

A Hybrid GA for A Supply Chain Production Planning
Problem

Masoud Jenabi

Department of Industrial
Engineering,

Amirkabir University of Technology,
Tehran, Iran.

m_jenabi@aut.ac.ir

S. Ali Torabi
Department of Industrial

Engineering, Faculty of Engineering,
University of Tehran, Tehran, Iran.

satorabi@ut.ac.ir

S. Afshin Mansouri
CREST, Department of Computer

Science,
King's College London, Strand,

London WC2R 2LS, UK.
Afshin.Mansouri@klc.ac.uk

ABSTRACT
The problem of production and delivery lot-sizing and scheduling of
set of items in a two-echelon supply chain over a finite planning
horizon is addressed in this paper. A single supplier produces
several items on a flexible flow line (FFL) production system and
delivers them directly to an assembly facility. Based on the well-
known basic period (BP) policy, a new mixed zero-one nonlinear
programming model has been developed to minimize average setup,
inventory-holding and delivery costs per unit time in the supply
chain without any stock-out. The problem is very complex and it
could not be solved to optimality especially in real-sized problems.
So, an efficient hybrid genetic algorithm (HGA) using the most
applied BP approach (i.e. power-of-two policy) has been proposed.
The solution quality of the proposed algorithm called PT-HGA has
been evaluated and compared with the common cycle approach in
some problem instances. Numerical experiments demonstrate the
merit of the PT-HGA and indicate that it is a very promising
solution method for the problem.

Categories and Subject Descriptors: J.2
[PHYSICAL SCIENCES AND ENGINEERING]: Engineering

General Terms: Algorithms, Experimentation, Performance

Keywords: Flexible flow lines; Lot and delivery-scheduling;
Basic Period approach; Hybrid Genetic Algorithm (HGA)

1. INTRODUCTION
Nowadays, there is a high tendency to develop integrated models
for simultaneously cost-effective planning of activities in supply
chains. Among them, integrated production and delivery planning
between adjacent supply parties is of particular interest.

One of the earliest studied problems in this area is the economic lot
scheduling problem (ELSP). This problem addresses lot-scheduling
of several items with static and deterministic demands over an
infinite planning horizon at a single facility, where products are
delivered to the customer continuously. Researches on the ELSP
usually have focused on cyclic schedules with three well known

policies: common cycle, basic period (or multiple cycle) and time
varying lot size approaches [15]. Several authors have extended the
ELSP to multistage production systems with common cycle
production policy [9, 10, 4, and 14].

The economic lot and delivery-scheduling problem (ELDSP) is an
extension of ELSP to a two-stage supply chain where a supplier
produces several items for an assembly facility and delivers them to
it in a static condition. Hahm and Yano [5, 6] provided an excellent
review of models related to ELDSP and developed two efficient
heuristics to solve it based on the common cycle and nested
schedule strategies. Jensen and Khouja [7] developed an optimal
polynomial time algorithm for the ELDSP under common cycle
approach. Finally, Torabi et al. [14] considered the ELDSP in
flexible flow lines under the common cycle approach over a finite
planning horizon. They developed an effective HGA to obtain near
(or ideally) optimal solutions.

Regarding the basic period (BP) approach, Bomberger [1] assumed
different production cycles for items in which each cycle time must
be an integer multiple of a BP that is long enough to meet the
demand of all items. The production frequency of each product
during the global cycle is then determined as a multiple of the
selected BP. In such a case, infeasibility results from the artificial
restrictions are imposed by the concept of BP. Elmaghraby [3]
provided a review of the various contributions to ELSP and
presented an improvement upon the BP approach, i.e. the extended
basic period (EBP) method. Its main difference with the
Bomberger’s BP method was that it allowed items to be loaded on
two BPs simultaneously and at the same time relaxed the
requirement that the basic period should be large enough to
accommodate such simultaneous loading. Yao and Elmaghraby [15]
developed an evolutionary algorithm for ELSP under basic period
policy. Ouenniche and Boctor [11, 12 and 13] proposed three
efficient heuristic approaches, i.e. power of two, two group and G-
group methods for the ELSP in flow shop systems over an infinite
planning horizon under basic period approach.

In all above works, the planning horizon is assumed to be infinite.
However, this assumption considerably restricts applicability of the
proposed techniques, because in practice, the planning horizon is
often finite. In this regard, there are few research works which have
assumed the finite planning horizon [8, 9 and 14].

Consequently, to the best of our knowledge, there has not been a
research work on the ELDSP in flexible flow lines under basic
period approach over a finite planning horizon so far. It is noted that
the solutions obtained via the basic period approach are generally
better than those of the common cycle [3] and this has been our
main motivation in this research work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.

2045

The outline of the paper is as follows: problem formulation is
presented in section 2. Section 3 explains the proposed PT-HGA. In
section 4, an efficient procedure is developed for determining upper
bounds on product’s cycle time coefficients. An efficient feasibility
test for capacity checking along with an iterative repair procedure to
convert an infeasible solution to a feasible one, are proposed in
section 5. Computational experiments are provided in section 6.
Finally, section 7 is devoted to conclusion remarks.

2. PROBLEM FORMULATION
The following assumptions are considered for the problem
formulation:

• Parallel machines are identical.
• Machines are continuously available and each machine can only

process one product at a time.
• At the stages with parallel machines, each product is processed

entirely on one machine.
• Setup times/costs in supplier's production system are sequence

independent.
• Production sequence at each basic period for each machine at

each stage is unique and is determined by the solution method.
• The supplier incurs linear inventory holding costs on semi-

finished products.
• Both the supplier and the assembler incur linear holding costs

on end products.
• Preemption/Lot-splitting is not allowed.
Moreover, the notations used for the problem formulation are
defined as follows:

Parameters:
n number of products
m number of work centers (stages)
mj number of parallel machines at stage j
Mk'j k'-th machine at stage j
di demand rate for product i
pij production rate of product i at stage j
sij setup time of product i at stage j
scij setup cost of product i at stage j
hij inventory holding cost per unit of product i per unit time

between stages j and j+1
hi inventory holding cost per unit of final product i per unit time
A transportation cost per delivery
PH planning horizon length
M a large real number

Decision variables:
σk sequence vector in basic period k
σkk'j sequence vector of machine Mk'j related to the basic period k
r number of production cycles over the finite planning horizon
nkk'j number of products assigned to machine Mk'j related to the

basic period k
F basic period length
bij production beginning time of product i at stage j (after related

setup operation)
ki cycle time coefficient of product i

⎪⎩

⎪
⎨
⎧

−= ′′
.,0

,1

Otherwise
Mofpositionththeto

assignediskperiodbasicatiproductIf
x jkkjki ll

It should be noted that the global cycle length is equal to the
least common multiple of the ki variables. In other words we have:
H = LCM (k1, k2,…,kn). Also, the production cycle length, the

production lot size of product i and the processing time for a lot of
product i at stage j are as follows:

Ti = ki.F, Qi = di.Ti, ptij= Qi /pij =di.ki.F / pij.
Moreover, at stages with only one machine, the value of mj and
index k' would be only one. Since the value of the items are
increased as they are processed at each stage, the hij values are non-
decreasing; that is hi,j-1≤ hij.
The objective function of this problem (Problem P) includes two
fundamental elements. The first element is related to the setup costs
and the second part computes the transportation cost of products on
each basic period.

.
1 1 F

A
Fk

sc
C

n

i

m

j i

ij += ∑ ∑
= =

The inventory holding costs are often more complicated which are
incurred at both the supplier and the assembler. Figure 1 shows the
inventory curve of final product i in one cycle at the assembly
facility. Therefore, the average inventory of component i per unit
time at the assembly facility is: .2

1
∑
=

n

i
iii dhFk

Fig. 1. Inventory level at the assembler in one cycle.

Two types of inventories i.e. work-in-process (WIP) and finished
product inventories are considered for the supplier. Figures 2 and 3
show the amount of WIP inventory of product i between two
successive stages j-1 and j, and the inventory level of final product i,
respectively.

Referring to, Figure 2, it could be derived that the average WIP
inventory of product i between two successive stages j-1 and j per
unit time is:

.
22

22
1

1,
1,

1,
1,

1,
1,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+=

⎪⎭

⎪
⎬
⎫

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−

⎪⎩

⎪
⎨
⎧

+=

−
−

−
−

−
−

ji

ii
ji

ij

ii
iji

ij

iiii

ji

ii
jiijii

ji

iiii

i
ji

p
Fkd

b
p

Fkd
bd

p
TdTd

p
Td

bbTd
p

TdTd
T

I

Therefore, the total WIP inventory holding cost for all products per
unit time at the supplier would be as follows:

.
22 1,

1,
1 2

1,
⎪⎭

⎪
⎬
⎫

−
⎪⎩

⎪
⎨
⎧

−+=
−

−
= =

−∑∑
ji

ii
ji

ij

ii
iji

n

i

m

j
jiWIP p

Fkd
b

p
Fkd

bdhTC

Fig. 2 WIP between stages j-1 and j at the supplier

time

Ti

iI

ii Td .

time
ijiiij pFkdb ..+1,1, .. −− + jiiiji pFkdb1, −jib

ijb

i . Td i

1, −jiWIP

2046

Fig. 3 Final product inventory at the supplier

Also, from Figure 3, we can derive the average inventory of final
product i per unit time:

.
2

.1

.
2

1
1,

imii
im

i
i

im

ii
imiii

im

iii
ji

bdFk
p
d

d

p
TdbTTd

p
TdTd

T
I

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

⎭
⎬
⎫
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎩
⎨
⎧

+=−

Thus, the total inventory holding cost for all final products per unit
time is:

... .
.2

1.
1

i
1

imi

n

i
i

ikm

i
i

n

i
iFI bdhFk

p
d

dhTC ∑∑
==

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

So, the total cost per unit time (i.e. objective function of Problem P)
would be as follows:

() ..

11.
2

3.
2

...

11 2
1,1,

2 1,
1,

2

1

1 1

∑∑∑

∑∑

∑∑

== =
−−

= −
−

=

= =

−−+

⎥
⎥
⎦

⎤
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

++=

n

i
imii

n

i

m

j
jiijiji

m

j jiij
ji

i
n

i im

iiii

n

i

m

j i

ij

bdh bbdh

pp
hd

p
dkdhF

Fk
sc

F
ATC

Regarding this objective function and logical relationships between
the variables of Problem P, a mixed zero-one nonlinear model is
developed to obtain optimal solution of the problem.
Problem P has the following set of constraints. Constraints (2) state
that no product can be processed on a given stage before it has been
completed on its preceding stage. Constraints (3) guarantee that no
product can be processed before the completion of its predecessor
product in the production sequence (σkk'j). Constraints (4) reveal that
at each position of each machine, there could be at most one product
in process. Constraints (5) state that one product can be assigned at
one position of machine Mk'j only when another product is to be
assigned at the preceding position of the same machine. Constraints
(6) ensure the assignment of product i to one of the first ki basic
periods and imply that each assigned product at each stage has a
unique position in the sequence of one machine. Constraints (7)
determine the assignment of products in appropriate basic periods
during the H basic periods. Constraints (8) denote that if product i
has been assigned to the basic period k at stage j, it must be assigned
to this basic period at all stages. Constraints (9) show that if product
i is the first product in the sequence vector of one machine at stage j,
it’s processing cannot be started before the corresponding machine
has been set up. Constraints (10) assure that the resulting schedule is

cyclic so that the process completion time for each product at final
stage is less than or equal to a basic cycle time F. Constraint (11)
implies that the planning horizon PH is an integer multiplication of
H.F, where H=LCM (k1,…,kn), and F is the basic period length.
Constraints (12) show that r is an integer number greater than or
equal to one. Finally, Constraints (13) guarantee non-negativity of
variables.
It must be noted that this model can be run for a set of known ki
variables. In other words, to run this model, at first the ki values
must be determined. Then the corresponding optimal basic period
length, optimal assignments, sequence vectors and the production
and delivery schedule of products could be obtained via solving the
Problem P.

3. PROPOSED HYBRID GENETIC
ALGORITHM

During the last thirty years, there has been a growing interest in
obtaining the optimal solutions for complex systems using genetic
algorithms (GA). Genetic algorithms maintain a population of
potential solutions and simulate evolution process using some
selection process based on fitness of chromosomes and some
genetic operators. To improve solution quality and to escape from
converging to a local optima, various strategies of hybridization
have been suggested (Cheng and Gen 1997, Torabi et al. 2006). In
designing a hybrid genetic algorithm (HGA), the neighborhood
search (NS) heuristic usually acts as a local improver into a basic
GA loop.

In our proposed PT-HGA, each solution is characterized by a set of
ki multipliers and the value of basic period F. Beside the cost
minimization; we have to generate feasible schedules. Therefore, a
capacity feasibility test has been developed which identifies the
infeasible solutions and converts them to feasible schedules. This
will be discussed in Sec 5.

3.1. Chromosome Representation
The proposed PT-HGA searches in the solution space consisting of
ki values, encoded as binary (zero-one) strings. Each ki multiplier is
represented by a particular part of a chromosome. For instance, the
first u1 bits are used to encode the value of k1 and the particular
piece of chromosome from the (u1+1)-th bit to the (u1+u2)-th bit
represents the value of k2 and so on. In order to represent all
possible values of ki for each item i, we need an upper bound (see
section 4) on the value of ki (or vi so that iv

ik 2=). Due to the
encoding of the ki values into binary strings, we have to establish a
mapping between each binary string and its corresponding integer
ki. We use the following equations to map a binary string consisting
of ui bits to an integer value ki for the power of two and non-power
of two cases, respectively:

() i
i

ii

v
ii

u

j

j
juu kvbbbb 22... 10

101

1

211 =⇒=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= ∑

=

−
−

3.2. Determining the σk Vectors
In assigning and sequencing of products in different basic periods
i.e. determination of σk vectors, it is not easy to derive a simple
necessary and sufficient condition to have a non-empty set of
feasible solutions.

imiiim pFkdb .+

time

iI

ii Td .

imb iT

2047

()

()

() ()()

()

()

() ()

()

()

() () ()()

()

()

()

()

() ()
()
() { } .,,,;1,0,0;013

112
,...,

,,...,1

,...,,,...,1;,...,1

,...,1;1

,...,1;,,...,1;,...,1

;8

2,...,0;,...,1;,...,1;,...,1

7

,...,1;,...,116

,...,,,...,1;;,...,1

,...,1;,...,1

,...,,,...,1,...,1

,...,1,...,11)4(

,...,,,...,1

;;,...,1;,...,1;,,...,1

2

,...,2,...,1

.

11
2

3
2
.

1

1

1
1

1 1
1,

1 1

1 1
1

1 1

1 1 1

1

11
1

1

1

1

1

1,
1

11 2
1,1,

2 1,
1,

2

1

1 1

k,jkix ;ji b F
 rand intege ,r

 kklcmH ; PHH.F.r11

 ni ; F
p

Fkd
b10

kklcmHHk ni

 ,mj xMsb9

Hk mjmj mi

 xx

k
Hb kt mj ni

 ; xx

mj ni ; x

kklcmHHk n mk

 ;mj ni ;xx5

kklcmHHk ;n

;mk ;mj ; x

kklcmHHk

n mk mj iu ni

 ; xxMbs
p

Fkd
b3

 m j ;ni ; b
p

Fkd
b2

:subject to

bdh bbdh

pp
h

dk
p
dkd

hF

Fk
sc

F
A Z Min

kjkiij

n

im

ii
im

n

m

k
kjkiijij

m

k

n

jkkil

m

k

n

kjkil

i
i

m

k

n

jkbtki

m

k

n

jbktki

m

k

n k

k
kjki

nj

n

u
kjku

n

i
kjki

n

j

n

i
kjki

n

j

kjkukjkiujij
ij

ii
ij

 ij
ji

ii
i,j-

n

i
imii

n

i

m

j
jiijiji

m

j jiij
ji

ii
n

i im

iii
i

n

i

m

j i

ij

j

jj

j

i

j

i

j i

:P Problem

′∀=∀≥≥
≥

==

=≤+

===

=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−≥

=<==

=

−====

=

===

==<=

==≤

===

=′=≤

==

<=′=≠=

−−≤−++

==≤+

−−+

⎥
⎥
⎦

⎤
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

++=

′

=′
′

=′ =
+′

=′ =
′

=′ =
++′

=′ =
+′

=′ = =
′

=
′

=
′+

=
′

′+′

−

== =
−−

= −
−

=

= =

∑

∑∑∑∑

∑∑∑∑

∑∑∑

∑∑

∑

∑∑∑

∑∑

∑∑

l

l

l

l

l

ll

l
l

l
l

l
l

ll

l

ll

Given a vector of multipliers ki; i=1,…,n, the procedure starts to
create a vector say V' by sorting the products in ascending order of
ki. Ties are broken by sorting the products having the same
multiplier ki in descending order of ρi where:

∑
=

==
m

j ij

ii
i ni

p
dk

1
....,,1,ρ

Each product i in the vector V' is assigned to the basic period t
within the first ki periods of global cycle H which minimizes:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+∑

∈=+=
ij

ii

u uj

uu

mj,...mt,tk p
dk

p
dk

k
i σ,...,1

maximummaximum

Finally, for each k, k=1,…,H, the sequence of products within σk is
determined in a way that if i, u ∈ σk and i is ordered before u in V',
then i is also ordered before u in σk.

3.3. Determining the σkk'j Vectors
First available machine (FAM) rule has been employed to assign
and sequence the products of each basic period to the machines of
different stages (Torabi et al. 2006). According to this procedure,
for any given permutation vector V; the products are assigned to the
machines of the first stage by using the FAM rule (if m1> 1). Then,
for each of the subsequent stages, the products are first sequenced
according to the increasing order of their process completion times
at the preceding stage. The products are then assigned to the
machines at the current stage according to the FAM rule.

3.4. Initial Population
Initial population of the binary chromosomes is generated
randomly. According to feasibility test, each infeasible solution is
converted to a feasible one.

3.5. Evaluation Function
Each chromosome in the population represents a potential solution
to the problem. The evaluation function assigns a real number to the
individuals as their measure of fitness. In our problem, once the σkk'j
vectors are determined for each chromosome, the fitness value is
obtained by solving the Problem P1 which is a NLP model. This
problem is derived from Problem P by substituting the xilkk'j
variables by their corresponding ones. Also, σkk'j(i) indicates the i-th
product in the sequence vector of machine Mk'j in basic period k.
Problem P1 can be solved by the following iterative procedure:

Initial step: Let r =1, and solve the associated linear problem.

Iterative step: Increase r by 1 and solve the corresponding linear
problem for this new value of r. If this model has no feasible
solution, stop; else, if the objective function for current value of
r (i.e. Zr) is less than this value for previous r (i.e. Z), then set
Z=Zr and F*=PH / r.H, and go to the next iteration.

2048

()

()
() ()

()
() ()

() ()

.,0,
1;..

,...,1;.

),...,(,,...,1;,...,1

,...,1
),...,(,,...,1

;,...,1;,...,1;,...,2

.

,...,2,,...,1.

...

11
2

..3
2

..

1

,1,1

1

,,
,1

11
,1

1,
1,

11 2
1,1,

1 1,2

2

1,

1 1

ji bF
integer and r PHFHr

ni F
p

dFkb

kklcmHHk mk

;mj ;sb
kklcmHHk

 mk mjni

 ;bs
p

dFk
b

mj ni ;b
p

dFkb

o:subject t

bdhbbdh

F
pp

dkh
p
ddkh

Fk
sc

F
A Min Z

:P1 Problem

ij

im

ii
im

nj

jj

n

jjkk

jiji
ji

ii
ji

ij
ji

ii
ji

n

i
imii

n

i

m

j
jiijiji

n

i jiij

m

j

i
iji

im

ii
ii

n

i

m

j i

ij

jkkjkk

jkkjkk

jkk

jkkjkk

jkk

∀≥
≥=

=≤+

===

=≥
==

=′==

≤−+

==≤+

−−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

++=

′′

′′

′

′′

′

′

−

−−
−

−
−

== =
−−

= −=
−

= =

∑∑∑

∑ ∑

∑∑

σσ

σσ
σ

σσ
σ

3.6. Selection and Crossover Operators
In the proposed PT-HGA, the tournament selection approach is
used. It randomly chooses two chromosomes from the parent pool
and selects the fitter one with the probability of φ (0.5<φ< 1).
Otherwise, the other one is selected. The selected chromosomes are
duplicated and pairs of them are selected as parents to undergo the
crossover operation. The main purpose of crossover is to exchange
genetic materials between randomly selected parents with the aim of
producing better offspring. In this research the classic two point
crossover scheme is employed. According to this scheme, two
positions are randomly selected and the genes between them in the
parent chromosomes are exchanged (see Figure 4).

3.7. Mutation Operator
Mutation introduces random variation (diversification) into the
population. Most genetic algorithms incorporate mutation operator
mainly to avoid convergence to local optima in the population and
recovering lost genetic materials. In the proposed PT-HGA the swap
mutation is used. Fig. 5 illustrates an example of this operator.

0 1 1 0 1 0 0 1 0 1 0 0
1 1 0 1 0 1 0 1 1 0 1 0

0 1 1 1 0 1 0 1 0 1 0 0
1 1 0 0 1 0 0 1 1 0 1 0

Fig. 4. Two-point crossover.

0 1 1 1 0 1 0 0 0 1 0 0
0 1 1 0 0 1 0 1 0 1 0 0

Fig. 5. Swap mutation.

0 1 1 0 0 1 0 0 0 1 0 0
0 1 1 0 0 0 1 0 0 1 0 0

Fig. 6. Inversion operator.

3.8. Local Improver
The local improvement procedure is based on an iterative
neighborhood search (NS) so that a given offspring is replaced with
an elite (dominating) neighbor. We have used inversion operator as
local improver. Figure 6 gives an example of this operator.

3.9. Population Replacement
Chromosomes for the next generation are selected from the enlarged
population. Once the offspring are generated by the GA operators
(crossover, mutation and the neighborhood search procedure), they
are added to the current population called the enlarged population.
Then 60 percent of the new population is filled by the best fitted
chromosomes of the enlarged population. The remaining
chromosomes are selected randomly from the remainder individuals
in the enlarged population.

3.10. Termination Criteria
In our implementation, the PT-HGA stops if either a pre-determined
number of generations (max_gen) are executed or the number of
non-improving generations reaches max_nonimprove.

4. UPPER BOUNDS ON ki VALUES
In order to represent all possible and feasible values of each ki
multiplier, an upper bound is determined for each one. In our PT-
HGA, an upper bound on ki is derived through determining an upper
bound on the objective value of each product i. Following steps
describe how an upper bound for each ki (ki

UB) can be computed:

Step1: For each product i, assume ki=1 and calculate ∑j di/pij.
Arrange the products in ascending order of these values. Assign the
products and sequence them to the machines at all stages via FAM
rule. Finally, find the corresponding common cycle solution and its
objective function, TCcc.

Step2: Calculate the cost share of each product I as follows:

∑ ≠=
−=

n

iuu
u
cccc

i
cc TCTCTC

,1
. We would have: TCi

BP ≤TCi
cc

(see Yao and Elmaghraby, 2001), where TCi
BP is the cost share of

product i under basic period approach. So, TCi
BP values must be

determined.

Step3: Assume there is only one product (say product i) with the
following objective function:

Parent1:
Parent2:

Two cut points

Child1:
Child2:

Child:
Parent:

Child:
Parent:

2049

() ..

11.
2

3.
2

..
.

2
1,1,

2 1,
1,

2

1

imii

m

j
jiijiji

m

j jiij
ji

ii

im

iiii

m

j i

iji
BP

bdh bbdh

pp
h

dk
p
dkdh

F

Fk
sc

TC

−−+

⎥
⎥
⎦

⎤
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+=

∑

∑

∑

=
−−

= −
−

=

Obviously, to obtain the optimal solution, the starting times have to
be determined such that minimize (bij-bi,j-1)-bim. Also, the smallest
feasible value of bij-bi,j-1 is equal to kiF.di/pi,j-1. Therefore, the best
value of TCi

BP is equal to:

.111.
2

3.
2
.

.

1

1

2

2 1,
1,

2

1

44444444444 344444444444 21
iH

m

j ij
ii

m

j jiij
ji

i

im

iii

i

m

j i

iji
BP

p
dh

pp
h

d
p
ddh

Fk
Fk

sc
TC

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+=

∑∑

∑
−

== −
−

=

Finally for a given value of F, we can derive an upper bound on vi,
denoted by vi

UB by using the following equations:

()

⎥
⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎢

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

=⇒

≤+−⇒

≤+⇒≤

∑

∑

∑

=

=

=

mini

m

j
iji

i
cc

i
cc

UB
i

m

j
ij

i
cciii

i
ccii

m

j i

iji
cc

i
BP

FH

scHTCTC

v

scTCFkHFk

TCHFk
Fk

sc
TCTC

.2

4

log

0.

 .

1

2

2

1

22

1

Moreover, to determine the minimum value of F (or Fmin), assume
that F must be large enough so that at least one product with ki=1,
can be produced in its course. Consequently, Fmin is obtained from
the following equation:

.
1

1

1

,...,1

11,...,1

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−
≥⇒

≤
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

+

∑
∑

∑∑

=

=

=

===

m

j iji

m

j ij

ni

m

j ij

i
m

j
ijni

pd

s
maximumF

 F
p

Fd
smaximum

5. FEASIBILITY TEST AND REPAIR
PROCEDURE
For a given chromosome and related ki, σk and σkk'j vectors, a simple
test for capacity feasibility can be carried out. To do so, the process
completion times of the products for all H basic periods are first
calculated. The following procedure can be used for this purpose.

for k=1,…,H
for each i∈σk

 for j=1,…,m

process1=∑
′∈ jkku ujuu pdk

σ
, product u is before i at

basic period k on machine Mk'j.
process2= 1,1,

1,
−∈ − +∑

−′
jiiiu juuu pdkpdk

jkkσ
,

product u is before i at basic period k on machine Mk',j-1
fin=max{process1,process2} + kidi /pij

 end
 ftik = fin
 end
ftk=maxi{ftik}
end

If the related completion time is greater than or equal to 1 in at least
at one basic period, the corresponding chromosome is infeasible and
otherwise, it is feasible. In other words, if at least one of the ftk
values, k=1,…, H, is grater than or equal to 1, this solution is
infeasible.

For converting an infeasible solution to a feasible one, the following
iterative repair procedure is proposed based on the ki values
modifications.
Step1: Choose the basic period with maximal value of ftk, e.g. basic
period k1.
Step2: Among the products of basic period k1, select the product
with the largest process time (maxi {∑j=1,…,m kidi/ pij}; i∈σk1), e.g.
product i.
Step3: If vi≠0; set vi=vi -1, and obtain σk and σkk'j vectors for this new
set of multipliers. If this solution is feasible, stop, otherwise go to
step1. If vi=0; select the product with the next largest process time
and go to step3.

It is noteworthy that each chromosome obtained via genetic
operators (crossover, mutation and local improver) is checked
through aforementioned feasibility test.

6. COMPUTATIONAL EXPERIMENT
To verify efficiency of the proposed algorithm in terms of the
solution quality and the required computation time, some numerical
experiments are conducted. The experimental tests are implemented
on a PC with an Intel Pentium IV 1800 MHz CPU. PT-HGA was
coded on MATLAB 6.5. Moreover, LINGO 6.0 optimization
software was used to solve the mixed zero-one non-linear models.

6.1. Parameter Setting and Data Set
The parameters of the PT-HGA were tuned empirically using some
initial tests to these values: population size pop_size = n, maximum
number of generations max_gen = m×n, maximum number of
generations without improvement max_nonimprove =n, crossover
probability Pc= 0.8, mutation probability Pm= 0.2, and tournament
selection parameter φ = 0.7.

Furthermore, the parameters of each problem instance were
randomly generated from the following uniform distributions:

() ()
() ()
().20000,10000~

,10,1~,025.0,01.0~
,15000,5000~,1000,100~

1

UA

Uh Us
 Up Ud

iij

iji

As stated earlier, the hij values must be non-decreasing for each j.
So, after random generation of hi1 for each product i, the rest of
associated hij values are determined by randomly generating
incremental additions i.e. hij=hi,j-1+U(1,3). Also there could be a

2050

correlation between scij and sij values. Therefore, for each randomly
generated sij, its corresponding scij parameter is computed using the
following equation: scij=15000×sij +1000×U(0,1).

6.2. Performance Evaluation
To verify efficiency of proposed solution method, eight different
problem sizes were considered. For each problem size, 20 problem
instances were generated at random. The problem instances were
divided in two sets: problem instances with 4 and 5 products, and 2
and 3 stages (small-sized problems), and problem instances with 5
and 10 products and 5 and 10 stages (medium and large-sized
problems). For small size problems, the solutions of PT-HGA were
compared with those of the LINGO software. For medium and
large-sized problems, an index λ is calculated as λ= (TC-LB)/LB for
comparisons, where TC is the total cost of a problem instance
obtained by the algorithm and LB is the associated lower bound
which is described subsequently.

6.3. A Lower Bound
The lower bound LB on the objective function is the minimum
value of the following equation:

()

11
2

..3
2

..

11 2
1,1,

1 1,2

2

1,

1 1

∑∑∑

∑ ∑

∑∑

== =
−−

= −=
−

= =

−−+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

++=

n

i
imii

n

i

m

j
jiijiji

n

i jiij

m

j

i
iji

im

ii
ii

n

i

m

j i

ij

bdhbbdh

F
pp

d
kh

p
dd

kh

Fk
sc

F
A Z

The minimum value of the above equation is obtined when bij’s are
determined such that (bij-bi,j-1) is minimized. According to
constraints 2, the minimum possible amounts of (bij-bi,j-1) are
di.kiF/pi,j-1. Also, if products can be scheduled as late as possible, bim
can be substituted with F-di.kiF/pim. Therefore, a good lower bound
can de computed as follows:

∑
∑

∑

∑∑

=

=

−=
−

= =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+
=

n

i

im

ii
n

i
ii

jiij

m

j

i
iji

im

ii
ii

n

i

m

j i

ij

p
dkdh

pp
dkh

p
ddkh

k
sc

F

1

1

1,2

2

1,

1 1

1

11
2

..3
2

..

A

∑
∑

∑

∑∑

=

=

−=
−

= =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

++=

n

i

im

ii
n

i
ii

jiij

m

j

i
iji

im

ii
ii

n

i

m

j i

ij

F

p
dkdh

pp
dkh

p
ddkh

Fk
sc

F
ALB

1

1

1,2

2

1,

1 1

1

11
2

..3
2

..

6.4. The results
The computational results for small problems are given in Table 1.
Moreover, the results of two kinds of comparisons for medium and
large sized problems are given in Tables 2 and 3.

The following results could be summarized based on the
observations derived from Tables 1 to 3:

1. As could be seen in Table 1, in small size problems, PT-HGA
outperforms LINGO in 67 out of 80 runs. It seems that the
mixed zero-one and nonlinear nature of the proposed
mathematical model prohibits LINGO to obtain good results.
Moreover, the quality of the solutions obtained by the PT-HGA
is, in average, 4.3 percent better than those of LINGO. In brief,
the Table 1 indicates the superiority of the proposed algorithm
versus LINGO with respect to both CPU time and solution
quality.

Table 1 Results of small-sized test problems

Problem
size

(n×m)

Number of
times the PT-

HGA
outperforms

LINGO’s
solution

Superiority of
PT-HGA’s

solution over
LINGO's

solution (%)

Average
CPU time

for
LINGO

(sec)

Average
CPU

time for
PT-HGA

(sec)

4×2 17 3.44 2736.98 34.43
4×3 16 5.05 5684.45 53.47
5×2 16 5.35 5770.77 54.69
5×3 18 9.07 9737.29 133.65

2. In Table 2, it could be observed that the average performance
ratio of the PT-HGA degrades as the problem size increases.
This performance reduction could be either due to the increased
difference between the lower bound and the corresponding
optimal cost, or due to the reduced performance of the proposed
algorithm in large solution spaces.

3. Table 3 reports the average of cost difference between the
solutions obtained by PT-HGA and the solutions of the
common cycle approach. These results reveal the average
improvement of 7.85 percent in solutions of the PT-HGA over
the common cycle's solutions. These results indicate merit of
applying the basic period policy instead of common cycle
approach in the problem.

Table 2. Performance of PT-HGA in medium and large-sized
test problems (Comparison with LB)

Problem
size

(n×m)

The average
performance

ratio (%)

Average CPU time
(sec)

5×5 8.01 270.45
5×10 18 825.59
10×5 6.04 988.86
10×10 15.29 1869.1

2051

Table 3. Performance of PT-HGA in medium and large-sized
test problems (Comparison with the common cycle approach)

Problem size
 (n×m)

The average improvement
in PT-HGA's solution

compare to common cycle
approach (%)

5×5 9.76
5×10 6.49
10×5 8.35

10×10 6.82

7. CONCLUSION
In this paper, the basic period approach was applied to solve the
economic production and delivery lot-sizing and scheduling
problem in flexible flow lines over a finite planning horizon. To do
so, a new mixed zero–one nonlinear model was developed to solve
the problem to optimality. Providing an optimal solution is
cumbersome and not practical for the medium and large-sized
problems. So, we have developed an efficient Hybrid Genetic
Algorithm called PT-HGA. Performance of the PT-HGA was
compared with LINGO software in small-sized problems. Also, for
medium and large-sized problems a lower bound was employed to
compare performance of the developed algorithm. Computational
results are very promising and indicate the superiority of PT-HGA
over the common cycle approach with respect to the solution
quality.

8. ACKNOWLEDGMENT
S. Afshin Mansouri is supported in part by EPSRC under grant
EP/D050863/1.

9. REFERENCES
[1] Bomberger, E. E., A dynamic programming approach to the lot

size scheduling problem, Management Science, 12 (1966) 778-
784.

[2] Cheng, R., Gen, M., Parallel machine scheduling problems using
memetic algorithms, Computers and Industrial Engineering,
33 (1997) 761–764.

[3] Elmaghraby, S. E., The economic lot scheduling problem:
review and extensions. Management Science, 24 (1978) 587-
598.

[4] Fatemi Ghomi, S. M. T., Torabi, S. A., Extension of common
cycle lot size scheduling for multi-product, multi-stage

arborscent flow-shop environment, Iranian Journal of Science
and Technology, Transaction B, 26 (2002) 55-68.

[5] Hahm J., Yano C. A., The economic lot and delivery-scheduling
problem: The common cycle case, IIE Transactions, 27
(1995a) 113–125.

[6] Hahm J., Yano C. A., The economic lot and delivery scheduling
problem: Models for nested schedules, IIE Transactions, 27
(1995b) 126–139.

[7] Jensen M. T., Khouja M., An optimal polynomial time
algorithm for the common cycle economic lot and delivery
scheduling problem, European Journal of Operational
Research, 156 (2) (2004) 305–311.

[8] Ouenniche J., Bertrand, J. W. M., The finite horizon economic
lot sizing problem in job shops: the multiple cycle approach,
International Journal of Production economics, 74 (2001) 49-
61.

[9] Ouenniche J., Boctor F. F., Sequencing, lot sizing and
scheduling of several components in job shops: The common
cycle approach, International Journal of Production Research,
36(4) (1998) 1125–1140.

[10] Ouenniche J., Boctor F. F., Martel A., The impact of
sequencing decisions on multi-item lot sizing and scheduling
in flow shops, International Journal of Production Research,
37(10) (1999) 2253–2270.

[11] Ouenniche J., Boctor F. F., The multi-product, economic lot-
sizing problem in flow shops: the powers-of-two heuristic,
Computers and operations research, 28 (2001a) 1165-1182.

[12] Ouenniche J., Boctor F. F., The two-group heuristic to solve
the multi-product, economic lot-sizing and scheduling problem
in flow shops, European Journal of Operational Research,
129, (2001b) 539-554.

[13] Ouenniche J., Boctor F. F., The G-group heuristic to solve the
multi-product, sequencing, lot-sizing and scheduling problem
in flow shops, International journal of production research,
39(1) (2001c) 89-98.

[14] Torabi, S. A., Fatemi Ghomi, S. M. T., Karimi, B., A hybrid
genetic algorithm for the finite horizon economic lot and
delivery scheduling in supply chains, European Journal of
Operational Research, 173 (2006) 173-189.

[15] Yao, M.J., Elmaghraby, S.E., On the economic lot scheduling
problem under power-of-two policy, Computers and
Mathematics with Applications, 41 (2001) 1379–1393.

2052

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

