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ABSTRACT

Quantum effects are a natural phenomenon and just like
evolution, or immune processes, can serve as an inspiration
for the design of computing algorithms. This study illus-
trates how a real-valued quantum-inspired evolutionary al-
gorithm (QEA) can be constructed and examines the utility
of the resulting algorithm on an important real-world prob-
lem, namely the calibration of an Option Pricing model.
The results from the algorithm are shown to be robust and
sensitivity analysis is carried out on the algorithm parame-
ters, suggesting that there is useful potential to apply QEA
to this domain.

Categories and Subject Descriptors: Real-World Ap-
plications - Finance

General Terms: Experimentation

Keywords: Real-valued quantum-inspired evolutionary al-
gorithm, option pricing

1. INTRODUCTION

This study applies a quantum evolutionary algorithm in or-
der to calibrate a popular option pricing model used ex-
tensively in industry known as the Variance Gamma option
pricing model.

In recent years there has been a substantial interest in the
theory and design of quantum computers and in the design
of programs which could run on such computers. One inter-
esting strand of research has been the use of natural com-
puting (for example GP) to generate quantum circuits or
programs (algorithms) for quantum computers [18]. There
has also been associated work in a reverse direction which
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draws inspiration from concepts in quantum mechanics in
order to design novel natural computing algorithms. This
is currently an area of active research interest. For exam-
ple, quantum-inspired concepts have been applied to the
domains of evolutionary algorithms [16, 6, 8, 20, 21], social
computing [22], neuro-computing [11, 5, 19], and immuno-
computing [12, 9]. A claimed benefit of these algorithms is
that because they use a quantum representation, they can
maintain a good balance between exploration and exploita-
tion. It is also suggested that they offer computational ef-
ficiencies as use of a quantum representation can allow the
use of smaller population sizes than typical evolutionary al-
gorithms.

While quantum-inspired evolutionary algorithms (QEA)
offer interesting potential, as yet due to their novelty, only
a small number of recent papers have implemented a QEA,
typically reporting good results [20, 21]. Consequently, we
have a limited understanding of the performance of these
algorithms and further testing is required in order to deter-
mine both their effectiveness and their efficiency. It is also
noted that although a wide-variety of biologically-inspired
algorithms have been applied for financial modelling [2], the
QEA methodology has not yet been applied to the finance
domain. This study addresses both of these research gaps.

2. THE QUANTUM-INSPIRED GENETIC
ALGORITHM

The best-known application of quantum-inspired concepts
in evolutionary computing is the quantum-inspired genetic
algorithm (QIGA) [16, 20, 21]. The QIGA is based on the
concepts of a qubit (quantum bit) and the superposition of
states. In essence, in QIGAs the traditional representations
used in evolutionary algorithms (binary, numeric and sym-
bolic) are extended to include a quantum representation.
Under a quantum representation, the basic unit of informa-
tion is no longer a bit which can assume two distinct states
(0 or 1), but is a quantum system. Hence, a qubit (the
smallest unit of information in a two-state quantum sys-
tem) can assume either of the two ground states (0 or 1)
or any superposition of the two ground states (the quantum
superposition). A qubit can therefore be represented as
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Figure 1: Quantum-inspired evolutionary computing
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where |0) and |) are the ground states 0 and 1, and a & 3
are complex numbers with |a|? 4 |3|> = 1, that specify the
probability amplitudes of the two ground states. The act
of observing (or measuring) a qubit projects the quantum
system onto one of the ground states. |a|? is the probability
that the qubit will be in state 0 when it is observed, and
|3 is the probability that it will be in state 1. Hence, a
qubit encodes the probability that a specific ground state
will be seen when an observation takes place, rather than
encoding the ground states themselves. In order to ensure
this probabilistic interpretation remains valid, the values for
« and f3 are constrained such that |a|* + |3]* = 1.

More generally, a quantum system of m qubits can rep-
resent a total of 2™ states simultaneously. In the language
of evolutionary computation a system of m qubits can be
referred to as a quantum chromosome and can be written as
a matrix

(65] (65)

Qm
B B2 Bm

A key point when considering quantum systems is that they
can compactly convey information on a large number of pos-
sible system states. In classical bit strings, a string of length
n can represent 2" possible states. However, a quantum
space of n qubits has 2" dimensions. This means that even
a short qubit can convey information on many possible sys-
tem states. For example, a 3 bit quantum system can encode
8 (2%) distinct binary strings, and an 8 bit quantum system
can encode 256 distinct strings. Due to its probabilistic
interpretation, a single qubit of length m can simultane-
ously represent all possible bit strings of length 2™. This
implies that it is possible to modify standard evolutionary
algorithms to work with (in the limit) a single quantum in-
dividual, rather than having to use a population of solution
encodings. The qubit representation of the system states
can also help maintain diversity during the search process
of an evolutionary algorithm, due to its capability to repre-
sent multiple system states simultaneously.

(2)
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2.1 Real-valued quantum-inspired
evolutionary algorithms

In the initial literature which introduced the QIGA, a binary
representation was adopted, wherein each quantum chromo-
some was restricted to consist of a series of Os and 1s. The
methodology was recently extended to include real-valued
vectors by da Cruz et al. [4]. As for binary-representation
QIGA, real-valued QIGA maintains a distinction between
a quantum population and an observed population of (in
this case) real-valued solution vectors. However the quan-
tum individuals have a different form to those in binary-
representation QIGA. The quantum population Q(¢) is com-
prised of N quantum individuals (¢; : ¢ = 1,2,3,..., N),
where each individual 4 is comprised of G genes (gi;; : j =
1,2,3,...,G). Each of these genes consist of a pair of val-
ues ¢i; = (pij, 04) where pij, 04 € R represent the mean
and the width of a square pulse. Representing a gene in
this manner has a parallel with the quantum concept of su-
perimposition of states as a gene is specified by a range of
possible values, rather than by a single unique value.

2.1.1 Algorithm
The real-valued QEA algorithm is as follows

Set t=0
Initialise Q(t) of N individuals with G genes

While (t < max t)
Create the PDFs (and corresponding CDFs)for each gene locus
using the quantum individuals
Create a temporary population, denoted E(T), of K real-valued
solution vectors by observing
Q(t) (via the CDFs)
If (t=1) Then C(t)=E(t)
(Note: the population C(T) is maintained between iterations of
the algorithm)
Else
E(t)=0utcome of crossover between E(t) and C(t)
Evaluate E(t)
C(t)= K best individuals from E(t) U C(t)
End if

With the N best individuals from C(t)
Q(t+1)=0utput of translate operation on Q(t)
Q(t+1)=0Output of resize operation on Q(t+1)
t=t+1

Endwhile
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Figure 2: A square pulse, representing a quantum gene, with a width of 150, centred on -50. The height of

the gate is 0.001666

2.1.2  Initialising the Quantum Population

At the start of the algorithm, the quantum genes in each
member of the quantum population are initialised by ran-
domly selecting a value from within the range of allowable
values for that dimension. A gene’s width value is set to the
range of allowable values for the dimension. For example,
if the known allowable values for dimension j are [—75, 75]
then g;; is initially determined by randomly selecting a value
from this range (say) -50, and the corresponding width value
will be 150. Hence, ¢;; = (—50, 150). The square pulse need
not be entirely within the allowable range for a dimension
when it is initially created as the algorithm will automati-
cally adjust for this as it executes. The height of the pulse
arising from a gene is calculated using

iy = 124 0
where N is the number of individuals in the quantum pop-
ulation. This equation ensures that the probability density
functions (PDFs) (see next subsection) used to generate the
observed individual solution vectors will have a total area
equal to one. Fig. 2 provides an illustration of a quantum
gene where N=4.

2.1.3 Observing the Quantum Chromosomes

In order to generate a population of real-valued solution
vectors, a series of observations must be undertaken using
the quantum population. A pseudo-interference process be-
tween the quantum individuals is simulated by summing up
the square pulses for each individual gene across all mem-
bers of the quantum population. This generates a separate
PDF (just the sum of the square pulses) for each gene and
eq. 3 ensures that the area under this PDF is one. Hence,
the PDF for gene j on iteration ¢t is

PDF;(t) = Zgij (4)

where g;; is the square pulse of the 4" gene of the i*" quan-
tum individual (of N). To use this information to obtain an

observation, the PDF is first converted into its correspond-
ing Cumulative Distribution Function (CDF)

CDF;(z) = /L Y PDF,(x)dz )
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where U; and L; are the upper and lower limits of the prob-
ability distribution. By generating a random number r from
(0,1), the CDF can be used to obtain an observation of a
real number x, where 2 = CDF~*(r). If the generated value
x is outside the allowable real valued range for that dimen-
sion, the generated value is limited to its allowable boundary
value. A separate PDF and CDF is calculated for each of
the G gene positions. Once these have been calculated, the
observation process is iterated to create a temporary popu-
lation with K members, denoted E(t).

2.1.4 Crossover Mechanism

The crossover operation takes place between C(t) and the
temporary population E(t). This step could be operationalised
in a variety of ways with [4] choosing to adopt a variant
of uniform crossover, without an explicit selection operator.
After the K crossover operations have been performed, with
the resulting children being copied into E(t), the best K in-
dividuals € C(t) U E(t) are copied into C(t).

2.1.5 Updating the Quantum Chromosomes

The N quantum chromosomes are updated using the IV best
individuals from C(t) after performing the crossover step.
Each quantum gene’s mean value is altered using

(6)

so that the mean value of the j** gene of the i*" quantum
chromosome is given by the corresponding j** value of the
i*" ranked individual in C(t).

The next step is to update the corresponding width value
of the j** gene. The objective of this process is to vary
the exploration / exploitation characteristics of the search
algorithm, depending on the feedback from previous itera-
tions. If the search process is continuing to uncover many
new better solutions, then the exploration phase should be
continued by keeping the widths relatively broad. However,
if the search process is not uncovering many new better so-
lutions, the widths are reduced in order to encourage finer-
grained search around already discovered good regions of
the solution space. In this paper we update the width of the
it" quantum chromosome’s j** gene by comparing each suc-
cessive generations best fitness function. If the best fitness
function has improved (disimproved) we shrink (enlarge) the
width in order to improve the local (global) search.

pij = Cij



2.2 QIGA vs Canonical Genetic Algorithm

A number of distinctions between the QIGA above and the
canonical GA (CGA) can be noted. In the CGA, the pop-
ulation of solutions persists from generation to generation,
albeit in a changing form. In contrast, in QIGA, the popula-
tion of solutions in P(t) are discarded at the end of each loop.
The described QIGA, unlike CGA, does not have explicit
concepts of crossover or mutation. However, the adaptation
of the quantum chromosomes in each iteration does embed
implicit selection as the best solution is selected and is used
to adapt the quantum chromosome(s). The crossover and
mutation steps are also implicitly present, as the adapta-
tion of the quantum chromosome in effect creates diversity,
as it makes different states of the system more or less likely
over time. Another distinction between the QIGA and the
CGA is that the CGA operates directly on representations
of the solution (the members of the current population of
solutions), whereas in QIGA the update step is performed
on the probability amplitudes of the ground states for each
qubit making up the quantum chromosome(s).

The real-valued QIGA is a novel form of representation
which could be hybridised with multiple real-valued search
algorithms apart from the GA such as PSO or DE. The
methodology has shown promise on the limited range of
test problems it has been applied to. However, further test-
ing is necessary in order to better assess its computational
efficiency and its overall effectiveness on a wider range of
problems. Future work could also assess the benefits of op-
erationalising the key steps of the algorithm in alternative
ways, for example, by implementing alternative diversity-
generating mechanisms in updating C(t) or by implement-
ing alternative mechanisms for dynamically altering o as the
algorithm runs.

3. OPTION PRICING MODEL
CALIBRATION

An optimisation problem in financial modelling is consid-
ered to test the performance of the QIGA. The optimisa-
tion involves calibrating an option pricing model to observed
market data. Calibration is a method of choosing model pa-
rameters so that the distance between a set of model option
prices and market option prices is minimised, where dis-
tance is some metric such as the sum of squared errors or
the sum of squared percentage errors. The parameters can
be thought to resemble the market’s view on current option
prices and the undelying asset price. In calibration we do not
explicitly take into account any historical data. All neces-
sary information is contained in today’s option prices which
can be observed in the market. Practitioners frequently cal-
ibrate option pricing models so that the models provides a
reasonable fit to current observed market option prices and
they then use these models to price exotic derivatives or for
hedging purposes. In this paper we calibrate a popular ex-
tension of the Black-Scholes [1] option pricing model known
as the Variance Gamma (V&) model [13, 14, 15] to FTSE
100 index option data.

A European call option on an asset S; with maturity date
T and strike price K is defined as a contingent claim with
payoff at time T given by max [St — K, 0]. The well known
Black-Scholes (BS) formula for the price of a call on this
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asset is given by
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where 7 = T'—t is the time-to-maturity, ¢ is the current time,
m = K/S is the moneyness of the option, r and ¢ are the
continuously compounded risk-free rate and dividend yield
and N(-) is the cumulative normal distribution function.
Suppose a market option price, denoted by Cas (S, K), is
observed. The Black-Scholes implied volatility for this op-
tion price is that value of volatility which equates the BS
model price to the market option price as follows

oBs (St, K) >0
Cps (S, K,7,7;085 (St, K)) =Cwm (S, K)

If the assumptions underlying the BS option pricing model
were correct, the BS implied volatilities for options on the
same underlying asset would be constant for different strike
prices and maturities. However in reality the BS implied
volatilities are varying over strike price and maturity. Given
that the options are written on a single underlying asset this
result seems at first paradoxical, i.e. we have a number of
different implied volatilities for a single asset which should
only have one measure for its volatility. Yet if we relax
some of the assumptions in the BS model, such as allowing
for a more complex data generating process for the asset
price than the log normal stochastic process (as assumed by
BS), and take into account the resulting complications, this
result begins to make sense and is simply highlighting the
erroneous assumptions that underpin the BS model.

Many different option pricing models have been proposed
as alternatives to the BS model. Examples include stochas-
tic volatility models and jump diffusion models which allow
for more complex asset price dynamics. We examine one
such simple extension of the BS model known as the Vari-
ance Gamma (VG) option pricing model. The idea is to
model stock price movements occurring on business time
rather than on calendar time using a time transformation
of a Brownian motion. The resulting model is a three pa-
rameter model where roughly speaking we can interpret the
parameters as controlling volatility, skewness and kurtosis,
denoted respectively as 0,60 and v, of the underlying asset
returns distribution. Closed form option pricing formulae
exist under the VG model [15].

Cva (St, K,r,7;{o,v,0}) =
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and where V is defined in terms of the modified Bessel func-
tion of the second kind.!

4. EXPERIMENTAL APPROACH

Market makers in the options markets quote BS implied
volatilities rather than option prices even though they re-
alise BS is a flawed model. The first row in Table 1 de-
picts end-of-day settlement Black-Scholes implied volatili-
ties for FTSE 100 European options on the 17 March 2006
for different strike prices and a time-to-maturity of 35 days.
As can be seen the BS implied volatilities are not constant
across the strike price. The second and third row in Ta-
ble 1 converts the BS implied volatities into market call and
put prices by substituting the BS implied volatilities into
the Black-Scholes formula. The following input parameters
were used to calculate the option prices, the index price is
the FTSE 100 index itself S; = 5999.4, the interest rate
is the one month Libor rate converted into a continuously
compounded rate r = 0.0452 and the dividend yield is a
continuously compounded dividend yield downloaded from
Datastream and is ¢ = 0.0306. These prices are then taken
to be the observed market option prices. Out-of-the money
(OTM) option prices are considered most suitable for cali-
bration purposes because of their liquidity and informational
content. Hence OTM call prices were used for K < S and
OTM put prices were used for K > S in the calibration. The
calibration problem now amounts to choosing an optimum
parameter vector © = {0, v, 0} such that an objective func-
tion G (©) is minimised. In this paper the objective function
is chosen to be the absolute average percentage error (APE)

o033

where C; is the observed market price on the i-th option
(could be a call or a put) and C; (©) is the VG model price
of the i-th option with parameter vector ©. One of the dif-
ficulties in model calibration is that the available market
information may be insufficient to completely identify the
parameters of a model [3]. If the model is sufficiently rich
relative to the number of market prices available, a number
of possible parameter vector combinations will be compati-
ble with market prices and the objective function G (©) may
not be convex function of ©. A plot of the objective function
versus the two parameters controlling skewness and kurtosis
of the asset returns distribution, # and v, whilst keeping o
fixed at o = 0.1116 is shown in figure 3(a).

It displays a very flat profile near the minimum where
many parameter combinations will yield equivalent fits i.e. dif-
ferent parameter combinations will have almost identical
APE values. This is because the two parameters 6 and v
have slightly offsetting effects. Cont and Tankov [3] also
graph a similar objective function for the VG option pricing
model using DAX index option data and illustrate the po-
tential for gradient based optimisers to converge to a local
rather than the global minimum.

C; — Ci (©)
Ci

S. RESULTS

In all runs of the QIGA, a population size of 20 observed
chromosomes was used, the algorithm was allowed to run for
30 generations, and all reported results are averaged over 30

!See [15] for the exact form of this function.
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runs. In order to provide a benchmark for the results ob-
tained by the QIGA a deterministic Matlab optimiser called
fminsearch was run 30 times with different initial param-
eter vectors. Fminsearch uses the simplex search method
of Lagarias et al [10]. This is a direct search method that
does not use numerical or analytic gradients. The optimiser
converged to different values for the parameter vector © for
different initialisations of ©. The parameter vector asso-
ciated with the optimal value for the objective function G
was chosen to compute the average percentage error (APE)
and the model prices. The optimal results from the last
generation of the algorithm are averaged over 30 runs and
are reported in Table 2. The average results from the last
generation of the algorithm are averaged over 30 runs and
are reported in Table 3. As can be seen in Table 2 the op-
timal APE is quite low at 7.93% and the parameter values
are very close to the parameter values from the Matlab op-
timiser. The results from Table 3 average fitness results.
The APE is calculated by computing a single set of model
prices from the average parameter vector ©. The APE is
higher than in the previous table at 14.87% indicating that
some of the runs converged too early to a suboptimal result.
However the average parameter values are not that different
from the optimal parameter values indicating that only a
small number of the 30 runs gave poor results. Figure 3(b)
depicts the evolution of the global objective function G (also
known as the average percentage error (APE)) as a function
of the generation number for a single run of the algorithm.
Figures 4(a) and 4(b) depict the evolution of the parameters
v and @ as a function of the generation number for a single
run of the algorithm.

In previous expositions of the real-valued QIGA, detailed
sensitivity analysis results were not reported. In order to
gain greater insight into the operation of the algorithm, and
to guide future applications of it, we undertook such an anal-
ysis by systematically investigating a variety of parameter
settings for shrinkage, enlargement and crossover. The re-
sults are reported in tables 4 and 5. The optimal APE value
as a function of the enlargement and shrinkage parameters is
reported in table 4 reports. The crossover rate is fixed at 0.5,
a population size of 20 and a generation number of 20 are
used. Figure 5(a) graphs these results. The APE is less sen-
sitive to the enlargement parameter than to the shrinkage
parameter. The shrinkage parameter forces the algorithm
to converge faster and this has a strong effect on the algo-
rithms performance. The enlargement parameter causes the
algorithm to widen the search space, however the crossover
rate can also do this albeit using a different method, and
this is why the algorithm is less sensitive to the enlargement
parameter provided the crossover rate is a reasonable value.
In this paper the shrinkage parameter is set to 0.8 and the
enlargement parameter is set to 1.2 as this provided a rea-
sonable trade-off in the convergence speed of the algorithm
versus the search space of the algorithm. Table 5 reports the
optimal APE value as a function of the shrinkage parameter
and crossover rate. The enlargement parameter is set to 1.2
and a population size of 20 and generation number of 20
are used. Figure 5(b) graphs these results. The APE is less
sensitive to the crossover rate than to the shrinkage param-
eter when the enlargement is set to 1.2. For low and high
values of the crossover rate the APE is large and is lowest
when the crossover rate is approximately 0.5. Low values of
the crossover rate results in a small search space and high



Table 1: Market BS implied volatilities and option prices for FTSE 100 index options on the 17 March 2006.
The strike prices are given in the table and the other observable inputs are S = 5999.4, 7 = %,r = 0.0452 and
q = 0.0306.

Strike price 5695.2 5845.1 5995.0 6144.9 6294.7

IV (%) 13.76 1241 11.13 1044  10.94
Call($) 323.67 193.63 88.67  28.03 7.99
Put (%) 12.44  31.63  75.89 164.48 293.67
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Figure 3: Objective function versus model parameters v and 6 and objective function versus generation
number.

Table 2: Results of QIGA. The optimal parameter values from the last generation are averaged over 30 runs
and compared with the parameter values from 30 runs of a Matlab optimiser. The corresponding APE and
model prices are reported (also averaged over 30 runs) along with market option prices.

Parameter | QIGA | Matlab | | Market Price | Optimal Model Price | Optimal APE (%)

mean o 0.1144 0.1143 12.44 12.39 7.93
mean v 0.0724 | 0.0638 31.64 31.79
mean 6 -0.1257 | -0.1429 75.90 76.85

28.02 30.98

7.99 9.85

Table 3: Results of QIGA. The average parameter values from the last generation are averaged over 30 runs
and compared with the parameter values from 30 runs of a Matlab optimiser. The corresponding APE and
model prices are reported (also averaged over 30 runs) along with market option prices.

Parameter | QIGA | Matlab | | Market Price | Mean Model Price | Mean APE (%)

mean o 0.1148 0.1143 12.44 12.31 14.87
mean v 0.0686 | 0.0638 31.64 31.55
mean 6 -0.1464 | -0.1429 75.90 76.19

28.02 29.40

7.99 8.67

Table 4: This table reports the APE (%) for different enlargement and shrinkage values.

Enlargement\Shrinkage | 0.5 0.6 0.7 0.8 0.9
1.1 163.92  132.14 43.83 27.42 35.88
1.2 187.53  115.29  32.48 16.48 41.80
1.3 122.74  159.21  28.06 28.91 31.58
14 165.91  98.31 39.35 66.93 78.94
1.5 172.40  135.55  94.75 53.34 63.32

1988



values results in almost random search so intermediate val-
ues provide a reasonable trade-off between exploitation and
exploration. In this paper the crossover rate is set to 0.5.

6. CONCLUSIONS

This study illustrates how a real valued quantum-inspired
evolutionary algorithm (QIGAs) can be constructed and ex-
amines the utility of the resulting algorithm on a financial
model calibration problem. The results are shown to be ro-
bust and comparable to those of other algorithms. This un-
derpins earlier proof of concept exploration studies using real
valued quantum-inspired evolutionary algorithm. It is also
noted that this paper reports the first application of a QIGA
to the financial domain. Several extensions of the methodol-
ogy in this study are indicated for future work. The first ex-
tension would be to extend the real-valued QIGA to a higher
dimensional setting so that the computational benefits of the
real-valued QIGA really begin to take affect. The algorithm
offers substantial potential for calibrating more complex fi-
nancial models than the VG option pricing model. Other
extensions include the examination of the utility of other
forms of QIGAs, such as binary valued QIGAs.
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Figure 4: Evolution of parameters v and 6 over time.
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Table 5: This table reports the APE (%) for different enlargement and crossover values.

Crossover\Shrinkage | 0.5 0.6 0.7 0.8 0.9
0.3 164.72  128.76  88.60 45.35 61.91
0.4 146.77  88.37 57.95 33.94 31.79
0.5 154.88  82.10 49.21 21.98 29.03
0.6 131.11  94.21 53.67 44.28 32.45
0.7 125.63  72.57 42.10 73.32 71.87
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