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ABSTRACT
In web recommender systems, clustering is done offline to ex-
tract usage patterns and a successful recommendation highly
depends on the quality of this clustering solution. In these
types of applications, data to be clustered is in the form of
user sessions which are sequences of web pages visited by the
user. Sequence clustering is one of the important tools to
work with this type of data. One way to represent sequence
data is through weighted, undirected graphs where each se-
quence is a vertex and the pairwise similarities between the
user sessions are the edges. Through this representation, the
problem becomes equivalent to graph partitioning which is
NP-complete and is best approached using multiple objec-
tives. Hence it is suitable to use multiobjective evolutionary
algorithms (MOEA) to solve it. The main focus of this pa-
per is to determine an effective MOEA to cluster sequence
data. Several existing approaches in literature are compared
on sample data sets and the most suitable approach is de-
termined.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
I.5.3 [Pattern Recognition]: Clustering—algorithms; I.2.8
[Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
graph-based clustering, sequence clustering, multiobjective
evolutionary algorithms
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1. INTRODUCTION
Clustering can be defined as finding groups of similar ob-

jects in unlabeled data [14, 27]. Data to be clustered usually
occurs in two forms: data items given in metric space and
data items given as sequences. Most of the research in liter-
ature focus on clustering data items of the first type [2, 25].
In the second type of data, there is a similarity or a dissimi-
larity measure defined between each pair of data items. This
kind of data can be found in many real-world application do-
mains, such as biostatistics, medicine, telecommunications,
user interface studies, market basket data, and World Wide
Web (WWW) page request monitoring. Sequence clustering
is one of the important tools to understand and work with
this type of data.

One of the ways to represent sequence data is through
weighted, undirected graphs. Each sequence in the data
sets becomes a vertex of a graph and the pairwise similar-
ities or dissimilarities form the edges connecting the corre-
sponding vertices in the graph. Through this representation
approach, the sequence clustering problem becomes equiva-
lent to graph partitioning which is an NP-complete problem.
This makes it suitable to use evolutionary algorithms (EA)
to solve it. There are some successful studies in literature
which use EAs for clustering data items given with pairwise
similarity or dissimilarity values. In [22], a multiobjective
evolutionary algorithm is used to cluster files. This work
does not use a graph-based approach to the problem. In
[7] and [8] a graph-based evolutionary approach is used. In
[7], there is only one objective and the number of clusters
to separate the data into is fixed. However, in [22] and [8],
two objectives are used and the cluster count is automati-
cally determined by the EA. As has been shown in [19, 18],
[22] and [8], the clustering problem with automatic determi-
nation of the number of clusters is better approached with
multiple objectives. Results of these studies show that this
approach is indeed useful and provides good results.

The experiments performed in this study are part of an
ongoing research project on fast and efficient web recom-
mendation systems. All web recommendation systems are
composed of two components: an off-line component and an
on-line component. Clustering of user sessions is performed
in the off-line phase in order to extract usage patterns. The
performance of a web recommendation system depends on
how well the patterns are extracted from usage data. There-
fore, the main focus of this paper is to determine an effective
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multiobjective evolutionary algorithm (MOEA) to be used
in clustering sequence data. For this purpose, in the follow-
ing sections, several existing approaches in literature will
be empirically compared on sample data sets and the most
suitable approach will be determined.

The rest of the paper is organized as follows: Section 2
provides an overview of related work. In section 3, the
MOEAs used in this study are explained. Section 4 provides
the specifics about the experiments and section 5 provides
results and discussions. Section 6 concludes the paper and
gives directions for future work.

2. RELATED WORK
An important form of data considered in data mining is se-

quential data. This kind of data occurs in many application
domains, such as biostatistics, medicine, telecommunication,
user interface studies, market basket data, and World Wide
Web (WWW) page request monitoring. Understanding the
structure of such data still remains a challenge. For this rea-
son, sequence clustering has become increasingly important.
A representation of sequence data is a weighted, undirected
graph G where each sequence in the data set becomes a
vertex in the graph. The pairwise similarities of sequences
form the edges of the graph. Properties of a graph can then
be used to cluster sequences by constructing a set of sub-
graphs from G. The sequence clustering problem can then
be mapped onto a graph partitioning problem.

Most of the graph partitioning algorithms refine the par-
titions recursively. Such methods generate a hierarchy of
clusters presented as a dendogram to the user. At any
given point, a set of sequence clusters or subgraphs such
as {G1, G2, ..} are given. The problem in such methods is in
deciding whether a cluster, for example G2, should be split
further or not. Different cutoff values may result in different
clustering solutions. However, it is very difficult to put a sin-
gle cutoff value that separates all clusters. Many clustering
algorithms use graph properties to cope with this problem.
The algorithms in [13, 28] use purely graph theoretic ap-
proaches. However, there remains another important issue.
The simplest MIN cut algorithm tends to favor partition-
ing into subgraphs where a subgraph could be very small
compared to the others. Various constraints are introduced,
such as ratio cut [3], normalized cut [24], and min-max cut
[12], etc. to remedy this problem.

As has been shown in [19, 18], if the number of clusters
is not given beforehand and the algorithm has to determine
them automatically, it is better to use a multiobjective ap-
proach. Two successful methods exist in literature which
address the problem of clustering data defined through pair-
wise similarities or dissimilarities using a MOEA technique.

The MultiObjective Clustering with automatic K-determi-
nation (MOCK) [19], is a MOEA based on PESA-II [5]. It
optimizes two complementary objective functions: overall
deviation and connectivity. The algorithm generates clus-
terings with different cluster counts and quality. It also con-
tains a final step to select good solutions from the Pareto
approximation set and to determine the number of clusters
in the data set. MOCK works on data sets with numerical
feature vectors. It is adapted to data sets defined using pair-
wise similarity or dissimilarity information under the name
MOCK-around-medoids (MOCK-am) [22].

The approach proposed in [8] is also a MOEA but it
combines the objectives using an aggregated sum approach.

This requires the determination of appropriate weights for
each objective and the weight values that work better vary
across different data sets. Using sub-optimal weight vaues
decreases performance. So this becomes an optimization
problem in itself. It also optimizes two complementary ob-
jectives, namely the min-max-cut and the global silhouette
index. It is specifically developed to work with data sets de-
fined using pairwise similarity or dissimilarity information.

3. THE MOEAS FOR GRAPH-BASED CLUS-
TERING

In previous work by Handl et. al. [19, 18, 20, 21, 23],
it has been shown that the data clustering problem is best
approached using multiple objectives. When working with
multiple objectives, the search process consists of two stages.
In the first stage, a set of good solutions needs to be found.
In the second stage, which can be called the decision making
(DM) stage, a suitable solution for a particular application
needs to be selected. This is an important phase of a mul-
tiobjective optimization problem. The DM approaches can
be classified as:

• apriori preference approaches where the decision of the
relative importance of the objectives is made before
the search and a decision maker combines the objec-
tive functions into a scalar cost function converting the
problem into a single objective optimization problem

• progressive preference articulation where DM and op-
timization are intertwined and partial preference infor-
mation are provided at different stages of the search

• aposteriori approaches where a decision maker is pre-
sented with a set of pareto optimal solutions and the
decision maker selects the suitable one based on experi-
ence and also the requirements of a specific application

It is usually more preferable in most application domains to
use DM approaches of the third type. Due to the fact that
EAs are population based search methods where the search
goes on simultaneously at different points in the search space
and no assumptions need to be made about the shape or the
continuity of the pareto front, they are especially suitable
for obtaining the pareto front in an optimization problem
with multiple objectives. There are several very successful
MOEAs in literature among which SPEA2 [32], PESA-II [5]
and NSGA-II [10] can be named. Further information on
evolutionary algorithms for multiobjective problems can be
found in [4].

Several successful EAs have been proposed in literature
for the clustering problem. However since the main focus
of this paper is specifically on clustering data items given
with pairwise similarity or dissimilarity information, only
the approaches suitable for this problem will be presented
here. As mentioned in the previous section, two successful
MOEA approaches for clustering data items of this type
exist in literature. These two approaches will be further
explained in the following subsections.

3.1 MOCK-am
MOCK-am is an extension of the original MOCK algo-

rithm to be used with data which is given as pairwise sim-
ilarities or dissimilarities between the items. Like MOCK,
MOCK-am is also based on the elitist MOEA, PESA-II. It
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tries to optimize two conflicting objectives, namely: overall
deviation (OD) and connectivity (CO).

PESA-II is an elitist MOEA with a hyper-grid crowding
strategy in the objective space. It maintains two popula-
tions: an internal population (IP) with a constant size and
an external population (EP) with a limited size. The EP
contains good solutions which form an approximation to the
Pareto front. The IP consists of candidate solutions for the
external population. The objective space is divided implic-
itly into hyper-boxes. Every solution in the EP belongs to a
certain hyper-box. A non-dominated solution in IP can be
moved to EP under two conditions:

1. EP does not exceed its size limit

2. EP is full but the non-dominated candidate will not
be placed in the crowded hyper-box. Consequently
one solution from the most crowded hyper-box has to
be removed from the EP.

In PESA-II, the selection operation depends also on the
hyper-grid structure. Firstly, a populated hyper-grid is se-
lected randomly and a random individual is chosen from
that hyper-grid. The flow of the algorithm is given in Algo-
rithm 1. Detailed information on PESA-II can be found in
[5].

Algorithm 1 PESA-II

1: Set IP and EP to the empty set
2: Initialize and evaluate IP
3: Update EP
4: while max no of generations not reached do
5: Selection: select individuals from EP
6: Cross-over: create child through heuristic uniform

cross-over
7: Mutation: mutate child
8: Fitness Evaluation: evaluate children
9: Update EP according to the crowding strategy

10: end while
11: Return EP

In MOCK-am, individuals are encoded according to the
locus-based adjacency representation. Each individual g
contains N genes, where N is the size of the data set. Gene
values vary in the range [1,N]. The value j of the ith gene
corresponds to a link between the items i and j which indi-
cates that they are in the same cluster. The initialization is
based on minimum spanning trees (MST). For a given data
set the MST is generated using Prim’s algorithm. The first
individual becomes the complete MST and the ith individ-
ual is created by removing the i largest links from the MST.
This encoding enables the use of a standard uniform cross-
over operator. The mutation operator, restricted nearest
neighbour mutation, randomly links an item only to one of
its L nearest neighbours.

The first objective function overall deviation OD, calcu-
lated as in Eq. 1, sums the distances of items to their cluster
medoid. The distance function is the dissimilarity between
the item and the medoid of its cluster.

OD(C) =
X

C
k∈C

X
i∈Ck

δ(i, µk) (1)

where C is the set of all clusters and µk is the medoid of
the cluster Ck

The second objective connectivity (CO), calculated as in
Eq. 2, checks whether neighbouring items are in the same
cluster.

CO(C) =

NX
i=1

LX
j=1

xi,nni(j) (2)

where xr,s = 1
j
if@Ck : r, s ∈ Ck, 0 otherwise. In this

formula, N is the vertex count, L is a parameter for nearest
neighbour count, nni(j) is j-th nearest neighbour of vertex
i.

MOCK-am includes a further step, namely the automatic
solution selection. However this step is not implemented in
this study and the algorithm returns the whole EP instead
of suggesting an appropriate solution from the EP. Further
details on MOCK can be found in [19, 18] and on MOCK-am
in [22].

3.2 GraSC
The Graph-based Sequence Clustering (GraSC) algorithm

is an extension of the approach proposed in [8]. It has
been modified to use a MOEA to handle multiple objec-
tives instead of an aggregated sum technique. GraSC uses
SPEA2 which also is an elitist MOEA. It tries to optimize
two objectives, namely: min-max cut and the silhouette in-
dex. SPEA2 assigns fitness values to individuals according
to dominance and density criteria. The selection of indi-
viduals is also based on these criteria. Similar to PESA-II,
it maintains two populations: a current population and an
archive population. In each generation, the non-dominated
solutions in the current population and in the archive are
copied into the archive of the next generation. Selection
occurs from both the population and the archive. The al-
gorithmic flow of SPEA2 is given in Algorithm 2. Detailed
information on SPEA2 can be found in [32].

Algorithm 2 SPEA2

1: Randomly initialize population P 0 and create empty
archive population P̄0

2: while while max no of generations not reached do
3: Fitness assignment: calculate fitness values of individ-

uals in P t and P̄t

4: Environmental selection: copy nondominated individ-
uals in P t and P̄t to P̄t+1

5: Mate selection: select parents from P̄t+1 based on bi-
nary tournement selection

6: Cross-over: create child through heuristic uniform
cross-over

7: Fitness Evaluation: evaluate children
8: Place children in P t+1

9: end while
10: Return nondominated individuals in P̄t+1

In the fitness assignment step, a strength value S(i), a
raw fitness R(i) and a density value D(i) are calculated for
each individual i in the population Pt and the archive P̄t .
S(i) shows the number of dominated solutions by the ith
individual. R(i) is the sum of strength values of its domi-
nators. The density D(i) is determined as follows: For each
individual i, its distance to individuals is calculated and the
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distances are sorted in increasing order. The kth item σk
i

where k is usually chosen as the square root of whole popu-
lation size, is used for D(i) calculation: D(i) = 1

σk
i +2

The sum of R(i) and D(i) gives the final fitness F (i) of in-
dividual i. In the environmental selection step, the nondom-
inated individuals, whose fitness is lower than 1 are placed
in P̄t+1 . If the number of such individuals is bigger than the
archive size, the archive is truncated with a special opera-
tor. If the nondominated individuals cannot fill the archive
exactly, best dominated individuals are copied to P̄t+1 . As
mentioned above, the parents can be selected from both the
current population and the archive based on their fitness
value F (i) using tournament selection. The resulting child
is placed into the population of the next generation after
recombination and variation.

In GraSC, the representation and genetic operators are
the same as proposed in [8]. Each individual g contains N
genes where N is the total number of vertices in the graph.
Each gene corresponds to a vertex and the value of the gene
denotes the cluster number the vertex is placed in. How-
ever, for the same k-clustering of a graph there can be k!
possible genotypes if the cluster numbers lie in [0, k-1]. To
overcome this problem, a post-processing step is added af-
ter the initialization of individuals and operators. In this
step the individual is processed from left to right and the
clusters are re-numbered in increasing order. Individuals
are initialized randomly: Each gene is assigned a random
value between 0 and maxCluster where the maxCluster
parameter is the maximum allowed number of clusters in a
partitioning. For each iteration, N children are generated.
Each child is created from two parents selected through bi-
nary tournament selection. The heuristic cross-over opera-
tor operates as follows: Initially all vertices in the graph are
regarded as uncovered. At each step, one of the uncovered
vertices and one of the parents is selected randomly. The
uncovered vertices in the cluster which contains the selected
vertex in the selected parent are grouped into one cluster
and the newly covered vertices are marked as covered. This
process continues until all vertices are covered. At the end,
the child contains partial clustering information from both
of its parents. As noted in [8], the cross-over operator tends
to increase the number of clusters. To remedy this, in [8],
the heuristic disband operator is applied to the child after
crossover. In this step, the vertices belonging to the cluster
with the minimum intra-cluster similarity are placed in the
closest cluster. The closest cluster is defined as the clus-
ter with the maximum average similarity to the vertex. A
standard mutation operator is used. The cluster number of
each vertex is replaced by a new number in the given inter-
val based on a given mutation probability. After mutation,
some clusters may become empty. The cluster numbers are
enumerated again as a post-processing step. In GraSC, a
constraint on the minimum number of vertices in a cluster
(minNode) is defined. After the completion of the applica-
tion of the genetic operators, if there are any clusters with
less vertices than minNode, each vertex in that cluster is
moved to the closest cluster.

The first objective, the min-max-cut (MMC) [11] func-
tion, calculated as in Eq. 3 aims to maximize the similarity
within each subgraph while trying to minimize the similarity
between the subgraphs.

MMC(G) =

kX
m=1

cut(Gm, G \Gm)P
vivj∈Gm

E(vi, vj)
(3)

In this formula, cut(Gm, G \Gm) is the sum of edge weights
between the vertices in Gm and in the rest of the graph
G\Gm. E(vi, vj) gives the weight of the edge between the
nodes vi and vj . The edge weights correspond to the pair-
wise similarity values between data items. The MMC func-
tion should be minimized. For the minimum MMC value 0,
all vertices will be placed in the same cluster. Namely this
objective tends to decrease the number of clusters down to
one where all vertices are in the same cluster. The second
objective, the global silhouette value (GS) [30] calculated as
in Eq. 4, Eq. 5 and finally Eq. 6 is chosen to balance the
MMC function.

s(vi) =
bi − ai

max(bi − ai)
(4)

where nj gives the number of vertices in cluster Cj , ai

is the average dissimilarity between vi and other vertices
in Cj , bi is the minimum average dissimilarity between vi

and other clusters. In this work the dissimilarity values are
computed as 1− E(vi, vj). For each cluster Cj a silhouette
index Sj is assigned as in Eq. 5.

Sj =

Pnj

i=1 s(vi)

nj
(5)

The final formula of GS is as in Eq. 6.

GS =

Pk
j=1 Sj

k
(6)

GS has its highest value if all clusters are composed of
only one vertex. Thus it acts in just the opposite direction
of MMC. GS is a cluster validation index and can be used to
compare the qualities of clusterings with different number of
clusters. It takes on values in the range [-1,1]. For a good
clustering, it gets closer to 1 and to −1 otherwise. GS
should be maximized. To apply the MOEA, both of the
objectives should be taken as maximization. So the MMC
value is converted to 1/(1 + MMC) throughout the rest of
the paper.

Details on the representation, operators and the imple-
mentation of the objectives used in GraSC can be found in
[8].

4. EXPERIMENTS
The aim of the experiments is to determine an effective

MOEA to be used on data defined through pairwise similar-
ity or dissimilarity information. For the purposes of the ex-
periments, GraSC and MOCK-am variations will be tested
on two sets of test data. The first data set (CNET) is from
Clark Net web server which is a full internet access provider
for the Metro Baltimore-Washington DC area [1]. Firstly,
user sessions are extracted from the data set according to
[6]. Then, since each session consists of a sequence of URL
requests, the pairwise similarities of these user sessions are
calculated with an algorithm based on FastLSA [26]. Each
user session corresponds to a vertex on a graph and these
session similarities give the edge weights between the cor-
responding vertices. The resulting graph consists of 4792
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vertices and 444884 edges. The second data set (FILES)
is obtained as a dissimilarity matrix from [17]. The entries
in the matrix give information about pairwise dissimilarities
of some computer files based on Universal Similarity Metric
(USM) [29]. The matrix contains 911 rows and 911 columns.

MOCK-am and GraSC use different initialization meth-
ods, MOEAs, operators and objectives. To see the individ-
ual effects of the selected MOEAs, the objective functions
and other algorithmic details like representation of candi-
date solutions, initialization and genetic operators, differ-
ent variations of MOCK-am and GraSC which contain var-
ious combinations of the above are implemented. All im-
plemented variations are given in Table 1. By comparing
the different variations with each other it will be possible to
identify the best initialization method, operator group and
MOEA combination.

For GraSC, default algorithmic details (gs-default) de-
notes direct encoding (DE), random initialization (RI) and
the default operator group consists of the heuristic cross-
over operator, standard mutation and the heuristic disband
operator. Default algorithmic details for MOCK-am (mock-
default) are locus-based adjacency representation (LAR),
initialization based on minimum spanning tree (MST) and
the default MOCK operators which consist of uniform cross-
over and restricted nearest neighbour mutation.

Table 1: Implemented algorithm variations

Variations MOEA Obj. Algorithmic Details
A1 SPEA2 MMC,GS gs-default
A2 PESA-II MMC,GS gs-default
B1 SPEA2 MMC,GS DE,MST,def.op.
B2 PESA-II MMC,GS DE,MST,def.op.
C1 SPEA2 MMC,GS mock-default
C2 PESA-II MMC,GS mock-default
D1 SPEA2 MMC,GS LAR,RI,def.Mock op.
D2 PESA-II MMC,GS LAR,RI,def.Mock op.
E1 SPEA2 OD,CO gs-default
E2 PESA-II OD,CO gs-default
F1 SPEA2 OD,CO mock-default
F2 PESA-II OD,CO mock-default

The general parameter settings for GraSC and MOCK-am
used in the experiments are given in Table 2. The L value
of the restricted nearest neighbour mutation and medoid
computation is selected as 10. For PESA-II the EP size is
1000 and the IP size is 10. The resolution of hypergrid per
dimension is 10. For SPEA-II the population size is 50 and
the archive size is 20. The general MOCK-am settings are
selected as suggested in [22].

Table 2: General Settings
Parameter GraSC MOCK-am

Num.of Gen. 1000 1000
Recom. Rate 1 0.7

Mutation Rate 1/N 1/N
MinNode 2 2

Each variation is run 10 times. For each specific variation,
the quality of its runs are calculated by dominance ranking :
For each approximation set, the number of sets by which
the set is dominated is counted [15]. The best and the worst
runs and the average rank are identified according to this
dominance ranking. The approximation set with an aver-
age dominance rank is selected for further evaluation of the
corresponding variation.

To compare the approximation sets of the different vari-
ations the binary ε-indicator [33] is used. The general defi-
nition of binary ε-dominance is given as follows: In a min-
imization problem with n positive objectives an objective
vector z1 = z1

1 , z1
2 , . . . , z1

n ε-dominates another objective vec-
tor z2 = z2

1 , z2
2 , . . . , z2

n(z1�ε z2) if ∀1 ≤ i ≤ n : z1
i ≤ εz2

i for
a ε > 0

The binary ε-indicator Iε is defined as in Eq. 7.

Iε = inf{∀z2 ∈ B∃z1 ∈ A : z1 �ε z2} (7)

where A and B are two approximation sets. The boolean
function F := (Iε(A, B) ≤ 1 ∧Iε(B, A) > 1) is a comparison
method to show the relation between A and B. If F returns
true, A is a better approximation than B. Otherwise it is not
possible to determine which one is better. This indicator is
used in this study to compare different variations using the
same set of objective functions.

In the final stage, the best variation for each objective
group is identified. The pareto front for each is plotted and
the most promising solutions are manually selected from the
corresponding graphs by an expert on web mining. Several
cluster validation indices [16] exist in literature to assess the
quality of clustering solutions. Since the approaches tested
in this study allow the determination of clusters automat-
ically, the selected cluster validity index should be able to
compare clustering solutions having a different number of
clusters. Two validity indices are selected as suitable for this
purpose: namely the silhouette index [30] and the Davies-
Bouldin index [9]. The silhouette index is an objective in
GraSC, therefore a second index is also chosen to provide
a fair comparison between the two approaches. The global
silhouette values (GS) and the Davies-Bouldin index (DB)
values are calculated for the selected solutions and compar-
isons are made based on the obtained values. GS values are
calculated using Eq. 4, Eq. 5 and Eq. 6. The original DB
index is defined for metric data in [9]. It has been modified
in [31] for being used on graphs which is more suitable to be
used in this study. The DB index is calculated using Eq. 8,
Eq. 9, Eq. 10, Eq. 11.

∆(Ci) =
1

|Ci| ∗ (|Ci| − 1)

X
vi,vjεCi,vi 6=vj

d(vi, vj) (8)

where ∆(Ci) is the average diameter of cluster Ci, |Ci| de-
notes the number of vertices in cluster Ci and d(vi, vj) is the
dissimilarity between the two vertices.

δ(Ci, Cj) =
1

|Ci| ∗ (|Cj |
X

viεCi,vjεCj

d(vi, vj) (9)

where δ(Ci, Cj) is the average linkage between the two clus-
ters.
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DBj(Cj) = maxi6=j{
∆(Ci) + ∆(Cj)

δ(Ci, Cj)
} (10)

where DBj is the average similarity between cluster Cj and
its most similar one.

DB(C) =
1

k

kX
j=1

DBj(Cj) (11)

where DB(C) gives the DB index value of the clustering
solution C. A lower value of DB index indicates a good
clustering solution.

5. EXPERIMENTAL RESULTS
The results of the boolean function F based on the binary

ε-indicator are given in Table 3 and Table 4. The first two
rows are the contestant variations and the last row shows
which variation is better than the other according to the ε-
indicator. The “-” sign indicates that neither one of the vari-
ations has a precedence over the other. For test set FILES,
all the variations listed in Table 1 are tested. For the CNET
test set, the variations denoted as A1, A2, C1, C2, E1, E2,
F1 and F2 in Table 1 are tested.

Table 3: Results for Test Set CNET
Var. 1 Var.2 Better Var.

A1 A2 A1
C2 A2 C2
C2 A1 C2
C1 A1 C1
C1 C2 C1
F1 E1 F1
F2 E2 F2

According to the obtained binary ε-indicator results for
CNET, the C1 variation has produced the best Pareto ap-
proximation among the approaches using the objectives MMC
and GS. It is possible to rank the algorithms as follows: C1,
C2, A1, A2. Among the algorithms with objective functions
OD and CO, E1 and E2 has the worst Pareto approxima-
tion sets. If we look at clustering solutions of these algo-
rithms, we see that almost all graphs are partitioned into
maxCluster number of clusters. Namely, just changing the
objective functions of the same algorithm affects the perfor-
mance of the algorithm badly. E1 and E2 are both domi-
nated by F1 and F2. However it is not possible to distinguish
F1 and F2 from each other.

For the test set FILES, it is also possible to rank the
variations with objective functions MMC and GS based on
the obtained binary ε-indicator values as C1, C2, A2, A1.
Again the initialization and operators of MOCK are seen to
be more successful than the random initialization method
and the GraSC operators. To see the individual effect of the
initialization based on MST, the algorithms are run with
MST-initialization and GraSC operators (variations B1 and
B2) and also with random initialization and MOCK-am op-
erators (variations D1 and D2) on this test set. It is seen
that B1/B2 has a better Pareto approximation than A1/A2
and C1/C2 are also better than D1/D2. In conclusion, ini-
tialization based on MST improves the performance of the
variations.

Table 4: Results for Test Set FILES
Var.1 Var.2 Better Var.
B1 A1 B1
A2 A1 A2
A2 B2 A2
A2 C2 A2
A2 C2 -
B1 C1 -
B1 B2 -
C1 A1 C1
C1 B1 -
C1 C2 C1
C1 D1 C1
D1 A1 D1
F1 E1 F1
F2 E2 -

The approximation sets for the variation C1 which is the
best among the all the variations using the objectives MMC
and GS and F2 which is the best among the all the vari-
ations using the objectives OD and CO are given as a set
of plots as Figure 1 and Figure 2 for CNET data set and
as Figure 3 and Figure 4 for FILES data set. In Figure 1
and Figure 3 the x-axis gives the normalized GS value and
the y-axis gives the converted MMC value. In Figure 2 and
Figure 4 the x-axis gives the normalized CO value and the
y-axis gives the normalized OD value. Note that the GS and
the converted MMC are required to be maximized and OD
and CO are required to be minimized. The most promis-
ing solutions, manually selected by the web mining expert
are marked on the corresponding plots with an “X”. The
GS and DB indices of the actual clustering solutions cor-
responding to these points are listed in Table 5. As can
be seen from the GS and DB index values, the C1 varia-
tion (mock-defaults, MMC and GS objectives and SPEA2)
is better than the F2 variation (mock-defaults, OD and CO
objectives and PESA-II) for both data sets.

Figure 1: Pareto Appr. Plot of C1(CNET)

6. CONCLUSION
The experiments performed in this study are part of an

ongoing research project on fast and efficient web recom-
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Figure 2: Pareto Appr. Plot of F2(CNET)

Figure 3: Pareto Appr. Plot of C1(FILES)

mendation. In web recommender systems, clustering can be
applied offline to extract usage patterns. In such web rec-
ommenders, a successful recommendation highly depends on
the quality of this clustering solution. In these types of ap-
plications, data to be clustered is in the form of user sessions
which are sequences of web pages visited by the user. Se-
quence clustering is one of the important tools to work with
this type of data. The main focus of this paper is to de-
termine an effective MOEA to cluster sequence data given
through pairwise similarity or dissimilarity data which can
be represented as a graph. Two major MOEA approaches
from literature for clustering such data sets are compared
and the most suitable method is determined through the
experiments. It can be seen from the results that an initial-
ization based on a MST improves the clustering solution.
Also optimization objectives exploiting properties of graphs
are better than those which do not. When combined with
these objectives and the MST based initialization technique,
the SPEA2 algorithm performs better than PESA-II. As a
future work, this clustering module will be integrated into a
web recommender system.
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Figure 4: Pareto Appr. Plot of F2(FILES)

Table 5: Evaluation Results
C1 F2

Data Set GS DB k GS DB k
CNET 0.7979 0.7372 5 0.5247 1.2962 7
FILES 0.614 1.09757 3 0.048 1.9065 2
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