and SoD solves a 3-
unit ED problem as other algorithms do and obtains the
currently best known solution for a 40-unit ED problem.
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The remainder of the paper is organized as follows. Sec-
tion 2 presents the formulation for the ED problem adopted
in this study. Section 3 describes in detail the real-coded
ECGA, which is composed of ECGA and SoD, as well as
the constraint handling method. The ED problems for ex-
periments introduced and the numerical results are shown
in section 4, followed by the summary and conclusions of
this paper in section 5.

2. ECONOMIC DISPATCH
The problem of economic dispatch (ED) for power systems

is to find the optimal combination of power generations that
minimizes the total generation cost while satisfying the spec-
ified equality and inequality constraints. In order to model
the ED problem, a simplified cost function [1] of each gen-
erator which is represented as a quadratic function can be
described as

C =
X
j∈J

Fj(Pj) ,

Fj(Pj) = ajP
2
j + bjPj + cj , (1)

where

• C: the total generation cost;

• J : the set for all generators;

• Pj : the electrical output of generator j;

• Fj : the cost function for generator j;

• aj , bj , cj : the cost coefficients for generator j.

In the real world, the total generation have to be equal to
the total system power demand plus the transmission net-
work loss. However, for simplicity, the network loss is not
considered in this work as in many studies. Thus, the con-
straints for the ED problem include two main parts. The
first part is the equality constraint. The total system de-
mand must be equal to the sum of the output of all genera-
tors, which can be formulated as

D =
X
j∈J

Pj , (2)

where D is the total system demand.
The other part is the inequality constraint. The genera-

tion output of each generator has to be in the range of its
minimum output and maximum output. An the inequality
constraint for generator j can be put as

Pjmin ≤ Pj ≤ Pjmax , (3)

where Pjmin and Pjmax are the minimum and maximum
output of generator j, and Pj is the desired output.

In reality, the objective function of the ED problem is
more complicated because of the valve-point effects, the
change of fuels, and the other practical factors. Therefore,
the nonsmooth cost functions should be considered instead
of Equation (1), which is the most simplified form. The
inclusion of the valve-point loading effects makes the mod-
eling of the incremental fuel cost function of the generators
more practical and closer to that in the real world. Such a
model modification increases the non-linearity as well as the
number of local optima in the solution space and makes the
search algorithm easily trapped in the local optima. The

incremental fuel cost function of the generating units with
the valve-point loadings [14] can be represented as

Fj(Pj) = ajP
2
j + bjPj + cj +

|ej sin(fj × (Pjmin − Pj))| , (4)

where ej and fj are the coefficients for generator j to reflect
the valve-point effects. In this paper, we focus on solving the
ED problem with the valve-point effects, which is modeled
as Equation (4).

3. REAL-CODED ECGA FOR ED
In this section, we will describe in detail the real-coded

extended compact genetic algorithm (rECGA), which is an
integration framework of an optimization engine—the ex-
tended compact genetic algorithm (ECGA) [5]—and an adap-
tive discretization method–Split-on-Demand (SoD) [3]. We
will first introduce ECGA and SoD, followed by the integra-
tion of the two major components. Then, we will present
the constraint handling technique employed in the study for
handling the equality constraint of the ED problem.

3.1 ECGA for Optimization
The extended compact genetic algorithm (ECGA), pro-

posed by Harik [5], is based on the idea that probability
distributions can be used to model the population in ge-
netic algorithms and the choice of a good probability dis-
tribution is equivalent to learning linkage between decision
variables. The probabilistic models adopted in ECGA are a
class of probabilistic models known as the marginal product
models (MPMs). ECGA uses MPMs to model partitions of
decision variables. The measurement of distribution qual-
ity is quantified based on the minimum description length
(MDL) principle [10], which can considered as a realization
of Occam’s razor. The key concept of MDL is that all things
being equal, simpler distributions are better than more com-
plex ones. The MDL restriction penalizes both inaccuracy
and complexity, thereby leading to high quality probability
distributions.

ECGA can be algorithmically outlined as

1. Initialize a population of size N at random.

2. Apply tournament selection of size S.

3. Model the population by using a greedy MPM search.

4. Stop if the MPM model has converged.

5. Generate a new population with the MPM model.

6. Return to step 2.

The complexity measurement of MPM is the sum of Model
Complexity, formulated as Equation (5), and Compressed
Population Complexity, formulated as Equation (6).

Model Complexity = log N
X

I

2S[I] , (5)

where N is the population size, and S[I] is the length of the
Ith subset of genes.

Compressed Population Complexity = N
X

E(MI) , (6)
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where E(MI) is the entropy of the marginal distribution of
subset I. According to the MDL principle, the goal for the
greedy MPM search is to find an MPM model which has the
minimal combined complexity:

Combined Complexity = Model Complexity+

Compressed Population Complexity .

Instead of using traditional crossover and mutation op-
erators, ECGA generates the offspring population from the
MPM obtained in step 3. By doing such an operation, new
individuals are generated without breaking building blocks
represented in the form of gene groups. In ECGA, the origi-
nal framework can only handle binary decision variables. In
order to handle the ED problem, of which the decision vari-
ables are real numbers, certain technique is in order to inter-
face the optimization engine with the problem. In this study,
for the optimization functionality, we employ an ECGA ex-
tension, iECGA [6], proposed to directly handle integer vari-
ables in ECGA. For the variable-type interface, we adopt an
adaptive discretization method, call split-on-demand, which
is described in the next section.

3.2 Split on Demand for Discretization
Split-on-demand (SoD), proposed by Chen et al. [3], is an

adaptive discretization method that splits each dimension
of a real number into several intervals and encodes these
intervals with integers. The principle of SoD is to split the
real-number interval in which there are more than a certain
number of search points. In order to determine which real-
number interval to split, a split rate γ, where 0 < γ < 1,
is employed. Let the population size be N . If an interval
contains more than N × γ search points, the interval should
be split. By adjusting the split rate, we can control the
accuracy of the probabilistic model that we want to build to
describe the population as well as avoid using unnecessarily
long bit-strings for real-number discretization.

When all split operations are done, i.e., no interval con-
tains more than N×γ individuals, we decrease the split rate
by a factor, ε, where 0 < ε < 1. Having a high split rate is
similar to roughly dissecting the search space, while having
a low split rate is similar to dissecting the search space in
detail. Hence, the reason to manipulate the split rate in such
a manner is that we would like to keep the population diver-
sity and conduct a coarse-grained global search at the early
search stage, to obtain more and more information regarding
the solution space and know where to put the search points
for finding good solutions as the search process goes by, and
at the late search stage, to build accurate probabilistic mod-
els for conducting a fine-grained local search. The factor ε
can be used to control the speed of convergence. An appro-
priate ε can help the search algorithm to avoid wasting time
on useless regions as well as being trapped at local optima
and therefore is key to an successful, efficient search process.
The pseudo code for Split-on-Demand is shown Figure 1.

3.3 Real-Coded ECGA = ECGA with SoD
The basic idea of the proposed framework for real-coded

ECGA (rECGA) is to employ SoD to discretize the popu-
lation consisting of individuals of continuous decision vari-
ables and transform the individuals to those of integer vari-
ables. Then, we use ECGA to build marginal product mod-
els (MPMs) for the transformed individuals and generate the
next generation by sampling the constructed MPMs. The

1: procedure Split-on-Demand
2: Split(lower bound, upper bound)
3: γ ← γ × ε
4: end procedure

1: procedure Split(`, u)
2: m← random[`, u]
3: N` ← number of individuals in [`, m]
4: Nu ← number of individuals in [m, u]
5: if N` ≥ N × γ then
6: Split(`, m)
7: else
8: Add a code for the range [`, m]
9: end if

10: if Nu ≥ N × γ then
11: Split(m, u)
12: else
13: Add a code for the range [m, u]
14: end if
15: end procedure

Figure 1: Pseudo code for SoD.

procedure of rECGA can be put as the following steps:

1. Initialize a population of size N at random.

2. Apply tournament selection of size S.

3. Use SoD to encode each dimension of the variables.

4. Model the population composed of the encoded indi-
viduals by using a greedy MPM search.

5. Stop if the MPM model has converged.

6. Generate a new population with the MPM model.

7. Return to step 2.

In rECGA, we use SoD to encode each dimension of the in-
dividuals in the population after tournament selection and
do the MPM greedy search as in ECGA. At the end of each
iteration, local search operators may be employed to im-
prove the obtained solutions with a probability, but in the
present work, no local search operator is adopted such that
we can more accurately assess the optimization capability
of the combination of ECGA and SoD. Furthermore, some
constraint handling techniques have to be utilized to han-
dle the equality constraint in the ED problem, and those
adopted in the study will be described in the next section.

3.4 Constraint Handling
One of the most important topic for solving ED problems

is the equality and inequality constraints. These constraints
divide the entire solution space into lots of complicated re-
gions. Such a situation prevents many search techniques
and optimization algorithms from performing effectively and
efficiently on ED problems. Hence, in this study, we de-
vise a constraint handling technique specifically for the ED
problem based on the concept of repair. Repairing solu-
tions means transforming infeasible solutions into feasible
ones in some way. For the ED problem, although the in-
equality constraints (Equation (3)) might need handling in
traditional mathematical programming methods, they can
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Generator Pmin(MW) Pmax(MW) a b c e f

1 100 600 0.001562 7.92 561 300 0.0315
2 100 400 0.00482 7.97 78 150 0.063
3 50 200 0.00194 7.85 310 200 0.042

Table 1: Parameters for test case I (3-unit system) with the valve-point loading effect. a, b, c, e, and f are

the cost coefficients in the fuel cost function: Fj(Pj) = ajP
2
j + bjPj + cj + |ej sin(fj × (Pjmin − Pj))|.

be thoroughly ignored in the framework because the con-
trol of decision variable ranges is a built-in functionality of
EC methods. As for the equality constraint (Equation (2)),
we repair infeasible solutions in the following procedure.
Firstly, we generate a number sequence from 1 to the num-
ber of generator with a uniformly distributed random order.
Each number in the sequence denotes a generator in the so-
lution which needs repair. The whole sequence means the
order in which we process the specified generator. As an
example, for five generators, if we randomly generate a se-
quence: 3, 2, 5, 1, 4, the sequence means that we will firstly
process unit 3, then unit 2, unit 5, and so on. In the specified
order, we check the equality constraint, i.e., the sum of the
total power output has to be equal to the system demand.
If the equality constraint is not satisfied, the output of the
current generator is modified according to

P ′
i = min(UBound(Pi),

max((D −
nX

j=1,j 6=i

Pj), LBound(Pi))) ,

where D is the system power demand, LBound(Pi) and
UBound(Pi) are the lower bound and upper bound of Pi,
i.e., the inequality constraint of Pi.

The proposed framework, ECGA with SoD, incorporat-
ing the constraint handling technique is able to solve the
ED problem effectively. After adopting the described re-
pair mechanism, the real-coded ECGA for tackling the ED
problem can be outlined as the following steps:

1. Initialize a population of size N at random according
to the constraints posed to the generator output.

2. Apply tournament selection of size S.

3. Use SoD to encode each dimension of the variables.

4. Model the population composed of the encoded indi-
viduals by using a greedy MPM search.

5. Stop if the MPM model has converged.

6. Generate a new population with the MPM model.

7. Repair the infeasible individuals in the population.

8. Return to step 2.

In order to observe the effectiveness and to verify the per-
formance of the proposed approach, two ED problems, one
consisting of 3 generators and the other consisting of 40 gen-
erators, are served as a testbed. The experimental results
on the two ED problems are presented in the next section.

4. EXPERIMENTS AND RESULTS
In this study, we focus on solving the ED problem with

nonsmooth cost functions considering the valve-point effects.
The nonsmooth cost functions were described in section 2 as
Equation (4). To examine the performance, the real-coded
ECGA for ED problems proposed in section 3.4 is applied
to two ED problems which were adopted as test problems
in the literature [14, 12]. One consists of 3 generator units,
and the other consists of 40 generator units. The input
data for the 3-generator system are given by Walters and
Sheble [14], and those for the 40-generator system are given
by Sinha et al. [12], respectively. The detailed parameters
for the two test problems, including the lower bound and
upper bound for the output of each generator as well as the
coefficients for computing the cost functions, are given in
Tables 1 and 2. The total power demand for the 3-unit
system is 850MW, and the demand for the 40-unit system
is 10500MW. It has been proven that for the 3-unit system
given by Table 1, the global optimal solution is 8234.07 [7].
As for the 40-unit system, the global optimal solution has
not been determined. To our limited knowledge, the known
best solution reported in the literature is 122252.265 [8].

To conduct the experiments, the parameter settings for
the real-coded ECGA are that population size = 400, prob-
ability of crossover = 0.975, tournament size = 8, γ = 0.5,
ε = 0.999, and the maximum fitness evaluations is 200000.
For each problem, 100 independent trails were conducted
to collect statistically significant results. The obtained ex-
perimental results for the 3-unit system are given in Table 3
and are compared to those obtained by IEP [9], EP [15], and
MPSO [8]. The results for the small ED problem demon-
strate that ECGA with SoD was able to find the global
optimal solution presented by Lin et al. [7].

For the 40-unit system, the experimental results are com-
pared with those obtained by other methods described by
Sinha et al. [12], such as classical EP (CEP), fast EP (FEP),
modified FEP (MEFP), improved FEP (IFEP), as well as
the results obtained by MPSO [8]. The minimum costs,
i.e., the best solutions, achieved by each method are shown
in Table 4. The best solution obtained by the real-coded
ECGA is 121462.3591, which is better than the known best
result, 122252.265, reported in the literature [8]. For access
and verification purpose, the generator outputs and the cor-
responding costs of the best solution obtained by rECGA
are provided in Table 5.

Because of the stochastic nature of the methods in evolu-
tionary computation, in order to avoid reporting the result
of a “lucky shot” in the 100 independent trials, comparison
of the experimental results in a statistical manner should be
implemented. First of all, Table 6 shows the range of the
results in 100 trials obtained by CEP, FEP, MFEP, IFEP,
MPSO, and rECGA, where the listed results except for that
of rECGA are provided in [12, 8]. As we can observe in Ta-
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Generator Pmin(MW) Pmax(MW) a b c e f

1 36 114 0.0069 6.73 94.705 100 0.084
2 36 114 0.0069 6.73 94.705 100 0.084
3 60 120 0.2028 7.07 309.54 100 0.084
4 80 190 0.00942 8.18 369.03 150 0.063
5 47 97 0.0114 5.35 148.89 120 0.077
6 68 140 0.01142 8.05 222.33 100 0.084
7 110 300 0.00357 8.03 287.71 200 0.042
8 135 300 0.00492 6.99 391.98 200 0.042
9 135 300 0.00573 6.6 455.76 200 0.042
10 130 300 0.00605 12.9 722.82 200 0.042
11 94 375 0.00515 12.9 635.2 200 0.042
12 94 375 0.00569 12.8 654.69 200 0.042
13 125 500 0.00421 12.5 913.4 300 0.035
14 125 500 0.00752 8.84 1760.4 300 0.035
15 125 500 0.00708 9.15 1728.3 300 0.035
16 125 500 0.00708 9.15 1728.3 300 0.035
17 220 500 0.00313 7.97 647.85 300 0.035
18 220 500 0.00313 7.95 649.69 300 0.035
19 242 550 0.00313 7.97 647.83 300 0.035
20 242 550 0.00313 7.97 647.81 300 0.035
21 254 550 0.00298 6.63 785.96 300 0.035
22 254 550 0.00298 6.63 785.96 300 0.035
23 254 550 0.00284 6.66 794.53 300 0.035
24 254 550 0.00284 6.66 794.53 300 0.035
25 254 550 0.00277 7.1 801.32 300 0.035
26 254 550 0.00277 7.1 801.32 300 0.035
27 10 150 0.52124 3.33 1055.1 120 0.077
28 10 150 0.52124 3.33 1055.1 120 0.077
29 10 150 0.52124 3.33 1055.1 120 0.077
30 47 97 0.0114 5.35 148.89 120 0.077
31 60 190 0.0016 6.43 222.92 150 0.063
32 60 190 0.0016 6.43 222.92 150 0.063
33 60 190 0.0016 6.43 222.92 150 0.063
34 90 200 0.0001 8.95 107.87 200 0.042
35 90 200 0.0001 8.62 116.58 200 0.042
36 90 200 0.0001 8.62 116.58 200 0.042
37 25 110 0.0161 5.88 307.45 80 0.098
38 25 110 0.0161 5.88 307.45 80 0.098
39 25 110 0.0161 5.88 307.45 80 0.098
40 242 550 0.00313 7.97 647.83 300 0.035

Table 2: Parameters for test case II (40-unit system) with the valve-point loading effect. a, b, c, e, and f are

the cost coefficients in the fuel cost function: Fj(Pj) = ajP
2
j + bjPj + cj + |ej sin(fj × (Pjmin − Pj))|.

Generator GA IEP EP MPSO rECGA
(pop=20) (par=20)

1 300 300.23 300.26 300.27 300.267
2 400 400 400 400 400
3 150 149.77 149.74 149.73 149.733

TP 850 850 850 850 850
TC 8237.6 8234.09 8234.07 8234.07 8234.07

Table 3: Comparison of the experimental results obtained by various methods on the nonsmooth cost function
considering the valve-point loading effect. For the 3-unit system, IEP, EP, MPSO, and rECGA were able to
find the global optimum [7].
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CEP FEP MFEP IFEP MPSO rECGA

Minimum Cost 123488.3 122679.7 122647.6 122624.35 122252.265 121462.3591

Table 4: Comparison of the experimental results obtained by various methods on the nonsmooth cost function
considering the valve-point loading effect. For the 40-unit system, rECGA was able to find the best solution.

Generator Pmin(MW) Pmax(MW) Output Cost

1 36 114 110.80098 925.11565
2 36 114 110.88806 926.56631
3 60 120 97.40449 1190.63739
4 80 190 179.73300 2143.55011
5 47 97 96.15215 840.66343
6 68 140 140.00000 1596.46432
7 110 300 299.99898 3216.41474
8 135 300 284.62219 2780.24662
9 135 300 284.61234 2798.46198
10 130 300 130.00001 2502.06532
11 94 375 94.00003 1893.30606
12 94 375 94.00027 1908.17291
13 125 500 214.76169 3792.11715
14 125 500 394.27878 6414.85790
15 125 500 304.52026 5171.21428
16 125 500 394.28449 6436.71537
17 220 500 489.27966 5296.71703
18 220 500 489.27855 5288.76474
19 242 550 511.27996 5540.94200
20 242 550 511.28163 5540.95823
21 254 550 523.28030 5071.30855
22 254 550 523.28419 5071.38735
23 254 550 523.28495 5057.33548
24 254 550 523.28151 5057.26621
25 254 550 523.28214 5275.14526
26 254 550 523.27977 5275.09678
27 10 150 10.00013 1140.52698
28 10 150 10.00517 1140.64280
29 10 150 10.00018 1140.52812
30 47 97 87.84287 707.21302
31 60 190 189.99927 1643.98840
32 60 190 189.99996 1643.99109
33 60 190 189.99993 1643.99098
34 90 200 199.99994 2101.01644
35 90 200 199.99993 2043.72638
36 90 200 199.99972 2043.72436
37 25 110 110.00000 1220.16612
38 25 110 109.99978 1220.16484
39 25 110 109.99871 1220.15859
40 242 550 511.28401 5541.02984

Total Generation & Total Cost 10500 121462.3591

Table 5: The generator outputs and the corresponding costs of the best solution obtained by rECGA.
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Range of Cost

127.0 126.5 126.0 125.5 125.0 124.5 124.0 123.5 123.0 122.5 122.0 121.5
Method - - - - - - - - - - - -

126.5 126.0 125.5 125.0 124.5 124.0 123.5 123.0 122.5 122.0 121.5 121.0

CEP 10 4 - 16 22 42 4 2 - - - -
FEP 6 - 4 2 10 20 26 24 6 - - -

MFEP - - - - - 14 26 50 10 - - -
IFEP - - 2 - 4 4 18 50 22 - - -
MPSO - - - - - - - - 53 47 - -
rECGA - - - - - - - - - 2 97 1

Table 6: Comparison of method on relative frequency of convergence in the ranges of cost

rECGA MPSO

mean 121777.649963 122516.06455
t-value 27.8068829451749
p-value 2.2645299161711E-55

Table 7: The t-test for the experimental results ob-
tained by rECGA and MPSO under condition 1,
where the rECGA data set contains the actual re-
sults, and the MPSO data set contains forty-seven
122252.265 and fifty-three 122750.

ble 6, the distribution of the results can be considered bet-
ter than those for other evolutionary algorithms. Further-
more, to precisely compare the performance of rECGA and
MPSO [8] on the 40-unit ED problem, the t-test was con-
ducted to indicate the statistical significance of the obtained
results. Since the actual data set of the 100 trials for MPSO
is not available, in order to get a fair comparison and assess-
ment, we set up two conditions under which the t-test can be
conducted. According to the data given in Table 6, the first
condition is that the MPSO data set contains forty-seven
122252.265, which is the optimum reported for MPSO [8],
and fifty-three 122750, which is the mean value of 122500
and 123000. Table 7 demonstrates the t-test results for con-
dition 1. Given the p-value: 2.26 × 10−55, which is much
smaller than the commonly used significant levels, such as
0.05 (5%), 0.01 (1%), or 0.001 (0.1%), we can conclude that
the performance of rECGA on the 40-unit ED problem is
statistically significantly better than that of MPSO on the
same problem. For condition 2, the MPSO data set contains
forty-seven 122252.265, which is the optimum reported for
MPSO [8], and fifty-three 122500, which is the best value in
the range from 122500 to 123000. The t-test results under
condition 2 are shown in Table 8. Due to the change of the
standard deviation, the p-value becomes 9.09× 10−91. Such
a small p-value prevents us from accepting the null hypothe-
sis, which in this case is interpreted as that the performance
of rECGA and MPSO on the test problem is equivalent.

According to the results, we can know that the proposed
algorithm performed well on the two test ED problems. In
particular, for the 40-unit system, we improved the known
best solution from 122252.265 [8] to 121462.3591. The real-
coded ECGA is capable of solving ED problems effectively.

5. SUMMARY AND CONCLUSIONS
In this work, we employed the extended compact genetic

algorithm (ECGA) as an optimization engine and split-on-

rECGA MPSO

mean 121777.649963 122383.56455
t-value 39.4214198098397
p-value 9.0857670116394E-91

Table 8: The t-test for the experimental results ob-
tained by rECGA and MPSO under condition 2,
where the rECGA data set contains the actual re-
sults, and the MPSO data set contains forty-seven
122252.265 and fifty-three 122500.

demand (SoD), which is an adaptive discretization method,
as a variable-type interface. By combing ECGA and SoD, we
proposed the framework of the real-coded ECGA (rECGA)
and used rECGA on two economic dispatch (ED) problems
for examining the performance. Incorporating with the pro-
posed constraint handling technique, rECGA successfully
achieved the global optimal solution of the ED problem
consisting of 3 generators and was able to obtain the so-
lutions better than the known best solution reported in the
literature for the 40-unit ED problem. Furthermore, the t-
test was conducted to demonstrate that the performance of
rECGA is statistically significant.

The overall results of this study serves two important pur-
poses. The first one is that ECGA with SoD is capable of
appropriately handling the ED problem of which the cost
function is nonsmooth with the valve-point effect. Since the
energy crisis comes closer and closer, power related prob-
lems, such as the ED problem, become more and more im-
portant. Although the ED problems considered in this study
are not the most complicated ones, it is still a promising re-
search direction to employ the proposed framework to tackle
the similar problems such that some parts of current power
systems might be improved or enhanced.

On the other hand, the results of this study also demon-
strate that it is viable to employ an optimization algorithm
designed for handling decision variables of the discrete type
to handle problems consisting of continuous variables, as
long as a suitable interface is adopted. Although many
researchers do not consider the variable-type transforma-
tion as an issue, in practice, except for some limited cases,
most algorithms for discrete variables do not perform well
on continuous problems and vice versa. By comparing the
real-coded ECGA to the algorithms designed for continu-
ous variables, such as particle swarm optimization (MPSO)
and evolutionary programming (IFEP, MFEP, FEP, CEP),
this paper provides solid experimental results to serve as the
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proof of principle for transforming the variable type while
retaining the capability of the optimization algorithm.

Finally, the future work includes applying the proposed
framework to other important problems as well as develop-
ing different integrations of optimization engines and data
type transforming techniques. Theoretical understandings
for the quality of the transforming techniques, such as SoD
and fixed-height histogram, as well as for the interaction be-
tween the engine and the interface can also be considered.
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