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ABSTRACT
This paper revisits the evolution of a neural controller for a
simulated Personal Satellite Assistant (PSA) using the En-
forced Sub-Populations (ESP) neuroevolutionary algorithm,
as described by Sit et al. in 2005 [8]. ESP has previously
been shown to be a very efficient algorithm for neuroevolu-
tion. As opposed to the original paper, we are not primarily
concerned with the solutions discovered by the system, but
rather with how ESP performs its evolutionary search; us-
ing the unstable PSA control task as a vehicle for fitness
evaluation.

We propose several changes to the original ESP algorithm.
Our experiments suggest that these improve both the in-
ternal consistency, and the success rate of the algorithm.
We further analyze the ability of ESP to go beyond classic
weight evolution. We compare our evolutionary results with
those of a simple hill-climbing algorithm, and propose that
improved heuristics for the modifications of network topol-
ogy in ESP may be necessary to evolve increasingly complex
and robust controllers.
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1. INTRODUCTION
In a recent paper, Sit and Miikkulainen described an ex-

periment of applying the Enforced Sub-Populations (ESP)
algorithm to the problem of evolving a neural network to
control a rocket-driven robot in a simulated environment
[8]. ESP is a highly efficient variation of evolutionary algo-
rithms, dedicated to evolving neural networks.

The modelled robot was a Personal Satellite Assistant
(PSA), designed to assist astronauts in space. This robot
has very limited motor capabilities, and operates in a fric-
tionless environment, making the control task very challeng-
ing. Sit et al. show how the evolutionary search is able to
find several efficient and inventive solutions to basic control
tasks.

This is a fascinating example of neuroevolution, showing
how ESP can be used to successfully evolve a controller for
a complex robotics task. However, the evolved neural con-
trollers were evaluated using simplified, noise free simulation
of the physics involved in guiding the PSA. This is in con-
trast to the guidelines for network evaluation previously laid
out by Miikulainen et al. [1], and also greatly reduces the
complexity of the search space in which the ESP operates.

This article repeats the experiment performed by Sit and
Miikkulainen, using the freely available physics simulation
environment ODE to model the behaviour of the PSA [5].
Experiments are carried out with and without noise added to
the neural controller’s sensors. The robustness and stability
of the solutions found is then examined, by applying them
to situations similar, but not necessarily identical, to those
that were used during evolution. In general, it is found that
the evolved solutions react poorly to even small amounts of
noise.

ESP is a very creative and promising approach, but it
needs some improvement. The main purpose of this paper is
to propose certain changes to ESP, in order to make it more
consistent and efficient. As will be described later, ESP
evolves neurons, but evalutes networks, and thus needs a
way to distribute the fitness of a network over its constituent
neurons. An underlying motivation for investigating this
aspect of the algorithm, is to improve our understanding of
the dynamics of, and the interaction between, the neurons
in artificial neural networks.

Although primarily a weight-evolving algorithm, ESP con-
tains heuristics for adding and removing neurons to the
currently evolved topology. Through repeated application
of this heuristic, the algorithm is expected to find a near-
optimal combination of network topology and weights. We
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Figure 1: Schematic view of the two-dimensional
model of the PSA. The thrusters are not drawn to
scale, and are modelled with uniform mass distribu-
tion.

examine the details of this heuristic, and show that some
modifications must be made for the system to work as in-
tended.

Finally, the performance of the evolutionary system is
compared to that of a simple hill-climbing methodology.
ESP has previously compared favourably with several other
neuroevolutionary techniques, including well-known meth-
ods such as SANE and Cellular Encoding [9],[1],[2]. It has
subsequently been applied to evolve neural controllers for
several non-linear control tasks in simulated environments.
In our simulations, the original ESP algorithm shows sur-
prisingly little performance gain over the hill-climbing algo-
rithm.

2. EXPERIMENTAL SETUP
The task of the evolved neural networks is to control a

model of a Personal Satellite Assistant (PSA) in a two-
dimensional simulation, similar to that previously described
by Sit et al [8]. The construction of the PSA is based on the
descriptions given in the above paper, so only a rudimentary
description will be given here.

The two-dimensional model of the PSA consist of a round
body and four thrusters, mounted along the perimeter of
the body, as shown in Figure 1. Two thrusters point toward
the negative x-axis, and so may accelerate the PSA in the
positive x-direction. Similarly, the two other thrusters point
toward the negative y-axis, and may accelerate the PSA in
the direction of increasing y.

By having only four thrusters, the PSA has effectively no
brakes, and so it has no direct way of stopping its motion in
certain directions. In order to stop a rightward motion, the
controller must increase the output on one of its thrusters,
in order to rotate the PSA, so that two of the thrusters point
in the desired direction.

The design is deliberately limited, in order to minimize
the risk of mechanical failure and the cost of maintenance.
Having only 4 thrusters in a plane, rather than 8, requires
a complex controller to successfully navigate the PSA.

The neural network is a sigmoidal feed-forward network
with one hidden layer. It has 7 input units including a bias
unit, and 4 output units. Input to the network consists of
PSA position, velocity, heading and angular velocity. Each
of the four output units controls the effect of one thruster.

2.1 Physical Simulation
Although an operational PSA would need a total of 8

thrusters, 4 in each plane, the evolutionary system searches
for a simplified problem, that of controlling the PSA in two
dimensions using 4 thrusters. Whereas the initial experi-

ment by Sit et al was carried out with a custom physics
model, the experiments described in this paper were carried
out using a stock physical simulator, the Open Dynamics
Engine (ODE) [5].

The PSA was modelled as a single physical body, with a
mass distribution derived from the shape of the PSA. The
thrusters and the body were assumed to have the same den-
sity, and each to have a uniform mass distribution. The
mass distribution of the entire PSA was hence computed
from the dimensions of the body and thrusters, as adapted
from the Sit paper1.

The action of the thrusters is modelled by adding a force
proportional to the output of the corresponding thruster.
The thruster is assumed to respond immediately to neural
output, with maximum power of 1N.

A user-specified amount of Gaussian white noise may be
added to input and output units separately. This models
the thermal noise found in electrical conductors.

2.2 Control Tasks and Fitness Estimation
The controller is evolved to perform one of the three tasks

specified by Sit et al:

1. Stop autorotation and maintain a given heading at an
approximately constant position;

2. Turn 90 degrees and stop;

3. Given forward velocity, stop at a pre-defined position.

Fitness was initially assigned as the number of time steps
in which certain constraints were satisfied, as suggested by
Sit et al.

In task 1, the fitness of a network was the number of sim-
ulation time steps in which the PSA satisfied the following
constraints:

• |x| < 0.2;

• |y| < 0.2;

• |θ| < 0.05;

where x and y represent the coordinates of the PSA relative
to its target position, and θ is the heading of the PSA. This
fitness assignment would sporadically lead to good results,
and to some controllers showing surprisingly efficient be-
haviour, but the evolutionary search more often stagnated
at a very low fitness. Part of the reason for this may be
the fact that the fitness assignment lacks a bias towards low
angular velocity. Given zero linear velocity, and a satisfac-
tory number of time steps, different angular velocities will
produce the same distribution of sampled headings, given
that the angular velocity is constant over the course of the
simulation. In other words, as long as the position of the
PSA does not change, lowering the angular velocity will not
lead to a large increase in fitness; only a near zero angular
velocity with the correct heading will have an effect. Given
initial angular velocity, this means that there is a large local
maximum found by networks that do nothing.

In order to overcome this problem, an alternative, incre-
mental fitness assignment was used, in which the angular

1These mass distribution estimates are likely to be inaccu-
rate, but as long as the mass distribution of the actual PSA
is fairly regular, this is not likely to have a large impact on
the search landscape.

2022



velocity ω was taken into account. One point was awarded
at every time step where the following conditions were met:

• |x| < 0.2;

• |y| < 0.2;

• |ω| < 0.05 or ωt < ωt−1.

An additional three points were awarded whenever the last
of the original three conditions was also met:

• |θ| < 0.05.

3. NEUROEVOLUTION WITH ESP
ESP is a popular and relatively complex algorithm for

evolving neural network weights and architectures, with a
main focus on evolving neuron weights. It has been shown
to be very efficient compared to several other neuroevolu-
tionary techniques [1].

ESP works by defining a separate sub-population for each
neuron in a neural network with a pre-defined architecture.
In the simplest case, that of a feed-forward network with
one hidden layer, a neuron is defined by its input and output
weights, and a sub-population thus consist of a number of
such neurons. Entire networks are then formed by sampling
one neuron from each sub-population.

The evolutionary operators work at the neuronal level,
whereas fitness estimation is performed on entire networks.
Neurons are assigned a fitness based on the fitness of the
networks in which they have taken part.

The motivation behind algorithms like ESP is the idea
that good neural networks are made up of good neurons.
The goal of the algorithm is therefore to evolve neurons
that each perform a part of the desired operation well, and
subsequently use these to form an efficient network. The
structural division of each network neuron into separate sub-
populations will presumably enforce a division of labour be-
tween the neurons, so that each sub-population will evolve
neurons specializing in solving a separate part of the prob-
lem.

In this regard, ESP may be viewed as a cooperative coevo-
lutionary algorithm, in which sub-populations are coevolved,
and the neurons from each sub-population cooperate to form
maximally efficient networks. ESP thus also exposes a prob-
lem present in several coevolutionary systems, namely that
of estimating the fitness of each constituent in a system,
given the fitness of the system as a whole. In this case, the
task is to assign fitness to neurons based on fitness measured
on the neural networks.

Since any permutation of the hidden neurons in a feed
forward network will yield the same network functionality, a
traditional weight-evolving algorithm which operates on the
network level has to deal with a search space in which each
neural architecture at the phenotypic level may be described
by a vast amount of different genomes [6], [7]. This redun-
dancy can to some extent be avoided with neuron-evolving
methods such as ESP, since each sub-population may spe-
cialize on a specific type of neurons [4].

3.1 Fitness Evaluation
In order to evolve at the neuronal level, the fitness of each

neuron needs to be estimated. Since evalutations can be
performed on entire networks only, the fitness of a neuron
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Figure 2: Overview of the alternative sampling
method. The contents of the two sub-populations
are shuffled, after which networks are constructed
from neurons at corresponding positions in each sub-
population.

must be derived from the fitness of the networks in which
it participates. In ESP, this is done by repeatedly sampling
neurons from each sub-population, thus creating a relatively
large number of neural networks compared to the number
of neurons in each sub-population, and assigning to each
neuron the average fitness of the networks in which it has
participated in the current generation.

In the current implementation, an alternative sampling
method is proposed, as shown in Figure 2. Given a sub-
population of size s, for each of the s networks to be gen-
erated, each sub-population is shuffled, so the order of the
neurons is randomized, after which a network is generated
by taking the nth neuron in each sub-population to form
the nth network. This method creates networks by random
combinations of one neuron from each sub-population, but
at the same time guarantees that every neuron will be eval-
uated the same number of times.

A subsequent problem is the assignment of fitness to each
neuron, given the fitnesses of the evaluated networks. In
ESP, the fitness of a neuron is the average fitness of all the
evaluated networks in which it has participated. This im-
plicitly awards neurons that are able to perform well in many
different network configurations. This strategy may disfavor
neurons that specialize on a given subtask, since these may
depend on cooperation with the remaining neurons in the
network to achieve a high network fitness.

Assuming that a good neuron is one that performs a sub-
task of the problem well, it is still dependent on the remain-
ing neurons to perform complimentary functions in order for
the network as a whole to successfully fulfill its task. Opti-
mally, the fitness of a neuron should hence reflect whether
it participated in networks where this requirement was met.

In a similar vein, the ultimate goal of the search is to find
an optimal network. This is by definition the network with
the highest fitness, which is not necessarily identical to the
network composed of the neurons with the highest average
fitness.

Consequently, an alternative way of assigning network fit-
ness to participating neurons has been tried, where the fit-
ness of each neuron is the highest fitness achieved by any
network in which it has participated.
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3.2 Burst Mutation and Network Topology
The network topology may change in ESP during a sim-

ulation by a process of repeatedly adding or deleting sub-
populations. This process is guided by the following heuris-
tic. The fitness of the best network found during a genera-
tion is continuosly logged. If this maximum network fitness
does not increase for a predefined number of generations,
stagnation is said to occur. When the search stagnates, an
operation called burst mutation is performed.

Burst mutation generates a new set of sub-populations
based on the best network found so far, by adding noise
drawn from a Cauchy distribution to each of the weights of
the best network. The previous population is discarded in
its entirety.

If, after a series of stagnations and burst mutations, max-
imum fitness still does not improve, a lesion test is carried
out to determine whether the system should add or remove
a sub-population [1].

A lesion test can be performed on a single network. The
fitness of the network is evaluated repeatedly, each time with
one of the neurons lesioned. A lesioned neuron is effectively
disabled. By comparing the fitness of a lesioned network
with that of the original, unlesioned network, the contri-
bution of the neuron to the fitness of the network can be
estimated.

If the fitness of a lesioned network does not drop below a
certain threshold, the neuron is taken to be redundant, and
so the corresponding sub-population is removed. On the
other hand, if no neurons can be removed without a drastic
drop in network fitness, a sub-population is added.

As pointed out by Gomez and Miikkulainen, burst mu-
tation may be seen as “searching the space in a ’neighbor-
hood’ around the best previous solution.” [1]. In the case
where the current best is a good approximation of a local
optimum, with no better proximal optima in terms of the
mutation operator, there is only a small probability that the
burst mutation will lead to fitness improvement. A fitness
plot illustrating this situation is shown in Figure 3. Here,
burst mutation has a transient negative impact on the over-
all fitness of the population, after which a network similar to
the one previously used as the basis for the burst mutation
is once again discovered. As an increasingly large fraction
of the weight space is searched without improvement, it be-
comes likely that further improvements may instead require
topological changes to the networks.

The original implementation of ESP is however dependent
on quickly finding a new best solution after adding a sub-
population. This is necessary for its topology modification
heuristic of burst mutation and lesion testing to work cor-
rectly. In the case where the current best solution represents
a local optimum, with no better proximal optima, neither
in terms of network topology nor network weights, ESP is
likely to get stuck.

This problem is most easily illustrated with an example.
Suppose that the current best network contains 5 hidden
neurons, with 5 corresponding sub-populations in ESP. Af-
ter several rounds of burst mutation, best network fitness
has not improved, and a lesion test is performed. Assume
further that the lesion test finds no neuron to remove, so
ESP decides a neuron should instead be added to the net-
work. A new sub-population of randomly initialized neurons
is created, so the system now contains 6 sub-populations,
after which the 5 first sub-populations are wiped out and
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Figure 3: Characteristic example of repeated burst
mutations without progress. Each burst mutation
is characterized by a short-lived, drastic, drop in
fitness, followed by a relatively rapid return to stag-
nation.

regenerated by burst mutation of the neurons in the best
network. The discrepancy occurs if a better solution is still
not found when the search again stagnates after adding a
6th neuron: The best network found so far contains only
5 neurons, but the system currently searches for 6-neuron
networks. Since a lesion test can only be performed on a
single network, the system has no way of estimating the
utility of the 6th sub-population2. Given a deterministic
fitness assignment, the next lesion test of the best network
will give the same result, so another sub-population will be
added. This process of adding sub-populations will continue
indefinitely, unless a better network is found to replace the 5-
neuron solution. At the same time, neither lesion testing nor
burst mutation is applied to the additional sub-populations,
since the best network found does not contain neurons from
these sub-populations. Also, since the number of networks
created is a function of sub-population size, not the number
of sub-populations, as the number of sub-populations grows,
each neuron will take part in a smaller fraction of the possi-
ble networks created by the neurons in the sub-populations,
so the fitness evaluation of each neuron grows less and less
reliable. This is likely to further decrease the probability of
finding a new best solution.

A similar problem is present in the situation where a lesion
test deems one of the neurons in the network superfluous,
but a new best network is not found when searching the
space of 4 sub-populations.

There are several possible solutions to this problem. One
is to discard all sub-populations at each round of burst mu-
tation. Referring to the example above, this amounts to
erasing all 6 sub-populations after stagnation, after which
a new lesion test is performed on the 5-neuron solution, a
6th sub-population is once again added, and burst mutation
of the 5 first sub-populations is performed. This maintains
pressure on all sub-populations in the system, but has the
drawback that in order for ESP to search multiple topolo-
gies, for each number n of sub-populations, a network must

2Other than indirectly, in that adding it did not lead to an
improved solution.
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be found that has a better fitness than the best found with
n − 1 neurons. Unless noted otherwise, this alternative has
been used for all the results obtained in the following section.

Another option is to discard the best network whenever
a sub-population is added or removed. As a new best net-
work will then necessarily be found, this guarantees that the
best network always contains the same number of neurons
as the ESP does sub-populations. This solution is some-
what contradictory to the philosophy of the burst muta-
tion, where stagnation should be handled by modification
of the best network found. On the other hand, it allows
the ESP to search multiple topologies without the need for
finding successively better solutions at each number of sub-
populations. Further, disregarding topology modifications,
it may allow the system to progressively move away from a
local optimum, since the network used for burst mutation is
continuously replaced.

4. HILL-CLIMBING SEARCH
As a comparison to the performance of the ESP, a simple,

parallel, stochastic, hill-climbing search algorithm was de-
signed. The algorithm searches the weight space of a neural
network with a given topology.

The algorithm starts out by creating a single neural net-
work with weights chosen randomly from the uniform range
(−6, 6). A set of candidate networks is created by repeated
mutations of the initial network. The candidate networks
are evaluated, and the best performing network is used as a
basis for the next cycle of the algorithm3.

Networks are mutated by stochastic application of two
operations to each weight in the network. With a given
probability, noise drawn from a Cauchy distribution of a
specified range will be added to the weight. Then, with
a given second probability, the sign of the weight will be
changed. This second mutation operator has a marked effect
on search efficiency.

Each of the the two mutation probabilities and the noise
range described above may be annealed separately, by mul-
tiplying the current parameter value with a given constant
at each cycle of the algorithm.

5. RESULTS
Several experiments were performed in order to compare

and analyze the results of the different search methods. In
addition to the three basic tasks, searches were performed
with noise on the network input units. Further, for tasks 1
and 3, the initial conditions of the PSA were randomized at
the beginning of each simulation.

Experiments were performed with combinations of the fol-
lowing variations on the original task:

• Noise on input signals;

• Randomized initial conditions of the PSA, where ap-
plicable.

Both search methods were applied, under similar condi-
tions in terms of the number of network evaluations per-
formed during a search. ESP was allowed to evolve for 2000
3An option similar to elistism was also tried, in which with
the best of the candidates only replaced the base network
if the former has a fitness better than or equal to that of
the latter. This option had a negative impact on the search
efficiency, and was not applied in the runs reported here.
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Figure 4: Fitness plot of ESP applied to task 1,
showing minimum (barely above 0), average and
maximum fitness, averaged over 30 runs.

Table 1: Average fitness scores of the best evolved
controllers, in % of theoretical maximum, for tasks
1, 2 and 3, and averages across all three tasks.

Task Average Standard Deviation
1 42.4 12.8
2 44.0 20.7
3 11.9 8.1
All 32.8 20.8

generations, using 5 initial sub-populations, each of size 40.
This amounts to 400 network evaluations per generation, not
counting the lesion tests. Unless otherwise noted, all results
refer to the average of 30 runs under identical conditions,
but with different random seeds.

In order to investigate the quality of the solutions found by
evolution the best networks were tested repeatedly under the
various different experimental conditions described above.

The first results reported are from the original ESP im-
plementation, except for the modification of the burst mu-
tation, as described in section 3.2. In each of the following
experiments, only the discussed parameter or aspect of the
system is changed, in order to isolate the effect of the change
relative to the initial settings.

5.1 General Search Efficiency
Figure 4 shows a typical fitness plot for the ESP algo-

rithm, averaged over 30 repetitions of the same task with
different random seeds. The search is quite noisy, but the
overall fitness typically increases throughout the simulation.
In Table 1, the average of the best networks found by the 30
repetitions of evolution on each task is reported. Fitness is
given as the percentage of the theoretical maximum fitness
assigned at each task. The table shows a large variation
in the fitness achieved by the best solutions found in 2000
generations. In one case, the evolutionary search for a so-
lution to task 2 has stagnated completely; the best network
found in 2000 generations achieving only 1 fitness point out
of 2000.

In order to estimate the robustness and generalization ca-
pabilities of the evolved controllers, each of the final net-

2025



Table 2: Fitness scores, in % of theoretical maxi-
mum, for tasks 1, 2 and 3, with noise or random
initialization.

Task Noise Average Standard Deviation
1 Input 5.8 4.8
2 Input 2.5 3.1
3 Input 2.7 0.6
All Input 3.7 3.6
1 Random init 3.9 5.9
3 Random init 7.8 6.1

works was re-evaluated under noisy conditions. First, each
network was tested with noise added to the input signals to
the network. Gaussian noise with a standard deviation of
0.05 was added to each input neuron. This produces noise
levels about two orders of magnitude less than the sensory
input levels of the network.

Each of the 30 best networks was tested 500 times, and its
average fitness was recorded, for a total of 15000 evaluations.

Second, for tasks 1 and 3, generalization ability was tested
by assigning the PSA a random initial position before each
simulation. For task 1, this amounted to rotating the PSA
by a random angle before simulation starts, whereas in task
3, the distance the PSA should travel before stopping was
sampled uniformly from the range [0.25−0.55] meters. Once
again, each of the 30 best networks were given 500 tries, and
their average fitness was recorded.

Table 2 shows the average and standard deviation of the
fitnesses across all 30 networks of the above described evalu-
ations. It is clear that the evolved controllers fail completely
in the presence of even a small amount of noise. From the
low fitness achieved when given random initialization, it ap-
pears that the evolved solutions are highly specialized; they
do not generalize well to similar problems.

In order to assess the ability to evolve robust and general
controllers, a second set of experiments was performed, in
which noise and random initialization were present also dur-
ing the fitness evaluation of each network during the evolu-
tionary search. Each network was now evaluated three times
during evolution, and the average fitness over the three runs
was reported, so as to achieve a reasonable fitness estimate
at a moderate runtime expence.

The results of testing robustness and generalization af-
ter evolving under similar are shown in Table 3. We see
a marked improvement over the results shown in Table 2:
For tasks 1 and 2, the average scores are roughly doubled,
although the fitness values are still very low.

The solutions evolved for task 3, both with noise and ran-
dom initialization, show the opposite effect. In general, the
best evolved solutions had a very low fitness, indicating that
when noise was present in the environment during evolution,
the system was unable to make any progress. The quality
of the best found controllers is therefore very low.

Visual inspection of the behaviour of the final networks
reveals that evolution is able to find similar solutions to
basic control tasks as those described in [8], in a different
physics simulation environment. This is the case also for
task 3, where the PSA stops its forward motion by first
turning 180◦.

At the same time, it is evident that although the desired
basic navigational tasks are performed, their execution is

Table 3: Fitness scores, in % of theoretical maxi-
mum, for tasks 1, 2 and 3, with noise or random ini-
tialization, after evolving under similar conditions.

Task Noise Average Standard Deviation
1 Input 14.5 6.7
2 Input 10.0 6.1
3 Input 2.4 1.0
All Input 8.9 7.3
1 Random init 10.0 9.9
3 Random init 6.2 3.0

not entirely perfect. After braking down to a near halt in
each task, the PSA will inevitably maintain a small amount
of linear or angular velocity, which the controller is not able
to correct. Effectively, the controller collects fitness points
until the PSA has slowly drifted out of the award area.

Given the unstability of this problem, with very little fric-
tion in the environment where the PSA is supposed to oper-
ate, this seems like the kind of behaviour one would expect
also from the real robot.

In order to achieve a further improvement in fitness, and
more robust controllers, a qualitatively different kind of be-
haviour is needed, in which corrective action is taken to
bring the PSA back into the desired state whenever it has
drifted too far.

The modifications proposed later in this paper did not
improve robustness significantly. It is an open question
whether a controller with this level of complexity could be
found using the current methodology. A first step may be
to further extend the capabilities of ESP to search not only
network weights, but also network topology.

5.2 Suggested ESP Modifications
As previously described, certain changes to ESP are sug-

gested, in order to improve the overall consistency and effi-
ciency of the algorithm.

First, a more systematic selection of neurons for partic-
ipation in neural networks is desirable in order to achieve
a more reliable fitness estimate of each neuron. The effect
of sampling each neuron the same number of times, while
still creating networks by random combination of neurons,
is shown in Table 4. P(T≤t) refers to the two-tailed prob-
ability of accepting the null hypothesis using a two-sample
t-test with unequal variances.

With the current setup, this modification does not have a
very significant impact on the efficiency of the search. How-
ever, it generally does not seem to have any negative impact
on the search, and so should be implemented for improved
consistency of the algorithm. Further, we hypothesize that,
since a systematic sampling of neurons will give a more pre-
dictable neuron fitness estimate, this approach may allow
the use of fewer network evaluations per neuron in the sys-
tem, thus reducing runtime costs.

Second, an alternative way of assigning network fitness
to participating neurons was tried. Rather than awarding
each neuron the average fitness of each network in which it
has taken part, each neuron is assigned the highest fitness
achieved by any of its networks.

The results in Table 5 indicate that this change may in-
deed have a positive effect on the search. Compared to the
original settings, shown in Table 1, there is an increase of al-
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Table 4: Fitness scores, in % of theoretical maxi-
mum, for tasks 1, 2 and 3, when systematically sam-
pling neurons during construction of networks. The
scores from Table 1 are given in parenthesis for ref-
erence.

Task Average Standard Deviation P(T≤t)
1 41.6 10.3 0.8
2 48.4 19.0 0.4
3 17.8 21.7 0.2
All 35.9 (32.8) 21.9 (20.8) 0.3

Table 5: Fitness scores, in % of theoretical maxi-
mum, for tasks 1, 2 and 3, when rewarding neurons
for the best network in which they have taken part.
The increased average fitness is clearly significant,
compared to the values in Table 1. The scores from
Table 1 are given in parenthesis for reference.

Task Average Standard Deviation P(T≤t)
1 56.7 14.8 1.8E−4

2 60.9 16.5 9.2E−4

3 21.0 17.5 1.4E−2

All 46.2 (32.8) 24.2 (20.8) 9.5E−5

most 50% in the average fitness of the best evolved networks.
Further, the total number of burst mutations performed dur-
ing all 90 runs with each setting, dropped from 2448 to 1868.
This may indicate that the algorithm was more resistant to
stagnation with the new fitness assignment method.

5.3 Topology Modifications
A major strength of an evolutionary system compared to

other search algorithms, especially gradient descent meth-
ods, is its versatility, and the way it can easily be adapted
to evolve both the weights and the topology of a neural net-
work [10].

ESP exemplifies this by adding a topology-modifying heu-
ristic to a system that mainly evolves weights. However, as
pointed out in an earlier section, the original implementation
of the topology modification heuristic could lead to a very
inefficient search.

As shown in Table 6, we saw no significant negative ef-
fect of disabling the topology modifying heuristic altogether,

Table 6: Fitness scores, in % of theoretical maxi-
mum, for tasks 1, 2 and 3, for different variations of
the topology modification heuristic. Lesion: lesion
tests are disabled. Erase: best network erased at
each burst mutation. The scores from Table 1 are
given in parenthesis for reference.
Task Op. Average Std Deviation P(T≤t)
1 Lesion 40.0 14.1 0.5
2 Lesion 44.8 18.9 0.9
3 Lesion 27.5 24.7 0.2E−3

All Lesion 37.4 (32.8) 20.8 (20.8) 0.1
1 Erase 51.3 13.8 1.3E−2

2 Erase 53.9 20.8 6.9E−2

3 Erase 17.6 22.7 0.2
All Erase 40.9 (32.8) 25.5 (20.8) 2E−2

Table 7: Average fitness scores of the best con-
trollers found by hill-climbing, in % of theoretical
maximum, for tasks 1, 2 and 3, and averages across
all three tasks. The scores from Table 1 are given
in parenthesis for reference.

Task Average Standard Deviation P(T≤t)
1 38.2 18.4 0.3
2 52.2 22.2 0.2
3 15.5 16.4 0.3
All 35.3 (32.8) 24.3 (20.8) 0.5

compared to our default implementation of the original heu-
ristic. However, the alternative approach of erasing the
best network at each burst mutation shows a significant im-
provement over both the two other scenarios, as shown by
a 30% increase in average fitness in the experiments con-
ducted here. Still, it seems that in order to fully harness
the potential of evolution to develop both network weights
and topology, further improvements of the heuristic are de-
sirable.

5.4 Hill-climbing Comparison
As a way of estimating the overall efficiency of the ESP

search, an alternative, hill-climbing search algorithm was
also tried. Surprisingly, the performance of the hill-climbing
algorithm compares favourably with that of the original ESP
on the problem at hand, as can be seen from the figures in
Table 7.

The hill-climbing algorithm has some similarities with a
standard genetic algorithm for evolving network weights,
with the lack of a crossover operator and an extremely high
selection pressure, in which only the best network in each
generation survives.

Part of the success of the hill-climbing algorithm seems to
stem from the equivalent of the mutation operator, which
with a certain probability changes the sign of a weight in
the network. With a “mutation operator” that simply adds
noise, the search is less efficient.

6. DISCUSSION
In this experiment, the basic ESP algorithm turned out

to be only slightly more efficient than a very simple hill-
climbing algorithm. This is consistent with the general belief
that the main strength of evolutionary systems is not in
the evolution of weights for neural networks [10], but still
conflicts with several recent benchmarks of this particular
algorithm.

It is our belief that this somewhat disappointing perfor-
mance is, at least in part, caused by inaccurate fitness es-
timation for the evolved neurons. It seems that the overall
fitness of a network may not be sufficient to judge the effi-
ciency of each of its constituent neurons.

In future work, we intend to explore this by attempting to
extract additional data from the running of each network,
thus augmenting the algorithm to use additional informa-
tion about the role of each neuron in a network. A promis-
ing approach is to apply information theoretical measures
in addition to traditional fitness estimates. This line of re-
search will be pursued in future work, as such quantitative
measures of the fitness of each neuron in a network could be
of use in a broad range of applications.
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Partly as a result of the complexity of the ESP algorithm,
there is a wealth of different parameters that must be speci-
fied by the experimenter, and their effect on the search effi-
ciency can be very difficult to determine à priori. The small
efficiency increase in this experiment therefore comes at the
cost of a very intricate system.

On the other hand, a better understanding of how ESP
traverses its search space may provide guidelines for choos-
ing optimal parameter settings, which in turn may improve
the efficiency of the algorithm.

Finally, from visual inspection of the performance of the
best evolved controllers, and from the very low fitness achie-
ved in the presence of a small amount of sensory noise in
the simulations, it is clear that the evolved networks are
far from representing usable controllers of the PSA. This
can imply that a more complex network topology than the
simple feed forward architecture used here is necessary, if
neural controllers are to be used. As the complexity of the
search space increases, evolutionary systems have performed
increasingly better than other methodologies[3], so the dif-
ference between ESP and other systems may be larger in
this case.

We have proposed certain changes to the ESP algorithm,
in order to make it more consistent and streamlined. In
experiments performed on the problem of controlling the
PSA, the proposed changes have a significant positive effect
on the efficiency and stability of the algorithm.
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