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ABSTRACT
Biologically inspired designs can improve the design of arti-
ficial agents. In this paper we explain and explore the role of
directional light sensors from an Evolutionary Robotics per-
spective using a dynamical systems approach. It was found
that by using directionally specific sensors in the agent, there
was a simplification of the neural controller employed. This
simplification helped not only with the analysis of this type
of controller but also improved the behavioural performance
of the agents, thereby showing a good example of the eco-
logical balance principle.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics Autonomous Ve-
hicles; I.2.9 [Artificial Intelligence]: Robotics Sensors

General Terms
Design

Keywords
Evolutionary Robotics, Adaptive Behaviour, Evolution of
Sensors

1. INTRODUCTION
Eyes have always been as important in animals as they

are today. The appearance and improvement of eyes coin-
cided with the increase in size and speed in animals around
530 million years ago [14]. With the development of visual
systems, predation became a way of living.

Visual processes constitute a large part of the processes
in the brain. Therefore, the comprehension of how vision
works can help us to better understand neural processes.
Studying the visual processes in the brain can also help with
the design of artificial visually guided agents.

In order to understand visual systems in animals, it is
useful to start with the study of very simple visual systems,
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like photoreceptors and primitive structures (i.e. those that
came before the existence of eyes as we now know them).

In this paper, we employ an evolutionary robotics (ER)
approach to study a very simple primitive visual system in
an agent performing phototaxis. This approach has proven
to be useful not only in the study and design of robot con-
trollers [9], [7] but also in shedding some light on the under-
standing of cognitive phenomena (see [1], [2], [11], [16]) or
to explore vision morphologies [4] and visual properties of
sensors [12], [15].

In this work, we show some of the advantages of follow-
ing an evolutionary process in the design of visual sensors
for artificial agents. While simple hand-designed controllers
(for example, Braitenberg vehicles or controllers that feed
the motors with the difference of the sensor activity) can
provide solutions for simple tasks, the purpose of this work
is not to find a quick solution to the task but to understand
the interaction between agent and environment. In order
to analyse the role of sensors, we used a dynamical systems
approach. The dynamical systems approach is a young but
promising tool that can help us to understand cognition [3],
[10], [17].

In particular, it was shown how directional light sensors
(the most primitive precursors to eyes) can not only simplify
the neural controller required for phototactic behaviour in
an agent, but also improve the navigational strategies ex-
ploited. These advantages can help not only with the un-
derstanding of the dynamics of robot controllers but also can
shed some light on the design of better controllers for visu-
ally guided robots or agents. This work can stand also as
an example of the principle of ecological balance [18], show-
ing that sensors play an important role in the nature of the
control required to solve a simple task.

In the next section we describe the details about the arena,
the agent architecture, the genetic algorithm (GA) and the
task for the simulated agents in this work. This is followed
by a detailed explanation of the experiments and scenarios in
section 2. Next we present the results found in this work for
the different configurations of sensors and neural controllers
employed. Following that, an analysis and discussion about
the role of biologically inspired sensors and the neural dy-
namics of the controllers are presented in section 4. Finally,
the conclusions and subsequent possible lines of research for
this work are outlined in section 5 and 6 respectively.

2. METHODS
An object was placed in the center of an unlimited exten-

sion arena. This object emitted a signal dispersed according
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to the inverse of the distance from the object. For the pur-
poses of this work, we are going to assume that this signal is
light. An agent was placed in a random position within an
area of 10 × 10 units around the object. At the beginning
of every run, the agent started with a random orientation.
Agents were evolved to carry out phototaxis, that is, to ap-
proach a source of light (object) guided by the intensity of
the light emitted by the object.

2.1 The agent
The agent had a circular body with radius of 0.5 units

and two wheels on each side driven by independent motors.
The agent was able to sense the signal emitted by the object
through two sensors placed at ±π/4 radians from the line of
orientation of the body (see figure 1). The body of the agent
was symmetrical with respect to the axis of orientation.

Figure 1: Agent body: two wheels on each side
driven by independent motors. Two sensors placed
at ±π/4 radians from the line of orientation of the
body. The body has a radius r of 0.5.

2.2 Controller
The controllers for the agent are Continuous Time Re-

current Neural Networks (CTRNN). These kinds of artifi-
cial neural networks show desirable properties as robot con-
trollers for several reasons. First, a CTRNN shows rich com-
plex dynamics as a universal approximator (any smooth dy-
namical system can be approximated by a CTRNN with any
degree of accuracy) [10], [8]. Second, CTRNNs are biologi-
cally inspired so that the analysis of this type of model can
help to understand the dynamics of real brains (see [1] for a
detailed study of their characteristics as neural controllers).

The state y of neuron i changes in time according to the
differential equation:

τiẏi = −yi

X

j

wijφ(yj + βj) + g · I

That is, the state of each neuron is the integration of the
weighted sum of all incoming connections (plus a gained
input g · I for input neurons). The time constant φ is the
sigmoid activation function, τ ∈ [0.2, 2.0] and the bias β ∈
[−10, 10] and all the weights wij ∈ [−5, 5] are shaped by the
GA.

Initially, the controller consisted of eight neurons, specifi-
cally, two sensor neurons, four fully connected interneurons
and two motor neurons. Another set of experiments was
carried out using a neural controller with six neurons, two
sensor neurons, two interneurons and two motor neurons
(see figure 2).

Figure 2: Neural controller: a CTRNN with 8
nodes. Neurons 0 and 4 are the sensor nodes, neu-
rons 2, 3, 6 and 7 are fully connected interneu-
rons and neurons 1 and 5 are the motor neurons.
The width of each arrow represents the strength of
the connection (weight). The solid lines in the ar-
rows represent excitatory connections and the dot-
ted lines in the arrows represent inhibitory connec-
tions.

The sensor neurons were activated by light (sensed as the
inverse of the distance between each sensor in the agent and
the object).

The motor neurons received activation from every interneu-
ron only. The output of the motor neurons was connected
to the motors of the wheels of the agent with a gain of 2.

Due to the nature of the body of the agent, a bilateral
symmetry was imposed on the neural controller of the agent.
This characteristic is very important for the dynamics of the
neural activity (this is explained in the next section).

2.3 Genetic Algorithm
A distributed GA was employed to evolve the neural con-

trollers for a phototactic task. A population of 400 indi-
viduals was evolved with mutation probability of 80% and
20% for mutation for each component. There was also a 5%
probability of crossover and an elitism probability of 80%.

The genome of each individual was coded in a real vector
of 25 elements, 4 for the time constants of each neuron, 4 for
the bias of each neuron, one for the sensor gain and 16 for the
weights. Each element was coded as a real number in [0, 1]
and linearly scaled according to the parameters previously
described.

The fitness function F for this task was defined as:

F =
1

df

where df is the distance from the agent to the object at the
end of the trial. In this way the evolutionary pressure was
towards individuals finishing as close as possible to the light
source.

3. RESULTS
The controllers were evolved to perform phototaxis in or-

der to explore the role of different types of light sensors
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and different configurations in the neural controllers. It is
important to mention that controllers were also evolved us-
ing light sensed as 1/d2 under the same scenarios showing
qualitatively the same results as the ones presented in this
section.

3.1 Panoramic light sensors
The first set of experiments was carried out using unre-

stricted sensors (panoramic sensors), meaning that the sen-
sors could detect light coming from any direction (including
light coming from behind the agent).

After several thousands of generations, the evolved agents
performed phototaxis successfully. The agents exhibited
different approaching behaviours (i.e. searching and stay-
ing around the object). Most of the successful agents ap-
proached the object in a straight line and then remained
close and continuously circled or “patrolled” it (see figure
3).

After finding controllers that could solve the task, we per-
formed tests to understand the behaviour of the agent and
its interaction within the environment. During the test runs,
the neural activity of the controller and the positions of the
agent were stored.

In order to understand the behaviour of the agent we ex-
amined the internal dynamics of the best evolved controllers
during a test run. The neural dynamics corresponding to
the trajectory in figure 3 (presented in the inset 3.A.) can
explain the behaviour of the agent during that test run.
Around timestep 190 (see figure 3.B), the agent gets very
close to the object. However, the sensor neurons were satu-
rated well before this and remained so even after the agent
passed the object. If we observe what happens after timestep
190, when the agent passes the object (so the distance in-
creases), we can see that just before timestep 300 (see the
output of the neurons 1 and 5 in figure 3.A) the agent starts
to change direction and returns to the object. This time
corresponds to the time when the sensor neurons start to be
deactivated again (so the searching behaviour is once again
triggered).

How can we explain the behaviour of the agent? How
are these decisions taken? The numerical analysis of the
8 differential equations that describe the system seems too
complex to be able to explain the behaviour of the agent in
general. Also, it seems too difficult to analyse the network
structure of the controller (figure 2) as a way to explain the
interactions and roles of the neurons. However, we can have
a better idea about how the evolved controller works if we
study the different situations that the agent can be in.

Apart from describing the dynamics of the neural activity
during a test run, we created a long term steady state map.
This map consists of the neural activation of each neuron
after a period of time for every position of the object when
the agent remained fixed in the center of the arena.

If we place the agent in a fixed position and we translate
the object around it we can see how the neural activity re-
sponds to that location of the object. That is, we place the
agent in a fixed position (not allowing the agent to move)
and place the object a certain distance away and, after a
period of time, examine the state of the neurons. In this
way, we move the object around the agent with steps of one
degree, describing a circumference. We store the neural ac-
tivation for each step and then repeat this process. Once
we cover all the positions around the object, we increase
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Figure 4: Long term steady state of the neural con-
troller: the agent was fixed in a position facing
right (indicated by a line) and the object was moved
around it. After 50 timesteps the activation of each
neuron is stored. White regions represent 1 in the
output of the neuron when the object is in that po-
sition and black regions represent 0 in the output of
the neuron when the object is in that position.

the radius of the circumference and start placing the object
around the agent again and so on. Finally we plot the acti-
vation of each neuron for each of these positions in a steady
state map (shown in figure 4). The white regions represent
high activation and black regions represent no activation.

With this map we can observe the activation of each neu-
ron for all the situations that the agent can find the object
(within a limited range). For instance, when the object is
to the left of the agent (see figure 4), the left sensor neuron
is very active (white) and, as a consequence, the left mo-
tor neuron is inhibited (black) and the right motor neuron
is excited (white), so the agent turns to the left. Follow-
ing that movement, once the object is in front of the agent,
the activity of the neurons is uniform and the agent goes in
the direction of the object (the analogous situation happens
when the object is located to the right of the agent). This
map gives us a good idea about the way the motors and
sensors interact, but still we can not explain exactly how.

Even when we can describe and explain the situations that
the agent faces in its environment, the explanation of how
the agent decides to turn and navigate, remains unclear.
Can we reduce the dimensionality of the controller so we
can fully analyse it and explain its neural dynamics?

3.2 Directional light sensors
Visual systems in animals evolved from primitive simple

light detectors into directional and spatial light sensors when
motility represented a great advantage with the appearance
of predators [6], [13], [14]. Mimicking this evolutionary vi-
sual sensor development in animals, we restricted the light
sensors to be directional. That is, they can sense an ob-
ject if it is within an angle range. As seen in figure 1, the
agent can sense an object if the object is within the grey
area. Considering this restriction, we evolved controllers in
analogous conditions to the last experiments.

After restricting the sensory activity to a particular angle,
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Figure 3: Dynamics of an evolved controller of 8 neurons using panoramic sensors. A. Positions of an evolved
agent during a test run. The object (target) is placed in the center of the arena (0,0). [A] Neural dynamics
during a test run. Neurons 0 and 4 are sensor neurons, neurons 1 and 5 are motor neurons and neurons 2,
3,6 and 7 are interneurons (hidden layer). [B] Distance between the agent and the object during the test run
(timestep vs distance).

and finding successful agents, the best evolved controllers
were tested again systematically. In figure 5 we can observe
that, for these evolved controllers, the neural activation was
different.

We observe that in this case, the agent has to be more
active (exploratory, wandering around to locate the object)
in the environment. In this situation, the agent cannot al-
ways sense the object (these sensors are more limited) so
the agent has to sweep and find the object. The neural dy-
namics show this behaviour, as they oscillate much more.
However, in this particular experiment, some of the neurons
are saturated for the majority of the time (see neurons 3
and 7 in the figure 5). This saturation suggests that these
neurons might be redundant.

To try to find a simpler controller that could solve the
task, a 6 neuron controller was evolved to perform pho-
totaxis in the same conditions described above but using
restricted (directional) sensors. The successful evolved con-
trollers had a simpler neural structure, making it easier to
analyse (see figure 6).

The behaviour for the evolved controllers was similar to
the ones found in the previous experiments. In general, it
consisted of approaching the object and then describing a
“flower” navigational pattern (see figure 7).

Now, with a simple neural controller, can we analyse its
neural dynamics and finally fully explain the phototactic
behaviour of the evolved agents?

4. DISCUSSION
First we must examine how the agent makes its decisions.

Figure 6: Simplified neural network: 6 nodes. Only
two interneurons. The dotted line arrows represent
inhibitory connections and solid arrows represent
excitatory connections. The width of the arrows is
proportional to the strength of the connection.
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Figure 7: Dynamics of an evolved controller of 6 neurons using directional sensors. Positions of an evolved
agent during a test run. The object (target) is placed in the center of the arena (0,0). [A] Neural activity
during a test run. Neurons 0 and 3 are sensor neurons, neurons 1 and 4 are interneuron and neurons 2 and
5 are motor neurons . [B] Distance between the agentt and the object during the test run.
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To do so we have to analyse the situations the agent faces.
In this instance, the interaction between the agent and the
environment now can be described by two general situations.
The first one being when the object is not within the visual
field and the second one when it is within. What happens
when the object is not present in the visual field? The agent
spins around “searching” for the object. Once the object is
within the visual field, the agent approaches it following a
straight line.

To study the first case, we did not put the object in the
arena. The agent was only spinning if the neural activity
was randomly initialised, otherwise it would go in a straight
line (due to the bilateral symmetry of the controller). The
hypothesis is that this behaviour corresponds to an attractor
of the dynamical system described by the differential equa-
tions in the controller. The sensory input would perturb
this attractor until it reaches the point where it has similar
activation in both sensors and it would then proceed in a
straight line until it passes the object. Having no sensory
input, which would follow in the attractor (first case), the
agent would start spinning around until it was able to find
the object again.

The most important aspect to explain is how the agent
decides when to turn and navigate to find the object. This
should be described by modulation of sensory inputs and
motors. This modulatory process has to be done by the
interneurons since there are no feedback connections in the
controller.

Due to the simplification of the neural controller we first
analyse how these processes take place in the controller with
6 neurons and directional sensors. The behaviour of the
agent can be divided into the same two main situations: 1)
when the object is not within the field of view and 2) when
the object is within the field of view.

For the first situation with the simple controller (6 neurons
and directional sensors), neurons 1 and 4 play the modula-
tory role. Due to the symmetry and mutual inhibition (see
figure 6), if the sensor activity is different (due to random
initialisation), the interneuron that is more active overcomes
the other one until they reach an equilibrium point. This
equilibrium point is then reflected in the motors and finally
translates into a steady spinning of the agent. This is an
attractor of the dynamical system described by the differen-
tial equations of the neurons. This spinning behaviour helps
the agent to find the direction of the object.

At some point after the agent is spinning, the object will
be within the field of view (situation 2) and the activation
of the sensor neurons will be different. This difference will
perturbate the equilibrium point that causes the aforemen-
tioned spinning behaviour. For example, if neuron 1 was
more active than neuron 4, the spin would be towards the
left until the object was within the field of view (see figure
7A). At this point the right sensor is increasingly more active
and neuron 2 starts to dominate until both neurons reach
an equilibrium point. This regulatory process also happens
to the motors so the agent starts to go in straight line. In
this way the agent changes direction towards the object.

Due to the symmetry of the controller, if the activation is
the same in all neurons, the agent is going to go in a straight
line indefinitely. However, any difference in the sensors can
break that symmetry (due to the mutual inhibitory connec-
tion in the interneurons). So this repellor (see [19] for a
good text about dynamical systems) occurs only when the

line of direction of the agent intersects with the center of
the object (so the activation of the sensors is exactly the
same). In order to avoid this situation in the controller, it
is important to add noise into the sensors.

How did the agent try to find the object once it had passed
it? If the object is behind the agent, the agent can not sense
it, so the agent has to have a mechanism to find the object
again. In principle, this situation seems to be more difficult
than the one in which the object evokes a sensor signal,
regardless of the orientation of the agent (which was the
case of the panoramic sensors), so it seems natural to think
that this controller should be more complicated. However,
since the dimensionality was reduced it is easier to analyse
the dynamics of the evolved controllers in this case.

Why was the restriction of the sensors useful in the reduc-
tion of the dimensionality? As mentioned above, it was con-
siderably more difficult to find a successful controller that
had 6 neurons and used panoramic (unrestricted) sensors.
However, restricting the sensors (intuitively more limited)
resulted in the requirement of less neurons to solve the prob-
lem. In fact, the problem of localising the light source (ob-
ject) is more complex for panoramic sensors, since the agent
has to disambiguate the two possible positions of the object.
That is, the activation of the sensors would be exactly the
same for situations where the object is in front or behind
but with the same distance from the agent (see figure 8).

Figure 8: Ambiguous situation: the activation in the
sensors when the object O is in front of the agent,
is equivalent to the activation generated from the
object O’. The distance from O to the sensors is the
same as the distance from O’. That is A = A’ and
B = B’.

In order to discriminate these two possible positions of
the object, the agent has to move continuously (since it
is only by moving that the sensory activation differs for
these points). And, since the sensory activation is chang-
ing smoothly for the panoramic sensors (because the object
can be sensed all the time), the agent has to go far away
from the object to unsaturate the sensor neurons. Once the
neurons are unsaturated, the neural dynamics fall into the
attractor of spinning, and the agent turns around until the
equilibrium of the sensors is reached again. Therefore, the
agent spends more time going away from the object (com-
pare distances in figure 3.B and figure 7.B), making it harder
for this type of controller to have a high fitness on average
(see figure 9.A).

An important point to notice is the nature of the solu-
tions found for the different kind of sensors and controllers.
For example, on average, having panoramic sensors could
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help to find the object slightly more reliably than by having
directional sensors (see figure 9.B). However, having direc-
tional sensors allowed the agents to be closer to the object
in the most adapted cases (see figure 9.A).

This is because, by having panoramic sensors, in gen-
eral it is easier to approach the object (since it can be
always sensed), rather than requiring a search behaviour
(spinning) for directional sensors. But as a trade off, by
having panoramic sensors, it is necessary to go away from
the object to unsaturate the sensor neurons (as explained
above) and to stay further away most of the time due to the
smooth continuous sensory activation. In contrast, the dis-
crete activation of the sensory neurons in directional sensors
resulted in more “reactive” phototactic behaviour allowing
the agent to remain closer to the object.
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Figure 9: Results of 10 evolutionary runs for 1000
generations for different controllers and type of sen-
sors. Controllers with 8 neurons and panoramic sen-
sors (8NP), controllers with 8 neurons and direc-
tional sensors (8ND) and controllers with 6 neurons
and directional sensors (6ND). Figure 9.A shows the
average of the maximum fitnesses for the 1000 gener-
ations, figure 9.B the average of the average fitness
for the 1000 generations and figure 9.C shows the
average of the minimum fitness for the 1000 genera-
tions. In general, the controllers with 6 neurons and
directional sensors had better fitness function than
the controllers with 8 neurons.

It is also relevant to note that, in general, the solutions
found by the evolutionary processes for the different scenar-
ios were not very different in terms of maladaptation. The
performance of the most poorly adapted agents was very
similar regardless of the type of sensor employed (see figure
9.C).

5. CONCLUSION
In this work controllers were evolved to perform photo-

taxis. An analysis of the controllers through a dynamical
systems approach showed that by restricting the sensory sys-
tem, a simplification not only of the interaction between the
environment and the agent, but also of the neural controller
can be achieved. In particular, it was possible to evolve a
controller with less neurons to perform the same task. By
this reduction of the dimensionality of the problem, it was
easier to analyse the neural dynamics of the controller and
the behaviour of the evolved agent.

It is interesting that in this work it was found that such
restriction of the sensors caused a better employment of the
embodiment and situatedness by the evolved agents (see [18]
for a good explanation of these concepts). Restrictions on
the body and the visual sensors could actually improve the
performance and simplify the design of neural controllers.
These findings could be analogous to the evolutionary pro-
cess of the visual systems in animals, which suggests that the
appearance of directional sensors was one of the key issues
in the exploitation of movement [14].

6. FUTURE WORK
Although the tasks employed for this work are very simple,

they provide an example of the importance of the ecological
balance principle.

The properties of the sensors employed showed an impor-
tant correlation to the complexity of the controller required
to solve a simple task. This correlation shows the crucial role
of defining the interaction between environment and agent
[5].

A point that would be interesting to study is the pos-
sibility of exploiting the low costs of simplified visual sen-
sors. For example, these types of sensors could provide a
cheap and fast alternative for the exploration of controllers
performing more complex tasks (such as discrimination and
recognition) using richer visual information.
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