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ABSTRACT 
In this paper, we describe the use of a modern learning classifier 
system to a data mining task. In particular, in collaboration with a 
medical specialist, we apply XCS to a primary breast cancer data 
set. Our results indicate more effective knowledge discovery than 
with C4.5.   

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods 
and Search – backtracking, control theory, dynamic 
programming, graph and tree search strategies, heuristic methods, 
plan execution formation and execution, scheduling. 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
Classification, Genetic Algorithm, Learning Classifier System, 
Medical Informatics. 

1. INTRODUCTION 
Learning Classifier Systems (LCS) [8] have been successfully 
used for data mining within a number of different medical 
domains, beginning with Bonelli and Parodi’s [5] work using their 
‘Newboole’ system. More recently, Wilson’s XCS [29] was 
favorably compared to a number of other popular machine 
learning algorithms over numerous well-known benchmark data 
sets [3][27]. XCS has been applied over the three Wisconsin 
Breast Cancer Datasets [4] and again achieved competitive results 
[1]. Other examples include a Newboole-like system, termed 
EpiCS [10], which was found to classify novel cases in another 
medical domain more effectively than decision rules derived from 
logistic regression [9].  

This paper presents a complete knowledge discovery process 
based on XCS using a breast cancer dataset obtained from a UK  

health trust. This structure includes exploiting, compacting, and 
evaluating the generated knowledge. It outlines the applicability 
of using XCS in a medical decision support task aimed at 
improving the diagnosis of primary breast cancer.  

2. THE DATASET 
Although breast cancer research has been developing recently, the 
challenge has been to shift from gathering data to finding hidden 
patterns and trends that are most relevant to cancer diagnosis. 
Primary breast caner diagnosis is a major challenge to oncologists 
who treat breast cancer since it is the first stage from where the 
cancer develops. Primary breast cancer refers to cancer that has 
not yet spread outside the breast. The Frenchay Hospital in 
Bristol, in the United Kingdom started building a database for 
primary breast cancer in 1999. Since then they have been 
developing their research studies and improving their treatment 
based on their outcomes and results. Thus, this investigation 
exploits one of their datasets which is complex and useful, as 
Frenchay hospital has been using it and relying on it since it 
contains accurate collected pathological data related to their 
patients.  

The Frenchay Breast Cancer (FBC) dataset is a real-domain 
dataset which has a description of pathological data for women 
with primary breast cancer. The development of the FBC dataset 
started in 2002 by Dr. Mike Shere, a consultant breast specialist in 
Frenchay Hospital, Bristol, UK.  

Every case in the FBC is represented by 45 binary and the 
categorical attributes, which collectively describe the status of 
breast cancer in a certain patient. For the purpose of this 
investigation, 1150 cases from the FBC dataset were used in this 
knowledge discovery process. The diagnosis for each case is the 
cell grade, which determines the aggressiveness of the breast 
cancer stage and has the three grades G1, G2, or G3, with the 
distribution of 15.2%, 48.3%, and 36.5%, respectively as shown 
in Figure 1. The cell-grade is usually calculated by summing up 
some histological characteristics of breast carcinoma; and more 
specifically, it is the sum of the following attribute’s values: 
Tubule-Formation-Score, Nuclear-Pleomorphism-Score, and 
Mitotic-Figure-Score. 
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Figure 1. Distribution of Classes in FBC Dataset. 

3. DATA PREPERATION 

3.1 Data Pre-Processing 
Data pre-processing takes place before applying machine learning 
techniques to solve some limitations and barriers found within the 
original data. This process should transform the original data into 
a more useful form [7]. In general, the problems within the 
original data extend from the existence of irrelevant attributes to 
the existence of multi-level noise, which prevents the knowledge 
discovery process from being successful.   

Data pre-processing techniques vary, and there exist a huge 
number of techniques with different algorithms, as each rectifies a 
specific problem and suits certain machine learning techniques. 
Obviously, each algorithm has its strength and weakness points 
that may affect the original dataset. Filtering, noise modelling, 
feature selection, and data fusion are some of these techniques.  

However, data pre-processing is a time consuming task given the 
need to (e.g., [7]): (1) determine what problems occur in the 
selected data, (2) determine the needed pre-processing techniques 
and select the best suitable algorithms for the used machine 
learning technique, (3) apply these over the original dataset to 
arrive at better resultant dataset.  As this is not a closed or 
bounded problem, pre-processing the data is not treated here. This 
is because the aim of this investigation is to assess, evaluate, and 
compare the ability of XCS, along with other learning techniques, 
to classify and deal with raw data. Moreover, testing and 
evaluating each pre-processing technique with different learning 
techniques including LCS is beyond the scope of this research.  

In the following sections, a simple preparation procedure is 
applied to setup the data in a suitable form. Formatting, decoding, 
and solving the imbalance problem within the FBC dataset were 
carried out in this phase. 

3.2 Data Formatting and Decoding 
Three types of attributes are used within the FBC dataset and 
these are: numeric, boolean and categorical. As in the related 
literature (e.g., [26]), numeric attributes are normalised between 
the values of 0 and 1, where a value X is decoded into X’ using 
the minimum and maximum values of the attribute interval as 
follows: 

ValVal
ValXX

minmax
min'
−

−
=  (1) 

 

The values in categorical and boolean attributes are decoded into 
values {0, 1, 2… n-1,#} where n is the number of the possible 
values of the attribute. Table 1 shows the decoding with a simple 
example of each attribute type. 

 

Table 1. Attribute types: decoding and examples. 
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3.3 The Imbalance Problem 
The class imbalance problem is a well-known problem, which 
occurs when the classes' representation is unequal in the dataset, 
and thus the classes' frequency is significantly unbalanced. The 
dominant class, which is represented more frequently within the 
dataset, is referred to as the majority class. Other classes which 
are represented by smaller sets are referred to as the minority 
classes. It is believed that this problem may hinder most of the 
learning algorithms from achieving high accuracy performance 
[2]. 

However, this problem seems to have relations with other real 
dataset problems. For example, [32] revealed that class imbalance 
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is not the only factor responsible for holding back the 
classification performance, but also affecting the degree of 
overlap between classes. Thus, solving the imbalance problem 
will not always increase the learning algorithm performance as 
there are other problems to be considered. Japkowicz [17][13] has 
argued the same in that the imbalance problem may not be the 
main problem. But they focused on the problem of the existence 
of small disjuncts which correctly cover few data elements. These 
small disjuncts commonly are prone to higher error than large 
disjuncts. Several approaches were suggested to solve such 
problems in [13]. 

Although such studies have taken place, the other suggested 
problems (i.e., small disjuncts, etc.) do not have a clear simple 
solution, especially for a real-domain problem [13]. Therefore, 
dealing with them could just complicate, transform, or interpose 
the original dataset. Moreover, the imbalance problem still 
influences the performance of learning systems considerably; and 
therefore, this investigation will treat this problem as it may cause 
difficulties to learn concepts related to the minority classes.  

One category of supervised techniques that has been broadly used 
to address the class imbalance problem is related to the methods 
in which fractions of the minority and majority data elements are 
controlled via under-sampling and/or over-sampling, so that the 
desired class distribution is obtained in the training set [15]. Using 
the under-sampling technique, the data elements associated with 
the majority class are reduced [14]; and therefore, the size of the 
dataset is reduced significantly. Alternatively, over-sampling is 
usually applied to increase the number of data elements of the 
minority classes [14], which will result in increasing the size of 
the dataset.  

It was suggested in [33] that using over-sampling is required if the 
(majority/minority) ratio is very high. Moreover, Batista et al. 
[2][32] suggested that the over-sampling method may generate 
more accurate results than the under-sampling one. More 
precisely, random over-sampling showed competitive results than 
those more complex ones within their experiments. Recent results 
with XCS confirm the effectiveness of the simple over-sampling 
technique over more complicated ones [31]. 

For the FBC dataset, it can be seen that the class G2 is the major 
class and G1 is the most minor one with the ratio between G2 
class and G1 (G2/G1) is 3.17 and the ration between G2 class and 
G3 (G2/G3) is 1.37; hence, balancing this dataset is required. 
After [31], the random over-sampling technique is chosen where 
random cases from the minority classes are selected and 
replicated so that all the classes in the dataset are represented by 
the same ratio. 

3.4 Missing Data 
Missing data is another problem that occurs within real datasets. 
Within this research, missing data is treated while learning by 
XCS. In [12] it is reported that XCS is stable across all the 
missing value types and densities which were illustrated in [11], 
and therefore this investigation does not analyze the density of the 
existing missing values or their types within the FBC dataset. 
However, it can be seen that there are different types of missing 
values within the dataset which vary from simple uncollected 
elements to more complex missing values of the attributes.  For 
example, the specimen type which has only five missing values is 

an example of simple missing values which may be attributed to 
unavailable data or just an error in data entry. This was referred to 
in [11] as missing completely at random. Another example is the 
DSIC, a dependant attribute that is Histology-based. If the 
Histology has the value of M85203, then the value of DSIC will 
not exist, else it will have a value. This is not a missing data that 
is not collected or corrupted in some way; but it is the nature of 
the attributes which have an entire dependency. However, in this 
investigation this is also considered as missing data.  

Missing values are treated using the Wild-to-Wild mechanism 
[12]. While creating the match set [M], the matching process is 
performed in which the missing values in an input are handled by 
replacing them with don’t care symbols or general intervals, and 
therefore they match any value. Covering an attribute is handled 
by assuming any missing attribute is a “don’t care” or the most 
general interval for the attribute. 

4. CLASSIFICATION 

4.1 Well-known Techniques 
Experiments were performed using the well-known and 
traditional classification techniques namely, Bayesian Network 
Classifier [16], Sequential Minimal Optimization [34], and C4.5 
[24] using the Weka software [30]. These techniques were chosen 
for their performances over Frenchay dataset and because they are 
widely used within the machine learning community. All 
experiments were performed using the default parameters setting 
in Weka with the ten-fold cross validation [20].  

The Bayesian Network Classifier is a well-known supervised 
learning technique and is one of the probabilistic, graph-based 
approaches to reasoning under uncertainty. It has shown 
competitive results in different cancer application domains such 
as the prediction of survival of patients with malignant skin 
melanoma [25], and the identification of 33 breast cancer risks 
[23]. In [22] the Bayesian Network was found to perform 
comparatively better than Neural Networks and logistic regression 
models in addition to its ability to explain the causal relationships 
among the variables. In the case of the FBC dataset, the accuracy 
performance for the Bayesian Network Classifier is 70.38%± 
5.15. It can be noted that the Bayesian Classifier was tested and 
found lacking compared to the Bayesian Network Classifier; the 
accuracy performance for the Bayesian Classifier is 63.93%± 
4.64. 

The Sequential Minimal Optimization (SMO) is an optimization 
algorithm that quickly solves the Support Vector Machine (SVM) 
quadratic programming (QP) problem without any extra matrix 
storage and also without invoking an iterative numerical routine 
for each sub-problem [16]. Also, it has been used successfully in 
lung cancer to aid diagnosis [21], in addition to its competitive 
results for breast cancer diagnosis. After applying SMO over the 
FBC dataset, the performance was found to be 72.50%± 3.82. 

C4.5 is a well-known decision tree induction learning technique 
which has been used heavily in the machine learning and data 
mining communities. The output of the algorithm is a decision 
tree, which can be represented as a set of symbolic rules. For the 
current dataset, results showed that the C4.5 technique achieved 
77.4%±3.33 classification accuracy with an average tree size of 
101.51± 21.95 and 70.51± 15.9 as the number of obtained rules. 
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Table 2 shows a summary of the accuracy performance for the 
above three classification techniques. It can be seen that C4.5 
achieved the highest performance among the selected 
classification techniques. Therefore, the generated rules 
(knowledge) from C4.5 are to be evaluated and compared with the 
rules obtained using XCS. This has been performed using the 
domain specialist to critically report on the results achieved as 
explained later. 

 

Table 2. Accuracy performance for benchmark classifiers. 

Technique Accuracy 
Tree 

size 
No. rules 

Bayesian 70.38%± 5.15 - - 

SMO 72.50%± 3.82 - - 

C4.5 77.4%± 3.33 101.51± 
21.95 70.51± 15.9 

 

4.2 XCS 
This section shows the behaviour of XCS as described in [6] in 
learning the FBC dataset. Since the attributes in the dataset are 
divided into three data types: binary, categorical and real, the 
condition part of a rule in XCS combines real intervals, binary 
and categorical representations with their decoding as described 
above in Table 1. For example, the following is the first seven 
interval predictors in the condition part in a rule in which the first 
and the seventh predictors use real intervals and the others use the 
categorical representation: ( 0.0-0.9 )( #)( 1 )( # )( # )( 3 )( 0.0-0.3 
)… 

An empirical investigation was performed to determine a good 
setting for parameters, and was found that the classification 
performance is sensitive to the population size N, mutation step 
m0, covering step r0 and υ. As discussed in [37], a small 
population size hinders the solution to be generated because of the 
covering and reproduction processes. Different values of 
population size were tested (N=5000, N=6000, N=8000, 
N=10000, and N=30000). And, it has been found that the 
population size of N=10000 provides a sufficient population size 
as lower values did not allow an accurate solution to evolve.  

The values of r0 and m0 determine the initial and intermediate 
movements in the solution map, where r0 is the maximum 
covering step size for an attribute if no rule matches the current 
case; and m0 is the maximum step size that an interval can widen 
to while in mutation. The effect of the value of υ has been 
illustrated in [19].  

XCS was trained using ten-fold cross validation for ten runs each 
over 1,000,000 iterations using roulette wheel selection with a 
population size of 10000. The values for all other parameters are 
as follows: p#=0.75, θGA=50, uniform crossover χ=0.8, free 
mutation μ=0.04, α=1, δ=0.1, ε0=1.0,  θsub=20, υ =50, r0=0.4, 
m0=0.2. Table 3 shows the classification accuracy and the average 
of the rulesets’ size of XCS over the FBC dataset. It can be seen 
that XCS outperforms C4.5 and the other traditional techniques in 

terms of its classification accuracy which is reassuring for the 
capability of XCS. 

 

Table 3. Accuracy performance for XCS. 

 Accuracy  Pop. size 

 80.1%(5.9) 7974.4(157.4) 

 

5. RULE COMPACTION 
Several approaches have been attempted to develop a sufficient 
compaction algorithm to increases the level of rules’ readability, 
interpretation, and organization of the underlying knowledge held 
in the LCS ruleset. Research in [28], [35], and [36] are some 
examples of these data-driven approaches which extract a 
minimal set of rules that covers the original dataset. However, 
these attempts have a common deficiency in terms of their data 
dependency. To select the rules that only cover the dataset will, 
undoubtedly, ignore a large part of the discovered domain 
knowledge achieved by LCS. Moreover, if the noise level of the 
original dataset is high, then choosing the rules that only match it 
will lead to noisy and inaccurate rules. 

We have presented a new rule-driven compaction approach with 
the objective to understand LCS generated rules and their 
complex underlying knowledge. And, extract hidden knowledge 
from XCS rules by discovering interesting patterns which may 
highlight new domain features in addition to being efficient in 
classifying new future cases. Clustering has been used to produce 
clusters of similar rules that share most of the attributes and 
features. Table 4 shows the accuracy and size of the compacted 
ruleset obtained from the new rule-driven compaction approach. 
Comparisons with the data driven approaches have proven 
favorable in terms of size and accuracy but not in terms of 
quality– the reader is referred to [18] for full details and 
comparisons. 

 

Table 4. Compacted performance of XCS. 

RuleSet Original Compacted 

Size  7974.4(157.4) 341(27.16) 

Accuracy 93.75%(1..3) 65.13% (5.9) 

 

6. DISCOVERED KNOWLEDGE 
In general, the process of knowledge discovery aims to produce a 
novel piece of knowledge which can be easily comprehensible 
and useful in its problem domain. The significance of the 
generated knowledge can be assessed by the classification 
accuracy as discussed in the previous section. However, the value 
of the generated knowledge should also be evaluated from a 
domain expert point of view to emphasize if this knowledge 
fulfils the domain goals. That is, to evaluate the quality of the 
generated ruleset and to highlight the new piece of obtained 
knowledge (i.e., rules). This research concentrates on the medical 
domain, and breast cancer in particular. A medical expert, who is 
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a consultant pathologist in the domain of primary breast cancer, 
has been involved in this evaluation study to report on the relative 
value of the extracted and compacted knowledge from the 
medical point of view. Figure 2 depicts a partial extract from the 
evaluation forms presented to the domain expert to assess the 
rules generated from the previous section: 

 

 
Figure 2. The assessment model. 

 
The rules have been presented as a list of if-then statements and 
the domain expert was kindly requested to evaluate, relying on his 
past experience, the medical quality of each rule individually in 
terms of its usefulness, contradiction, and whether it is interesting 
and/or represents new knowledge. Usefulness means whether the 
rule would be of use in predicting or classifying future cases, with 
a scale of 1 (if the rule is of minor useful, not discussed here) to 5 
(if the rule is of the utmost significance and usefulness). 
Contradiction implies that the given rule contradicts with existing 
knowledge in the field or as per the domain expert’s background. 
A rule that is marked as Interesting and/or new knowledge 
indicates that this rule deserves future investigation since its 
diagnostic knowledge seems to be either not previously 
highlighted or that its existence maybe suspicious. Whenever a 
rule is masked as interesting, the domain expert is asked to 
provide a brief medical explanation to verify his point view in 
order to enrich the output assessment.  
In this investigation each rule is associated with two numbers; the 
number of the correctly, and the incorrectly matched cases. These 
two numbers certify the rule’s weight and accuracy. All the rules 
that have not had any matched cases are dropped out and not 
considered as efficient throughout this evaluation study. 

6.1 Analysis of C4.5 results 
The randomly selected ruleset contains 85 rules in which the 
distribution of classes over the rules are 11%, 55% and 34% for 
G1, G2 and G3, respectively as illustrated in Figure 3. Based on 
the expert’s evaluation, six rules have been found to be of high 
usefulness, where five rules have been considered presenting new 
knowledge. However, none of the rules is found to be 
contradicting any existing knowledge. Tables 5 and 6 present the 
number of interesting rules and the rules’ grade of usefulness for 
this group of rules, respectively. 

Table 7 presents the interesting rules from C4.5 according to the 
domain expert's evaluation. The following notes summarize the 
evaluation of the domain expert of the generated C4.5 rules. 

In general the generated rules from C4.5 were described by the 
expert as a simple, easy to understand, and useful. C4.5 fails to 
discover some of the well-known primary cancer patterns such as 
the correlation between the number of involved nodes and the 
aggressiveness of the existing cancer. 

Some rules were found too poor, maybe meaningless from the 
expert's point of view. For example, the rulei (if sum >5 Then 
Grade=G3), covers correctly about 95 cases (facts) and represents 
a naïve pattern.  

It has been observed that the most useful rules in the expert’s 
opinion match only few number of cases (facts) (i.e., between 3 
and 10 cases), and that rules matched against a large number of 
facts seem to be not of a high value. That is, the over fitted rules 
seem to present a representative meaningful pattern, whereas the 
general rules describe useless patterns or even over general weak 
ones. The following rule is an example that covers more than 50 
cases (facts) and has been considered as not useful at all: 

IF Immuno-ER-pos = TRUE and  
Mitotic-Figure-Score <= 1 and  
Histology = Ductal Carcinoma NST and  
Tubule-Formation-Score <= 7 
THEN Grade=G1  

Alternatively, the following rule is considered to be of a high 
value (i.e., usefulness=4) because it reveals the connection 
between this kind of histology and Grade 3 (G3) which can be 
easily used in predicting future cases, but this rule matches only 
three facts: 

IF Immuuuno-ER-pos = FALSE and  
Immuno-Done = TRUE and  
LCIS-component = FALSE and  
Histology = “Invasive Lobular Carcinoma” and  
Report-Type=EX and  
Immuni-C-erb-B2-strength=Negative  
THEN Grade=G3 

Furthermore, none of the rules describing Grade 1 class (G1) were 
found interesting as all of them are considered as useless with 
their usefulness category between 1 and 2 (except one rule with 
usefulness=3).  
 

Table 5. C4.5: Rules' Distribution of Grade of Usefulness. 

Grade of usefulness 2 3 4 5 
No of rules 

(total number of 
rules=85) 

8 5 6 0 

 

Table 6. C4.5: Number of the Correctness and 
New/Interesting Knowledge. 

 Yes 
New/ interesting 

knowledge 5 

Contradicting  0 
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Figure 3. Class distribution for C4.5 solution. 

 

6.2 Analysis of XCS results 
A random ruleset was selected from XCS which contains a total 
of 2901 rules and compacted using our rule-driven compaction 
algorithm. Figure 4 shows the percentage of rules’ distribution 
over the three existing classes within the XCS ruleset before 
compaction. 

It can be seen that this distribution is balanced and each class is 
roughly represented equally in the ruleset generated by XCS. 
After applying the rule-driven compaction algorithms, the size of 
the compacted rulesets was 300. The compacted ruleset was then 
presented to the domain expert for evaluation. 

For the rules compacted using the rule driven approach (300 
rules), nine rules were described as interesting where ten rules 
were assigned to have a value 4 for usefulness. Tables 8 and 9 
present the number of rules classified as useful and interesting 
using the rule-driven compaction, respectively. There were no 
contradicting rules in either results. 

The expert reported that the compacted ruleset from the rule 
driven approach is able to find well-known patterns which 
described some parts of the problem domain. For example, some 
rules include the Histology=Lobular Ca and describe Grade 2 
(G2) diagnosis. This type of histology refers mostly to this kind of 
primary cancer. The ability to find such well-known patterns 
assures us of the power of XCS to extract representative rules on 
the one hand and the rule-driven compaction approach in 
unveiling such hidden patterns on the other hand. Very interesting 
relations and interactions were identified by the expert from the 
generated rules especially the ones related to grade 1 (G1) class. 
The expert reveals that they present new knowledge regarding this 
type of primary cancer. Over 90% of the rules that were 
considered as interesting were related to Grade 1 (G1) diagnosis. 
In summary, these have shown that the size of DCIS + invasive, 
Specimen type, and DCIS type seem to be the most important 
attributes to determine this kind of primary breast cancer. 

 

 

Table 7. Interesting rules from C4.5. 

No Condition Grade 
1 Immuno-ER-pos = FALSE 

Immuno-Done = TRUE 
LCIS-component = TRUE 

G2 

2 Immuno-ER-pos = FALSE 
Immuno-Done = TRUE 

LCIS-component = FALSE 
Histology = Invasive Lobular Carcinoma  

Report-Type = EX 
Immuno-C-erb-B2-strength = Negative  

G3 

3 Immuno-ER-pos = FALSE 
Immuno-Done = FALSE 

DCIS-Necrosis = TRUE  THEN Grade 

G3 

4 Immuno-ER-pos = FALSE 
Immuno-Done = FALSE 
DCIS-Necrosis = FALSE 

Histology = Ductal Carcinoma NST  
age <= 39  

G3 

5 Immuno-ER-pos = FALSE 
Immuno-Done = FALSE 
DCIS-Necrosis = FALSE 

Histology = Ductal Carcinoma NST  
age > 39 

G2 
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Figure 4. Percentage of Rules’ Distribution over the G1, G2, 

and G3 Classes in XCS and Rule Driven Approach to 
compaction in a randomly selected ruleset. 

Table 8. Rule-Driven Compaction: Rules' Distribution of 
Grade of Usefulness. 

Grade of usefulness 2 3 4 
No of Rules 

(total number of 
rules=300) 

5
0 5 1

0 
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Table 9. Rule-Driven Compaction: Number of the Correctness 
and New/Interesting Knowledge. 

 Yes 
New/ interesting 

knowledge 9 

Contradicting  0 
 

Some of the generated patterns were found inappropriate for use, 
as their left hand side consists of a high number of attributes. 
From the domain expert's point of view, it is very difficult to 
utilise rules having a large number of participating attributes in 
the real domain application. Therefore, this criterion may prevent 
many rules from being considered as interesting or useful. 
Moreover, the encoding and clustering technique led to some 
patterns with the following action: “G1 or G2 or G3” which 
represents a conflict pattern of symptoms and attributes. Such 
patterns are also not appropriate to be used in real applications. 

Overall, the rules were judged to be more informative and 
qualitatively useful than the ruleset obtained from C4.5. They 
were found to contain more rich and descriptive patterns that 
cover the problem space more widely. 

The expert revealed that because XCS generates larger rulesets, 
more time is needed to search for such unique, surprising, and 
newly hypothesised rules. This may be considered a barrier to 
arrive at the maximum benefit from the generated rulesets. 

Although the classification accuracy of Grade 3 (G3) diagnoses is 
91%, the expert does not find the rules covering this category 
interesting nor contributing to new knowledge. However, this 
may be attributed to the expert’s experience being based on the 
cases collected from different patients and from his ongoing 
research. Grade 3 (G3) is the most aggressive primary cancer, on 
which more research is being carried out, more knowledge is 
evolving, and attention is given to provide a better understanding 
of this type of cancer, its causes and diagnosis. Therefore, 
although the generated rules cover over 90% of the cases (facts), 
it is suggested that the expert’s expectation is higher than the 
knowledge hidden within the given cases (facts). Therefore, most 
of the generated rules that cover Grade 3 (G3) diagnosis were 
considered not interesting. Space restrictions prohibit showing the 
nine most interesting rules learned by XCS (see [19], available 
online). 

7. CONCLUSION 
This paper has reported on the knowledge discovery process 
applied to medical databases and, in particular, the area of 
primary breast cancer. Results indicate that using a learning 
classifier system, such as XCS, followed by the appropriate 
compaction process, can lead to knowledge discovery and rule 
induction from such datasets. The process started with preparing 
the data in terms of rule encoding and then balancing the 
representation of the involved data classes.  

In addition, the dataset was applied to different learning 
techniques. XCS outperformed C4.5 and other selected learning 
techniques. The rulesets generated from XCS was compacted 
using rule driven approach and was qualitatively evaluated by a 
domain expert using the pre-defined criterion. The same criterion 

was used to evaluate the ruleset induced from C4.5 to allow the 
comparison to be carried out with rulesets from XCS.  

In summary, rules evolved by XCS were qualitatively comparable 
to those induced from C4.5. Although C4.5 produces fewer rules, 
XCS was found to breed more useful descriptive ones. In the case 
of the C4.5 ruleset, the expert recognized some missing patterns 
and pointed out some poor quality rules. In XCS, rules are richer 
and representative but more complicated as well.   

The involvement of a domain expert specialist who evaluated the 
rules relying on his previous knowledge guided by the assessment 
model enabled critical evaluation of the final rulesets to assess the 
quality of the rules generated from different perspectives. This 
involvement can be extended with more complicated assessment 
models to be utilized in refining the compaction technique or any 
related issue. 
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