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ABSTRACT
We have developed a technique to characterize software de-
velopers’ styles using a set of source code metrics. This
style fingerprint can be used to identify the likely author of
a piece of code from a pool of candidates. Author identifica-
tion has applications in criminal justice, corporate litigation,
and plagiarism detection. Furthermore, we can identify can-
didate developers who share similar styles, making our tech-
nique useful for software maintenance as well. Our method
involves measuring the differences in histogram distributions
for code metrics.

Identifying a combination of metrics that is effective in
distinguishing developer styles is key to the utility of the
technique. Our case study involves 18 metrics, and the time
involved in exhaustive searching of the problem space pre-
vented us from adding additional metrics. Using a genetic
algorithm to perform the search, we were able to find good
metric combinations in hours as opposed to weeks. The ge-
netic algorithm has enabled us to begin adding new metrics
to our catalog of available metrics. This paper documents
the results of our experiments in author identification for
software forensics and outlines future directions of research
to improve the utility of our method.

Categories and Subject Descriptors
I.2.6 [Computing Methodologies]: Artificial Intelligence-
Learning

General Terms
Experimentation, Measurement, Languages

Keywords
Genetic algorithm applications, pygene, author identifica-
tion, software forensics, software metrics
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1. INTRODUCTION
A major research topic in the field of software forensics is

author identification. Author identification involves “having
samples of code for several programmers and determining
the likelihood of a new piece of code having been written by
each programmer” [7]. This paper examines author iden-
tification via source code style. With respect to software
authorship, style consists of any decision over which the de-
veloper has discretion. Gray [7] identifies three categories of
style: the algorithms used to solve a problem, the cosmetic
layout of the code, and the choices made when naming vari-
ables and functions. Stylistic variation among developers is
expected.

We put forth a method of extracting metrics from source
code and representing these metrics as histogram distribu-
tions. Stylistic elements of the latter two categories can be
represented readily using our metric histograms and we plan
to support more advanced code-complexity metrics in the fu-
ture. We hypothesize that for some set or sets of metrics,
the source code written by different developers will display
measurably different histogram distributions and that these
distributions will vary between developers more than they
vary within the code belonging to one developer.

Measuring the differences between histogram distributions
of code under scrutiny with those associated with code from
a pool of known developers should produce a ranked list of
likely authors. Given the hypothesis, the actual author of
the code should be the first author selected in the list in most
cases. This strong form of author identification is useful in
several real world applications, including:

Criminal Prosecution Author identification can be used
by authorities to identify the author of a piece of mal-
ware, given a pool of code belonging to suspects.

Corporate Litigation If a company suspects a former em-
ployee of violating a no-compete clause of a contract,
author identification can help to determine whether
the employee wrote the suspect code.

Plagiarism Detection Our technique can be used by aca-
demic institutions to help determine whether suspect
code was written by a claimed author or another.

Even in cases where the actual author is not identified,
knowing which developers’ styles are most similar to that of
the code under scrutiny can be useful. For example, in a
corporation with a pool of developers available to maintain
a piece of legacy code, the developer whose style most re-

2082



sembles that of the original author may be most productive
in maintaining the code.

The goal of this paper is to answer the following questions:

• How well can histogram distributions of code metrics
identify the style of a developer?

• What combinations of metrics provide the best iden-
tification of a developer’s style with the code under
scrutiny?

To test our technique’s ability to identify the author of
an arbitrary source code project, we have implemented a
toolkit and tested it using a set of Free Software projects
as described in section 4. The computational resources and
time necessary to search for good metric combinations pre-
vented us from implementing many metrics. We found that
using a genetic algorithm to perform a randomized heuristic
search returned acceptable metric combinations in a fraction
of the time necessary for an exhaustive search. Thanks to
our use of a genetic algorithm, we are able to begin adding
new metrics again. This paper describes our method, exper-
imental data set, tools, and the results of our analysis. We
conclude by presenting direction and goals for continuing
research on this topic.

2. RELATED WORK
Numerous papers have been written about software foren-

sics and the prospects of identifying authors based on code
characteristics. Oman and Cook [10] performed preliminary
investigations into style and its relationship with authorship.
Spafford and Weeber discussed preliminary concepts such
as structure and formatting analysis [14]. Sallis compared
software authorship analysis to traditional text authorship
analysis [12].

Gray, Sallis, and MacDonell have published multiple arti-
cles fleshing out concepts of author identification via metrics
[7] and case-based reasoning [13]. They have also tackled
author discrimination [9] via case-based reasoning and sta-
tistical methods.

More recently, Ding and Samadzadeh used statistical anal-
ysis to create a fingerprint for Java author identification [5].
Their technique makes use of several dozen metrics (e.g.,
mean function name length) which they have statistically
correlated to identify developers. They determined that
metrics relating to code layout have a higher significance
in identifying authors than other metrics. Their metrics
extraction technique is similar to our own. However, where
they use mostly scalar metrics derived from the source code,
our metrics are formulated as histogram distributions. Our
results are roughly comparable to theirs, with approximately
one third of the metrics.

3. TECHNIQUE
The method we have developed for style fingerprinting in-

volves the formation of histogram distributions of metrics
that were extracted from the source code. Classification of
developer style is done by measuring the difference between
the histogram derived from a target project and the corre-
sponding histogram of a known user.

3.1 Histograms
No single code metric data point is likely to imply much

about an developer’s style. We propose a technique in which
code metrics are represented as histogram distributions. The
canonical example of this is the line-len metric which mea-
sures the number of characters in one line of source code. In
a histogram representation of line-len, the x-axis of the his-
togram corresponds to every recorded line length, in other
words the set of non-negative integers. For every point on
the x-axis, the corresponding y-axis point represents the
number of times a line of that length existed in the code.

After generating a raw histogram from the source code,
we normalize it by dividing the value of each y-axis point by
the sum of all y-axis points. This ensures that the sum of
all y-values on the normalized histogram distribution is 1.
Normalization is essential to the ability to compare a large
mass of code and a small mass of code. Without normaliza-
tion, the y-axis values would be unbounded, and thus a large
mass of code would inherently produce a histogram that dif-
fered greatly from the histogram generated by a small mass
of code. With normalization, the y-axis values are bounded,
so that the “shape” of the two histogram distributions can
be compared, without respect to the magnitude of the raw
y-axis values. See Figure 1 for an example of a normalized
histogram.

3.2 Classification of Developer Style
Classification is completed when a decision is made about

whether a subject falls into one category or another. In the
case of author identification, the decision is whether a piece
of code was written by a particular developer.

The classification method we propose is the nearest neigh-
bor search [2] using a general distance. Specifically, the dif-
ference between the styles of developers i and j is given by
Equation 1 where M is the set of chosen metrics, X(m) is
the set of x-axis coordinates associated with metric m ∈ M ,
and fi(m, x) is the function of histogram values of developer
i associated with the coordinate x ∈ X(m).

E =
X

m∈M

X

x∈X(m)

| fi(m,x) − fj(m, x) | (1)

The nearest neighbor search identifies the developer with
the minimal difference in histogram distributions from that
of the code under scrutiny.

3.3 Precision
Nothing about the classification method proposed requires

that it produce a single result. In fact, the nearest neighbor
classifier can produce a ranked list of developers in order
of descending likelihood of authorship. When we speak of
the precision of a result, we mean how large the ranked list
must be to capture the true author of the code. 1-precision
means that the classifier identified the true author as the
most likely author of the code. In other words, the style of
the code under scrutiny most resembled that of other code
written by the same developer. 2-precision indicates that the
true author was ranked as the second-most likely author by
the classifier and that the style of the code of one unrelated
developer was a closer match to the style of the code under
scrutiny than that of other code written by the true author.
3-precision indicates the true author was ranked behind two
other authors, and so forth.
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Figure 1: An example line-len histogram distribution

4. DATA SET SELECTION CRITERIA
Careful consideration was made for the contents of the

case study data sets. The data must represent a diverse
population of developers and provide enough information
from each developer to ensure that a valid comparison of
their styles could be made. The data set must also be large
to reduce the chance of good results occurring merely by
chance. Finally, the data must be as close to “real world”
data as can be reasonably obtained for open academic study.

4.1 Simplifying Assumptions
Certain simplifying assumptions have been made to allow

an initial investigation into the feasibility of our approach
and of style fingerprinting in general. In later stages of in-
vestigation, we plan to remove these restrictions to take into
consideration code that is more likely to be found in indus-
trial practice.

Single Author Author discrimination involves identifying
how many developers worked on a piece of code and
over what sections of the code each developer exer-
cised influence [7]. While this ability is essential for
most real world purposes of author identification, we
consider it to be an advanced functionality. To avoid
any confusion caused by attempting to match multiple
developers to a single code project, we have opted to
limit the projects considered for use in the data set to
original projects with a single author.

Single Language In principle our technique is indepen-
dent of the programming language used. In practice,

some amount of variation on metrics and some devel-
opment of extractors will be necessary to adapt our
tools to analyze multiple languages. To maximize time
spent on data analysis, the initial data set consists of
Java source code exclusively. Our tool framework can
be extended easily, so additional metrics for use with
other languages can be added as necessary.

4.2 Considerations
In addition to the above simplifying factors, several con-

siderations factored into the decision of how to build the
data set. To ensure that the data would provide a useful
test of our approach, the data set met the following list of
requirements.

Breadth of Source The execution of the experiment con-
sists of two phases: a supervised learning phase in
which the tool is fed source code from known authors,
and a testing phase in which the tool is given a source
project and required to rank a list of authors in order
of similarity of style. In order to separate developer-
specific styles (the wheat) from project-specific styles
(the chaff) we perform two testing phases per devel-
oper. As such, at least three projects are necessary
from each known developer: one for the learning set
and two for testing.

It is vital that source code files belonging to the same
project not be used in both the learning and testing
sets. This cross-pollination may inadvertently bias the
tool toward selecting the correct author, as project-
wide conventions are likely to exist. Therefore, each
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author in the data set has code from no less than three
independent projects.

Note also that although none of our metrics examines
the full contents of words, author and project names
(for example, existing in comments at the top of a file)
have been stripped from code files to eliminate even
the slightest hint of bias.

Depth of Source Before a developer is considered for in-
clusion in the data set, at least one thousand source
lines of code (SLOC) must be available per project.
This requirement is vital to ensure that a sufficient
amount of code is provided for analysis.

4.3 Current Test Data
Our initial data set consisted of 24 Free Software projects

written by twelve developers and hosted on SourceForge [1]
along with several academic projects contributed by 8 stu-
dents. We experienced success in finding metric combina-
tions that could classify 11 out of 12 of the SourceForge
authors and 6 of the 8 student authors correctly for this
data set. Our success led us to be concerned that this type
of data set was insufficiently challenging to represent real
world code. This experience led us to establish the rules
that only substantial projects be considered and that no de-
veloper could be considered without 3 independent projects.

Subject to the simplification factors and other considera-
tions, 60 Free Software projects were selected from Source-
Forge [1] for use as the primary challenge set in the case
study. Twenty developers each authored 3 of the projects.
Each project was examined and determined to be reason-
ably independent of its author’s other projects. Due to the
length of the lists, neither set of projects have been included
in the bibliography. The authors of this paper will provide
a copy of the data sets on request.

The challenge data set is divided into three sets: one learn-
ing set and two testing sets. One project from each devel-
oper is placed into each set. The learning set consists of 1371
files with approximately 240,000 SLOC and approximately
8.3MB worth of data. The first testing set consists of 1149
files, 200,000 SLOC, and 6.6MB of data. The second testing
set consists of 1548 files, 230,000 SLOC, and 8MB of data.

5. EXPERIMENTAL METHOD
We developed a set of tools and scripts for extracting and

manipulating code metrics. This section describes the tool
architecture, use, and initial results.

5.1 Metrics
Each metric is designed such that a meaningful histogram

distribution can be constructed from it. Abstractly, each
histogram distribution represents the “shape” of a piece of
an author’s fingerprint.

Metrics histogram distributions are generated using two
distinct methods. Text-based metrics are extracted using
simple plain-text analysis of the source code. The code is
treated as a document, and examined for content such as
simple character strings. Text-based metric extraction is
very quick and simple to program, however it is difficult to
capture higher-level program understanding with text-based
methods. For this, we parse the source code and extract
metrics with full understanding of the syntax of the code.

Several of the metrics use the word “word” as part of their
metric description. In this context, “word” refers to a chunk
of text that is delimited by whitespace or some syntactical
characters, which may lex to more than one lexeme, but
which is treated as a single chunk for purposes of the metric.
For example, ns.obj.memb.func() is treated as one word for
the purposes of the word-based metrics.

The line-len metric was discussed in Section 3.1. The
following list enumerates the additional 17 metrics. 1 Un-
less otherwise noted, the y-axis value of each histogram rep-
resents the relative frequency of the corresponding x-axis
value.

access measures the relative frequencies of the Java class
member access protection scopes: public, protected,
and private. We have observed that different devel-
opers hold different opinions on the utility of the class
member access control system, and we hope to capture
their preferences with this metric.

brace-pos measures the relative frequencies of curly brace
positions throughout the code. This metric was in-
spired by well-known online flame wars over the “cor-
rect” positioning of curly braces. The x-axis values
enumerate the following possible configurations: an
open (left) brace alone on a line; an open brace as the
leftmost non-whitespace character on a line; an open
brace on the interior of non-whitespace characters on
a line; an open brace as the rightmost non-whitespace
character on a line; and the same four configurations
repeated for the close (right) brace.

comment measures the relative frequency of uses of the
three different types of Java commenting: block com-
ments, line comments, and JavaDoc comments.

control-flow measures the relative frequency of the use of
various control-flow techniques available in Java. The
x-axis values enumerate the following possible control
flow options: for, foreach, while, do-while, if, switch,
throw, and function-call.

indent-space indent-tab measure the indentation whites-
pace used at the beginning of each line. We have ob-
served that different users have different conventions
for indentation, and this metric attempts to capture
that difference. The x-axis value represents the num-
ber of the given whitespace characters at the beginning
of each line.

inline-space inline-tab measure the whitespace that oc-
curs on the interior areas of each non-whitespace line.
We have observed that some users tend to minimize
interior whitespace, while others carefully add interior
whitespace, typically to align syntactic elements verti-
cally within the source file. The x-axis value represents
the number of the given whitespace characters on the
interior of each line.

1Note that metrics are named as space-delimited words.
Certain metrics appear grouped together in this list for the
sake of brevity and because they function similarly to one
another, but they are separate metrics as far as classification
is concerned.
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trail-space trail-tab measure the trailing whitespace at
the end of a line. We have observed that while most
users ignore whitespace at the end of lines, while some
users tend to carefully eliminate such useless whites-
pace. The x-axis value represents the number of the
given whitespace characters at the end of each line.

period measures the use of the namespace member and
class member operator in the Java language, both of
which are represented by a period. period is intended
to help determine whether a developer prefers to string
together long constructs such as ns.obj.memb.func()
and object.function().nextFunction(). The his-
togram x-axis value represents the number of period
operators in a singe logical identifier.

underscore measures the use of the underscore character
in identifiers. We have observed that many people do
not use underscore characters in their identifiers, and
most developers have predominantly zero underscores
or predominantly many underscores, with sharp dis-
tinction between the two groups. The x-axis values
represent the number of occurrence of an underscore
per identifier.

switch switch-case measure the complexity of switch state-
ments used in the code. Java switch statements permit
multiple case statements to resolve to a single “case
group” of executable code. In switch, the x-axis values
represent the number of case-groups per switch state-
ment, while in switch-case, the x-axis values represent
the number of actual case statements in the switch.

line-words measures how densely the developer packs code
constructs on a single line of text. The x-axis value
represents the number of words on a line.

word-first-char measures the frequency of the first char-
acters used in identifiers, primarily with the hope of
catching users of prefix and Hungarian notation. The
x-axis value represents the integer value of the first
character of an identifier.

word-len measures the length of identifiers. With this met-
ric we hope to discriminate between developers with
terse naming styles and developers with verbose nam-
ing styles. The x-axis value represents the length of an
identifier.

5.2 Author Matching with the Classifier
The classifier accepts two pieces of input: an unknown

batch of source code to be matched, and a list of metrics
(out of the list of possible metrics) to consider. In our ex-
perimental setup, the classifier examines an entire source
code project at a time. We have done this for performance
reasons, to reduce the number of comparisons the classi-
fier makes. The classifier runs the extractors on the un-
known code, generates normalized, interpolated histograms,
and then compares the resultant unknown histogram set to
the pool of known users’ histogram sets according to the list
of metrics it was given.

For each pair of a learned histogram and an unknown his-
togram, the classifier calculates the general distance between
the histograms. The classifier then ranks each known user
according to the distance. With a good metric combination,

a short distance will mean that the two developers’ styles
are similar.

5.3 Testing and Definition of Success
In this experimental setup, the classifier must classify 40

projects (2 sets of 20 projects) amongst 20 developers. For
purposes of this experiment, a success is defined as the clas-
sifier classifying both projects belonging to a given author
correctly. No “partial credit” is given if the classifier incor-
rectly classifies the author of a file.

5.4 Initial Results
Initially, the classifier was tested using only a few simple

metric configurations, such as single metrics or all metrics
for classification. This helped us verify that our code was
implemented properly.

Four of the metrics performed quite well. The line-len
metric successfully classified 45 percent of the testing set,
while brace-pos and line-words classified 25 percent success-
fully and word-first-char classified 20 percent successfully.
The all-metrics test performed poorly, with a 30 percent
success rate. Clearly, some subset of the metrics will be
needed to get better results.

Using a single metric, the classifier was able to classify all
40 projects in just a few seconds on an AMD Athlon 1600.
However, the classifier runs in time roughly proportional
to the number of metrics used for classification, so testing
with more metrics will take proportionately longer. Typical
runtime for an execution of the test is approximately 30
to 40 seconds. Because runtime of the classifier is directly
proportional to the number of metrics used, the all-metrics
test ran longest at about 55 seconds.

6. GA SEARCH
With the validation of the initial single-metric matching

technique, the question became: which of the metric combi-
nations produces the best classification? Without any prior
knowledge of how results are distributed across the various
combinations, an exhaustive search seemed reasonable. Sev-
enteen metrics result in 218 − 1 = 262, 143 possible metric
combinations.

Even with a typical runtime of about 30 seconds per exe-
cution, this process would require at least 65 days to com-
plete on a uniprocessor. Even if parallelized to 12 nodes,
the process would take more than one week of solid com-
pute time to complete. While even this figure represented
the outer edges of feasibility for our research group, each
addition of a new metric would double the runtime of the
job. As an open research problem, we had hoped to be
able to add and alter metrics frequently. The time and re-
sources necessary for each exhaustive search severely limited
our ability to accomplish this, so we decided to replace the
exhaustive search.

A genetic algorithm [6] seemed a reasonable alternative to
an exhaustive search. From our early results with exhaus-
tive searches on smaller versions of this problem, we knew
that the search space contained many “good” solutions. Our
classifier was written in the Python programming language,
so we looked for a Python-based genetic algorithm toolkit.
Pygene fit our needs [8].

Pygene is a Free Software genetic algorithms toolkit with
a very simple interface. Little documentation is provided,
aside from PyDoc API specifications and a handful of ex-
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amples. However, the simplicity of the interface and the
intuitive naming of classes and variables obviates the need
for much documentation.

6.1 Problem Representation
The Pygene genetic algorithm toolkit provides three main

building blocks from which to construct a GA: genes, organ-
isms, and populations. Genes provide an abstraction for the
lowest level piece of information in the GA, namely the indi-
vidual problem parameters we wish to optimize. In our case,
we wish to optimize the set of metrics active in our classi-
fier in order to maximize the accuracy of the classification.
We currently require each metric to be active or inactive, so
the natural representation of a metric is a binary digit using
Pygene’s BitGene class.

A genome is made of a string of genes and provides the
“genetic” representation for the organism. In Pygene, an
Organism subclass represents one complete candidate solu-
tion to the problem. In our case, each organism is one metric
combination. Any Organism subclass must provide a fitness
function, which evaluates the quality of the solution rela-
tive to other solutions. In our solution, the fitness function
provides the bridge into our classifier.

Pygene offers two basic options for organisms. The stan-
dard Organism operates using single-helix reproduction, in
which two mating organisms swap a certain number of genes
and produce two new organisms. The MendelOrganism con-
tains a pair of gene instances for each gene in the genome.
For simplicity, we chose to implement the standard Organ-
ism rather than dealing with the extra complexity of the
MendelOrganism.

Finally, the Population consists of a set of organisms. The
population is initially composed of randomly selected organ-
isms. The Pygene Population base class is simple in struc-
ture and function, containing the organisms and directing
them to reproduce. The Population’s operational parame-
ters allow us to directly impact the operation of the genetic
algorithm.

6.2 Fitness Function
The fitness function of a genetic algorithm provides a

means of discriminating good solutions from bad solutions.
In our case, we need to reward metric combinations which
are able to identify the authors of the both testing sets with
higher levels of precision. Each execution of a fitness func-
tion obviously corresponds to a full test run of the classifier.

We interfaced the classifier to the genetic algorithm so
that, instead of outputting a ranked list of authors for each
project in both testing sets, the classifier produced a single
list identifying the number of correct classifications at each
level of precision, as exemplified in equation 2. The list is
read from left to right as, “1-precision resulted in 9 out of 20
correct, 2-precision resulted in 11 out of 20 correct,” and so
forth. Note that the list is monotonically increasing from left
to right, as a correct classification at 1-precision guarantees
a correct guess at 2-precision, and so forth.

[9, 11, 13, 13, 14, 14, 15, 15, 17, 17, 18, 18, 19, 19, 19, 20, ....] (2)

Pygene expects a single numeric score as its fitness func-
tion. As we desire to maximize the correct classifications at
the highest level of precision, we created equation 3 where
f is the fitness function and L is the list of results.

f =

len(L)−1X

i=0

Li ∗ len(L)i (3)

We encountered one unexpected problem early in our use
of Pygene. We had assumed that Pygene executed the fit-
ness function of each organism once per generation. How-
ever, the execution time of the GA was quite slow, and anal-
ysis of our log files showed the fitness function executing
many times per organism per generation. Apparently, Py-
gene assumed the fitness function was inexpensive, which
was not the case with our experiment. We corrected this
problem by implementing a results-cache. The cache is im-
plemented as an associative array with the organism genome
as key and the fitness result as the value. This cache permits
the execution of up to several hundred generations per day,
compared to fewer than a dozen before the optimization.

6.3 GA Parameters
Pygene provides a number of operational parameters to

control and modify the behavior of the genetic algorithm
without requiring significant additional programming. The
Population base class is the primary repository for these pa-
rameters. Population permits a set of initial organisms to
be passed into the module, otherwise it builds organisms
randomly, which we chose to allow it to do. Population pa-
rameters are available to control the initial population and
the number of children to create each generation. Organ-
isms are mated probabilistically based on fitness function,
and Pygene offers two additional parameters to control the
genetic makeup of a new generation. One parameter sets
the number of lowest-fitness children to cull after the gen-
eration, before they are given an opportunity to mate. The
other parameter activates elitism and sets the number of
highest-ranking organisms to propagate unchanged into the
next generation. Another parameter controls the chances
that organisms will be selected to mutate. One final param-
eter permits the introduction of randomly-generated new
organisms into the population, but this parameter is off by
default.

Two additional important parameters are kept outside of
the Population class. The Organism class (not the Mende-
lOrganism) has a crossover rate parameter, which affects the
percentage of the genome that is exchanged during mating.
All Gene classes also have a mutation probability parameter,
which sets the probability of the gene undergoing mutation
if its owning organism is selected for mutation.

The observed behavior of the genetic algorithm depended
heavily on the specific population and reproductive param-
eters. The default Pygene parameters were configured con-
servatively, with an initial population of 10, an elitism rate
of 10, a child count of 100 and a child cull of 20. In our
experience, these settings resulted in our initial experiments
converging prematurely on poor solutions. At the time of
this writing, we have Pygene set with an initial population
of 300, with 300 children created in each generation. We
observed that these numbers struck a good balance between
generational processing time and convergence.

To further combat premature convergence, we disabled
elitism. This posed no real loss to us, as a record of every
organism created and its fitness is kept in our logs. We also
minimized child culling to 10, for the same reason.

We increased the gene mutation probability to 5 per-
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cent in order to encourage a measure of instability even
after the genetic algorithm has begun to converge. Like-
wise, we activated the new organism feature and inserted
10 new, randomly-generated organisms into the population
after each generation. We had intended these measures to
ensure that the population remained active in the face of
local maxima. However, they resulted in populations that
failed to converge even after several days of processing. Af-
ter additional experimentation we disabled the insertion of
new organisms into the population and fixed gene mutation
probability at 3 percent.

6.4 Results
Our initial experiments with Pygene were not directly pro-

ductive toward the goal of identifying good metric combina-
tions. Nevertheless, this experience gave us a feel for how
Pygene’s parameters controlled the execution of the algo-
rithm. After choosing the parameters we felt would prevent
premature convergence without totally destabilizing the al-
gorithm, we executed Pygene and let it run until it con-
verged to a stable, uniform population, which occurred after
approximately 8 hours.

Using substantially the same parameters, we ran Pygene
8 additional times to see to what extent the result changed
with each execution. The algorithm converged to highly
similar-quality results on each execution, despite beginning
with randomly chosen initial organisms at each execution.
On 4 executions the algorithm converged to the same solu-
tion. Convergence typically became obvious after approxi-
mately 4 hours, with minor improvements coming afterward
until stabilization into a totally uniform or oscillatory pop-
ulation. Even when left running for more than a day, the
algorithm did not break out of its stable population. This
leads us to believe that the algorithm was able to find a
solution at or close to the optimal solution, even though it
only searched a fraction of the problem space.

The best 1-precision metric combination achieved 55 per-
cent correct classification. With 3-precision the metric com-
bination was able to correctly classify 75 percent of projects.
These values are encouraging and are likely to improve as
more metrics are added to the experiment. The genetic al-
gorithm has enabled us to continue adding metrics and we
are working on new metrics at the time of this writing.

7. CONCLUSIONS AND FUTURE WORK
Several important conclusions can be drawn from the work

done on this project. First, we have seen evidence that,
given the proper metric combination, histogram distribu-
tions of code metrics can identify authors more than half
of the time. Note that of the set of metrics we have imple-
mented so far, the best combination appears to be inline-
space inline-tab line-len line-words period trail-space trail-tab
underscore, although this may change as a result of a sub-
stantial change in the data set. The best metric combination
will likely need to be recalibrated for every data set.

Another conclusion we can draw is that if a combination
of metrics identifies a developer’s style strongly on one set
of code, that same set will not necessarily identify the devel-
oper’s style well on another set of code. To reduce the neg-
ative effect of project-specific rather than developer-specific
style fingerprints, we now require no less than three inde-
pendent projects per developer in our data set.

Further work needs to be done to improve the accuracy

Precision Success Combination
1 11/20 inline-space

inline-tab
line-len
line-words
period
trail-space
trail-tab2

underscore
2 14/20 brace-pos

comment
control-flow
indent-space
inline-space
inline-tab
line-len
line-words
period
trail-tab
underscore
word-first-char
word-len

3 15/20 brace-pos
comment
indent-space
inline-space
inline-tab
line-len
line-words
period
switch
trail-tab
underscore
word-first-char

Table 1: Best metric combinations at 1, 2, and 3-
precision

of our method and to prepare our technique for more real
world use. Foremost on the list of tasks is improving the test
data set and expanding the size and diversity of the data.

One of the most obvious ways to improve accuracy is to
produce a wider selection of metrics from which to choose.
These include additional text-based metrics as well as language-
dependent metrics. The use of a genetic algorithm to find
good metric combinations allows us to experiment with new
metrics without experiencing an exponential growth in the
time necessary to search for good metrics. We plan to add
metrics vigorously in an effort to ramp up the quality of our
results.

Entropy analysis is a technique that can be used to find
data points with high between-developer variability and elim-
inate them from consideration. While we desire metrics that
demonstrate a developer’s whole style, rather than merely a
few unique points, finding and eliminating ubiquitous data
points would be helpful.

Finally, nearest neighbor is not the only classification strat-
egy. We intend to implement other classification strategies
(e.g., C4.5 decision trees [11], Vote Feature Intervals [4], or
Bayesian networks [3]) to gauge their benefits to both author
identification and style fingerprinting.
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Figure 2: The top ranking metrics combinations for 1, 2, and 3-precision
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