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ABSTRACT 
Opponent models are necessary in games where the game state is 
only partially known to the player, since the player must infer the 
state of the game based on the opponent’s actions. This paper 
presents an architecture and a process for developing neural 
network game players that utilize explicit opponent models in 
order to improve game play against unseen opponents. The 
model is constructed as a mixture over a set of cardinal 
opponents, i.e. opponents that represent maximally distinct game 
strategies.  The model is trained to estimate the likelihood that the 
opponent will make the same move as each of the cardinal 
opponents would in a given game situation. Experiments were 
performed in the game of Guess It, a simple game of imperfect 
information that has no optimal strategy for defeating specific 
opponents. Opponent modeling is therefore crucial to play this 
game well. Both opponent modeling and game-playing neural 
networks were trained using NeuroEvolution of Augmenting 
Topologies (NEAT).  The results demonstrate that game-playing 
provided with the model outperform networks not provided with 
the model when played against the same previously unseen 
opponents.  The “cardinal mixture” architecture therefore 
constitutes a promising approach for general and dynamic 
opponent modeling in game-playing. 

Categories and Subject Descriptors 
F.1.1 [Theory of Computation]: Models of Computation – self-
modifying machines. I.2.1 [Computing Methodologies]: Artificial 
Intelligence -- Applications and Expert Systems – games. J.m 
[Computer Applications]: Miscellaneous – card games. 

General Terms 
Algorithms, Experimentation, Theory. 

Keywords 
Opponent modeling, neuroevolution, neural networks, games of 
imperfect information, AI, artificial intelligence, evolutionary 
computation. 

 

 

1. INTRODUCTION 
Opponent modeling is used in the game-playing literature to refer to 
the process of training computer players to play against specific 
opponents. General strategies that can defeat all opponents do not 
exist, e.g., in games where the state space is too large to model, or 
where aspects of the current game state are not observable.  Role 
Playing Games (RPGs), RoboCup Soccer, and Go fall into the first 
category; poker and other games of chance are examples of the 
second category. From the perspective of an individual player, 
massively multi-player online RPGs (MMORPGs) and first-person 
shooter games fall into both categories.  Furthermore, even if an 
optimal strategy may exist in a game, it may be considered unfair 
for automated players to take advantage of it when playing against 
humans.  Thus a variety of effective, opponent-specific models are 
useful in many games. 
Opponent models can be either explicit or implicit. Much of the 
work on opponent modeling to date uses implicit models; that is, the 
learning algorithm encodes knowledge about opponents within its 
internal representation or decision-making process as a side effect of 
the training process. In some sense, any player that is successfully 
trained against diverse, specific opponents will encode a 
rudimentary, black-box knowledge of its opponents; this knowledge 
constitutes its implicit opponent model. The goal with an implicit 
model is to defeat specific opponents, but it is not clear how or 
whether this implicit knowledge of specific opponents can 
generalize to previously unseen opponents without further training.  
Explicit modeling, by contrast, means training a functional form 
(e.g., a neural net) to take information about the opponent as input 
and produce a representation of the opponent as an output, either in 
terms of the actions the opponent is to take, the game-playing 
characteristics the opponent is expected to possess, or the strategies 
that an opponent is likely to employ. An automated game player can 
then be trained to utilize the output of the explicit model to 
determine its own counterstrategy. An explicit model is therefore 
intended to generalize directly to previously unseen opponents 
without any extra training by enabling recognition of unseen 
opponents. 
A crucial question in designing an explicit opponent model is what 
information should be included in the model.  This issue is 
intimately connected with the problem of generalization.  The most 
direct approach would be to use the opponent’s past actions in order 
to predict his future actions.  In practice, however, predicting future 
actions directly does not generalize well to previously unseen 
opponents, as we will see.  Another approach is to model previously 
unseen opponents with reference to a set of known opponents.  This 
approach can be effective only insofar as the set of known 
opponents fully characterizes all relevant dimensions of player 
action.  In this vein, one can conceive of a opponent space defined 
by these dimensions, and a set of cardinal opponents that generate 
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the opponent space.  Any possible opponent can be viewed along 
these lines as a linear combination of opponents in the cardinal set.  
Thus, a reasonable opponent model would only need to identify 
appropriate coefficients to describe unseen opponents linearly in 
terms of the cardinal opponents.  We refer to such coefficients as a 
mixture, and to opponents generated from such coefficients as 
mixture players. Opponent actions can be predicted from these 
mixtures by combining the actions of the cardinal opponents.      
To capture the intuition for this approach, consider an analogy with 
how humans learn to play games.  Over time we learn to recognize 
broad themes in our opponents: whether they have a tendency to be 
aggressive, cautious, presumptuous, etc.  By identifying the degree 
to which a new opponent exemplifies one or more of these basic 
strategies, we can then play effectively against that opponent using 
past knowledge.  The cardinal opponents described above can play a 
similar role. 
This paper evaluates opponent models in the game of Guess It, a 
simple game of chance first described by Isaacs [7].  The best mixed 
strategy in a game-theoretic sense wins about half of all the games 
played.  Further, there are basic strategies that can defeat this 
strategy with high probability, though each of them is also defeated 
easily by other basic strategies. Playing Guess It well therefore 
requires diagnosing the opponent’s strategy. Once the opponent’s 
playing style is known, he can be easily defeated. In fact, networks 
trained to play Guess It using only the identity of the opponent as 
input play the game better than networks that also take the game 
state as input. Thus the key to winning in Guess It is the ability to 
model the opponent. On the other hand, the game is sufficiently 
simple to allow a clear demonstration that the mixture-based 
approach to opponent modeling is both feasible and promising.     

2. RELATED WORK 
This work builds directly on that of DiPietro et al. [4], who showed 
that opponent modeling could be used to learn to play effectively 
against basic opponents in Guess It.  The opponent models were 
implicit, in the sense that no identifying information about the 
opponent was provided to the learners. They compared 
evolutionary, hill-climbing, and particle swarm learning algorithms, 
each of which was trained to find a mixed strategy for Guess It by 
playing against one basic opponent at a time. Separate learners were 
trained for each game state and then combined into a team to play 
the game. Both the evolutionary and the particle swarm algorithms 
successfully learned to defeat their opponents. Evolutionary 
algorithms adapted fastest, but particle swarm generated more 
optimal solutions.  Unfortunately, the solutions learned did not 
generalize across opponents. A change in opponents required 
retraining the algorithms completely, with an accompanying 
temporary drop in performance. It took 100 generations for the 
learners to return to peak performance against the new player. In 
contrast, in the approach taken in this paper, neural networks are 
trained to play the game, with an opponent model as input.  Using 
such the game state and a functional form makes it possible to avoid 
training a player for each game state.  Though this approach results 
in a game player that is more complex and correspondingly more 
difficult to train, it makes it possible to construct explicit opponent 
models that generalize well to unseen opponents. 
A significant body of work on opponent modeling has been done in 
poker, much of which includes explicit opponent modeling [9, 12]. 
Billings et al. [1] used statistical methods to estimate the probability 

of the opponent’s hand given his history of calling, raising, or 
folding.  They also developed a predictor to determine what 
decision a specific opponent would make when holding a given 
hand.  Although the original predictor was only 51% accurate, 
Davidson et al. [2, 3] used a neural network trained with 
backpropagation to increase its accuracy to 81%. These data are 
especially interesting since their poker player, Loki, gathered 
statistics on actual human players by playing in online poker games. 
However, the approach required a significant history of data for 
training and therefore could not be used online. In contrast, the 
mixture-based approach does not require additional training in order 
to generalize to new players, though it could benefit from adding 
knowledge of new opponents to the system offline. 
Considerable work on opponent modeling has also been performed 
in the domain of RoboCup Soccer. For instance, Riley and Veloso 
[11] used explicit models of opponent actions in order to build a 
coach for a four-legged soccer team, with whom players would 
‘confer’ at breaks in order to adjust their strategy.  The probable 
locations of the opponent team members were modeled. Further, 
Whiteson et al. [15] worked on RoboCup Keepaway, where three 
players must keep the ball away from a fourth player.  Implicit 
opponent models are needed in order to avoid the fourth player.  
They trained a group of neural networks to interact competitively on 
the task, with strong results.   
Opponent modeling has proven useful in video games as well.  In 
particular, Spronck et al. [13] and Ponsen et al. [10] implemented 
opponent modeling in Warcraft, a popular strategy game. In this 
domain, a form of reinforcement learning called dynamic scripting 
allows automated players to learn online. A number of  uses for 
opponent modeling were discussed, including developing automated 
sidekicks that can better anticipate their teammates’ actions, and 
autonomous players that can mimic their owner’s action while the 
owner is temporarily away from the game. 
The approach taken in this paper is based on NeuroEvolution of 
Augmenting Topologies (NEAT), developed by Stanley and 
Miikkulainen [14].  In this approach, only inputs and outputs are 
specified for the neural network.  The appropriate internal topology 
is discovered through a search using a genetic algorithm. 
Connections and hidden nodes are added and changed with a given 
probability, and are retained in the population if they improve the 
performance of the network against a fitness function.  In theory, the 
capability of the algorithm to iteratively add structure (or 
complexify) allows it to adjust to new situations without losing old 
capabilities.  The implementation used in this paper, SharpNEAT 
[5], makes a minor adjustment to NEAT by adding a pruning stage 
once learning stagnates, whereby excess structure can be removed.  
It is important to note that the opponent modeling architecture 
proposed in this paper is independent of the particular 
neuroevolution algorithm.  However, since NEAT has been used 
effectively in various game-playing approaches in the past, it was a 
natural choice for the opponent modeling approach as well.  
Supervised training algorithms such as backpropagation could not 
be used in Guess It, due to the lack of supervised targets for the 
bluff and call probabilities on the task of playing against mixture 
players. 

3. GUESS IT 
The game of Guess It consists of a fixed set of cards, 13 in our 
experiments.  Six cards are distributed to each player, and neither 
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player may see the other player’s cards.  The goal is to identify the 
13th card, which is hidden from both players.  The game proceeds in 
turns.  On their turn, each player has one of three options: (1) ask for 
a card they do not have; (2) bluff by asking for a card they do have; 
or (3) attempt to name the center card.  If the player asks for a card 
in the opponent’s possession, the opponent loses it and must reveal 
that card.  If the player bluffs, then he must reveal the bluff card 
after the opponent’s next turn.  If the player correctly names the 
center card, he wins, but if he is incorrect, he loses. When the 
opponent asks for a card not held by the player, then either the 
opponent is bluffing, or the card requested is the center card.  What 
a player expects the opponent to do is therefore central.  If the 
opponent does not often bluff, then the player should attempt to call 
the bluff, i.e., name the requested card as the center card.  If the 
opponent is given to bluffing, however, then the request should be 
ignored.  Conversely, the player must decide whether or not to bluff 
himself.  If the opponent is expected to call the bluff (and therefore 
lose), then a bluff should be attempted.  If the opponent will ignore 
the bluff, then the player cannot afford to lose a card, because that 
lowers his chance of winning later. 
As discussed by DiPietro et al. [4], there are certain heuristics that 
every player should follow to maximize their chance of winning. If 
they know the center card, they should name it.  If they have no 
cards remaining, then they should try to guess the center card, since 
their opponent will be able to name correctly on the next turn. Also, 
for computer players, the exact choice of card to play is generally 
irrelevant, so cards can be picked at random when bluffing or 
asking. Beyond these circumstances, there are two decisions a 
player must make: (1) whether to call a potential bluff; and (2) 
whether to ask or bluff otherwise.  Following DiPietro, a set of basic 
opponents can be defined as: 

Always Ask: Always asks for an unknown card; never calls, never 
bluffs. 

Always Bluff: Always bluffs with its own card; never calls. 

Call Then Ask: Calls every potential bluff; otherwise asks for an 
unknown card and never bluffs. 

Call Then Bluff: Calls every potential bluff; otherwise bluffs with 
its own card and never asks. 
These four opponents can be considered as the cardinal points in a 
two-dimensional opponent space defined by the probabilities of 
calling and bluffing. They are used as a cardinal set in the mixture-
based approach. Each of the players is easily defeated, and all 
except AlwaysAsk can be defeated outright in every game.  
AlwaysBluff defeats CallThenBluff, CallThenBluff wins against 
CallThenAsk, CallThenAsk usually beats Always Ask, and 
AlwaysAsk defeats AlwaysBluff. Thus each one can be defeated by 
adopting one of the other strategies, and a player with a sufficient 
model of these opponents should do well against them. 

4. VALIDATING THE APPROACH 
To test what information about the opponent would be most useful 
to a player of Guess It, players were evolved given various types of 
information about the game state and the opponent.   
Three types of information were tested, including 13 inputs 
representing the card status, seven inputs representing the move 
history, and four inputs identifying the members of the cardinal set.  
Card status indicates the state of each of the 13 cards, one per input, 
each with three possible values: held by the player, known to the 

player, or unknown. Move history has six inputs for each of the six 
possible moves made by an opponent in the game, with three 
possible values: ask, bluff, or call.  Move history also has a seventh 
input indicating whether the current opponent has ever called in any 
past game. The card state and the move history together comprise 
the game state. The four input identifiers represent four basis vectors 
over the player space, i.e., 0001, 0010, 0100, and 1000, and were 
used to inform the network whether it was playing against 
AlwaysAsk, AlwaysBluff, CallThenAsk, or CallThenBluff. Various 
combinations of these three input groups were tested against the 
four cardinal players.  Note that it is possible to play optimally 
against each of the cardinal players if their identity is known, so the 
identifier should correlate most highly with success, even without 
the game state. 

Table 1. Best fitness for players with different input information 
after 100 generations, averaged over 10 runs. All comparisons 
are pairwise statistically significant (p < 0.05) except Cards + 
IDs (Row 2) vs. IDs + Moves (Row 5) and Cards + IDs (Row 2) 
vs. Cards + IDs + Moves (Row 4).  IDs alone provide the most 
useful information for the player, followed by IDs + Moves; 
more information beyond the IDs slows down learning, 
probably due to the increased complexity of training a larger 
network. 

Inputs Used Avg. Best Fitness, 100 Gens. 
Cards 327.9 (Gen 94) 
Cards + IDs 377 (Gen 97) 
Cards + Moves 357 (Gen 70) 
Cards + IDs + Moves 369.7 (Gen 92) 
IDs + Moves 382.3 (Gen 94) 
ID Only 395.8 (Gen 35) 

 
Six populations of networks were trained with NEAT, 
corresponding to six different combinations of the three information 
sets. Each population of network players was allowed 100 
generations in which to learn the task. In each generation, each 
player played 100 games against each of the four cardinal 
opponents. The networks were awarded one point for each game 
won and no points for each game lost; thus, a perfect fitness score 
would be 400 points. After 100 generations, the best fitness 
achieved was taken to represent the speed with which the network 
had learned and thus the utility of the information with which it was 
provided.  Results were averaged over 10 trials, and a t-test for 
statistical significance was performed. All results are pairwise 
statistically significant with the exception of Cards + IDs vs. IDs + 
Moves and Cards + IDs + Moves vs. Cards + IDs. The results are 
given in Table 1. 
These results suggest that the identifiers do indeed provide a greater 
advantage to the player than the move history alone.  All input 
combinations using the IDs are better than any without it. As 
expected, the identifier alone without any other information 
performs near optimally (its fitness is rightly below 400 because it is 
not always possible to defeat AlwaysAsk).  When other information 
is included as well, the networks become larger and more difficult to 
optimize, and thus the fitness decreases.  So identifiers are the piece 
of information about the opponent that contributes most to the 
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success of the player, where such IDs are known.  This result 
validates the general approach of using mixtures of the cardinal 
opponents to describe new opponents (that cannot be described 
directly with IDs). In Guess It, the player only needs to know the 
identity of its opponent in order to win.  
In the above analysis, Guess It players are characterized by two 
parameters, call probability and bluff probability.  All other aspects 
are played automatically to avoid illegal actions and to ensure 
victory when victory is immediately possible. It is worth asking 
whether these two dimensions adequately characterize the game. 
This question was tested by evolving a set of networks with total 
control over all aspects of the game, deciding not only when to call, 
ask, or bluff, but also which cards should be chosen for bluffing, 
asking, and guessing.  Such networks could make illegal moves, but 
they also had the capability to recognize and employ card-specific 
strategies.  Surprisingly, these networks could not learn to defeat the 
four cardinal opponents reliably, even after 10,000 generations. 
Compared with fitness values over 350+ in Table 1, the networks 
with total control attained values between 150 and 200 after 100 
generations and between 300-350 after 10,000 generations. 
Furthermore, such networks do not play well against opponents that 
use card-specific strategies; the six networks from Table 1 more 
readily defeated a sample opponent designed to only bluff on even 
cards, and only ask for odd cards. These tests confirmed that it is 
better to use the two-parameter model of Guess It players as 
opposed to a more complex representation. 
The decision to model previously unseen opponents as linear 
combinations, or mixtures, of cardinal players also needs to be 
validated.  An alternative model would be to attempt to predict the 
opponent’s actions directly.  In Guess It, the hidden portion of the 
game state includes two factors: whether the opponent bluffed or 
asked on his last turn, and whether the opponent will call a potential 
bluff.  To evaluate this alternative, predictor networks were trained 
using NEAT. NEAT was used as a training mechanism instead of 
backpropagation due to the likelihood that an appropriate topology 
would require recurrent connections, which did indeed develop 
during evaluation.  The predictor took the game state, represented 
by the thirteen inputs for the card state and the seven inputs for the 
opponent’s move history, as its input, and estimated the probability 
that the opponent would bluff or call as its output.  Since Guess It 
players are described by these two parameters, the predictors were 
thus designed to produce a complete opponent model. A rule-based 
player then used the output of the predictor in order to play 
optimally. Fitness of the predictor network was determined as 
number of wins out of 400 games each generation.  
Averaged over 10 trials the players with these predictors achieved a 
fitness of 346 after 100 generations, compared with 357 for the 
network in Table 1.  There are reasons for this result.  First, the 
predictor only looks at the opponent’s actions in the current turn; it 
only implicitly describes the opponent’s strategy as a whole. 
Second, using a rule-based player on top of the predictor meant that 
inaccuracies in the predictor led to faulty play; it is difficult to 
estimate the accuracy, or confidence, of the predictors and take it 
into account in making decisions. For these reasons, the mixture-
based model is a more promising alternative, and will be pursued in 
this paper. 

5. MIXTURE-BASED APPROACH 
The mixture-based approach recasts opponent modeling as the 
problem of identifying a mixture of known cardinal strategies based 
on opponent play.  In the case of Guess It, a mixture is a vector of 
four coefficients describing an opponent in terms of its similarity to 
each of the cardinal opponents. Players can then take this mixture as 
an input to influence their move decisions.  
In some cases it might be possible to construct a set of rules for 
optimal play once the mixture is known. However, this assumes that 
the mixture can be identified accurately, and that the opponent space 
is fully characterized by the cardinal set. Since these assumptions 
may not be valid, players that use a mixture-based opponent model 
should be trained to filter out or adjust to this noise (as was 
demonstrated in Section 4). A process for building a game player 
with an explicit opponent model of this form therefore involves 
three steps: 

1. Identify a cardinal set of opponents sufficient to describe 
anticipated opponents. 

2. Train a neural network or some other learning platform to 
identify the mixture based on the opponent’s play. 

3. Train a player that takes as input the game state and the 
mixture given by the network in step 2. 

This process is illustrated in Figure 1 for the game of Guess It.  The 
two components of the game player are the Mixture Identification 
Module and the Decision Module.  The Mixture Identification 
Module takes the move history of the opponent as its input and 
generates the four coefficients for the mixture. The Decision 
Module takes the game state and the mixture coefficients as its input 
and produces game actions as its output. During training, a bank of 
cardinal opponents is also necessary.  The Decision Module must be 
trained using a sufficient sample of mixture outputs, since it must 
learn to deal with the noise patterns of the Mixture Identification 
Module. 
For Guess It, the cardinal set consists of the four basic opponents 
described above.  As described above, Guess It opponents can be 
represented adequately by two probabilistic parameters: the 
probability of calling a potential bluff and the probability of 
bluffing. Defined this way, all opponents must fall within the region 
[0,1] ×   [0,1].  In a strict sense only two cardinal opponents would 
be needed to form a basis over this space (e.g. AlwaysBluff and 
CallThenAsk); all four were used in the experiments as they have 
been previously used with success [4]. This redundancy did not 
cause problems in practice. 

Network inputs and outputs. The Mixture Identifier takes the 
move history of the opponent as input.  There are at most six 
opponent moves, and each of these corresponds to one input node in 
the network.  Each move is provided to the network as soon as it 
becomes available. The input value is 1 if the opponent bluffed on 
that move, –1 if the opponent asked, and 0 if the move is still 
unknown. A seventh input indicates whether the opponent called in 
any previous game; it has a value of 1 if he did and 0 if he did not. 
An important aspect of this input representation is that the 
opponent’s previous move is unknown at the current move unless he 
asked for a card that belonged to the player. The Mixture Identifier 
has four outputs, corresponding to the mixture coefficients for each 
of the four cardinal players. 
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The Decision Module takes the four outputs of the mixture identifier 
as its input, as well as the current game state. It has two outputs, 
corresponding to the bluff probability and call probability. The 
game state for the Mixture-Based Player was represented by the 
seven-input move history as described above.  This input set (Moves 
+ IDs) was used because it achieved the highest fitness against the 
cardinal set among candidates from Table 1 that did not use only the 
explicit opponent IDs. Although the IDs alone performed best, IDs 
are not available against previously unseen opponents, and strong 
performance against previously unseen opponents is the goal of this 
research.  The Mixture Identifier provides surrogates for these IDs, 
but in order to enable a reliably controlled experiment, it is 
preferable that both the control (which does not see the Mixture 
Identifier output) and the Mixture-Based Player (Figure 1) have the 
same network topology. The control needs input from the game 
state, since it will not have any information in the form of IDs 
against previously unseen opponents. Therefore both the control and 
the Mixture-Based Player were given access to the game state 
through the seven-input move history (see section 6 for experiment 
details).  

Training the Network. Both modules were trained against a variety 
of mixture opponents. These opponents were created by sampling 
the uniform distribution on [0,1] once for each of the cardinal 
players, then normalizing the result to sum to 1, creating a 
probability distribution over the cardinal set.  During game play, the 
mixture opponents sampled this distribution at each move, and then 
played the move suggested by the cardinal opponent thus chosen.  
Note that these mixture players are complete over the player space 
[0,1] ×  [0,1] only because all four basic opponents were included 
in the cardinal set.  If a probability distribution over just two 
opponents had been used instead, it would not have been possible to 
produce players close to (0,0), and the region close to (1,1) would 
have been inadequately modeled.  
The Mixture Identifier was trained with NEAT. Like the prediction 
task in Section 4, mixture identification is essentially a supervised 
task. However, since it involved a sequence of inputs and outputs, 
recurrent connections are typically useful; they allow the network to 
maintain a state, resulting in more stable output across moves [6]. 
Recurrency would also be necessary in other games where it is 
impractical to provide the entire move history as input to the 
Mixture Identifier.  Since NEAT allows discovering the necessary 
recurrency automatically, it was used to construct the Mixture 
Identifier as well. 
The population was evaluated against 400 mixture opponents in 
each generation. After each game, the mixtures suggested by the 
network at each move were averaged, and the Euclidean distance d 
between the average mixture and the actual distribution defining the 
opponent was calculated. The network fitness was then updated by 1 
– d. The maximum award was therefore 1, and the maximum 
possible fitness in each generation was 400.  The Mixture Identifier 
was trained to achieve a fitness of at least 302/400, which it was 
able to do successfully in each of 10 trials, reaching a mean fitness 
of 302.48 in 466.6 generations on average.   
After the Mixture Identifier was trained, it was given to the Decision 
Module. During each generation, 400 games were played against 
different mixture opponents and 50 games against each of the 
cardinal opponents, for a total of 600 games. For each game, the 
network was awarded one fitness point for each game won, so that 

its fitness in each generation ranged from 0 to 600.  When playing 
against a cardinal opponent, either during training or during 
evaluation, the Mixture-Based Player was given the exact mixture 
corresponding to the cardinal opponents (e.g. 0001, 0010, 0100, 
1000),  following  the  assumption  that   the  cardinal opponents 
represent known opponents.  During training, the mixture opponents 
represent previously unknown opponents. The mixture-based 
approach was evaluated in a computational experiment similar to 
the validation experiments, as will be described next. 
 
 

Figure 1. Mixture-Based Architecture for Opponent Modeling 
in Guess It.  Randomly chosen mixtures of opponents in the 
cardinal set are used to train the Mixture Based Player, which 
consists of two modules.  The Mixture Identification Module 
takes the history of the opponent’s moves and produces an 
estimate of how close the opponent is to each opponent in the 
cardinal set. The Decision Module takes these mixture 
coefficients and the game state and generates game actions as its 
output.  The Mixture-Based Player is only consulted when it is 
not possible to make an optimal move based on a heuristic; in 
other situations an optimal rule is invoked. The two output 
nodes of the Decision Module specify whether to call if possible 
and whether to bluff if possible; the default is to ask.  
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Figure 2. Opponent behavior given by the bluff and call probabilities, derived from the output of the Mixture Identifier when played as 
first player against the Mixture-Based Player. Horizontal axis is the sequence in which the Mixture Identifier was queried; vertical axis 
is the probability of either bluffing (a, c) or calling (b, d). (a) Bluff probability for the four cardinal opponents, starting out at a bias 
point in the Mixture Identifier and moving to their static location by round 2-3. (b) Call probability for the four cardinal opponents. 
Note that the Mixture-Based Player defeats CallThenAsk and CallThenBluff within two rounds, so that the bluff and call probability 
for these players do not have time to stabilize away from the initial bias point. (c) Bluff probability for the nine networks in the 
evaluation set, including the Mixture-Based Player and the Control Player. (d) Call probability for the evaluation set. Members of the 
evaluation set change during the game depending on the opponent’s actions.  Their behaviors therefore form trajectories across the 
opponent space, visualized above.  These trajectories cover much of the space, suggesting that the set proffers a comprehensive 
dynamic challenge for the Mixture-Based Player.  
 

6. MIXTURE-BASED EXPERIMENT 
How well does the mixture-based approach generalize to new 
opponents? In order to answer this question, Mixture-Based Players 
were evolved in 10 independent trials, and their performance was 
measured and averaged.  In each trial, a Mixture Identifier was first 
evolved, and then used to evolve the Decision Module.   Each 
Mixture Identifier was trained to a fitness of greater than 302/400, 
which indicates that its mixture output is on average within a 
Euclidean distance of 0.25 from the actual probability distributions 
encountered during training. On 10 trials, the highest fitness for the 
Mixture Identifier was 302.92 and the lowest was 302.08; the 
Mixture Identifier never reached a fitness higher than 305 in 
unbounded training. Such imperfect performance is realistic given 
that opponent strategies can be generally described only 
approximately in most games. Each Decision Module was trained 
for 100 generations according to the setup described in the last 
section.  At that point, the player averaged a best fitness of 
543.1/600 (90.51% win rate, variance 0.8%) over 10 trials. 
In addition to the Mixture-Based Player, another player was trained, 
called the “Control Player”, that was in all respects identical to the 
Mixture-Based Player, except that it was not allowed to see the 
output of the Mixture Identifier, either during training or during 
evaluation.  The training regimen for the Control was the same as 
for the Mixture-Based Player, consisting of 400 games against 
mixture opponents and 50 games against each of the cardinal 
opponents.  Since each mixture opponent is drawn randomly, the 
chance of encountering exactly the same mixture twice during the 
same generation is low.  The Control was trained for 100 

generations, at which point it achieved a fitness of 562.5/600 
(93.8% win rate, variance 0.7%) averaged over 10 trials.  Note that 
the Control Player performed better in training than the Mixture-
Based Player (the difference is statistically significant, p < 0.01). 
However, this measure only represents  performance  against  the  
opponents  encountered  in training, which follow the same static 
mixture strategy throughout the game. It does not reflect how well 
the player would perform against more realistic, dynamic opponents 
that may vary their strategy according to their opponent. With static 
opponents, the move history contains sufficient information to play 
well; the mixture inputs require the Decision Module to learn a 
more complex, higher-dimensional function, which it does less 
accurately.   
In order to evaluate the performance of both players against unseen, 
dynamic opponents, both players played 20,000 games against a 
bank of eleven evaluation opponents, half as first player and half as 
second. Their performance score was then the win probability 
against all opponents, that is, the win percentage over all 220,000 
games played. The eleven evaluation opponents included the four 
cardinal opponents as well as the seven networks trained to validate 
the mixture-based approach, that is, the six networks whose fitness 
was given in Table 1 plus the network trained to predict opponent 
actions.  Thus, the evaluation opponents represent a diverse set of 
dynamic strategies, some of which are trained to adapt to their 
opponent’s play (e.g. the predictor, as well as the networks that 
receive the move history as an input).  
To illustrate their diversity, the opponents are mapped in terms of 
their call and bluff probability in Figure 2. Since there is no way to 
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arrive at estimates of these probabilities directly, the output of the 
Mixture Identifier during play by the Mixture-Based Player is used 
as a proxy for these values. Note that the Mixture Identifier does not 
acquire sufficient information to correctly categorize the opponents 
in the first two rounds of the game.  Figure 2a shows the cardinal 
players. In the first round, AlwaysAsk and AlwaysBluff appear 
identical, but in later rounds enough information becomes available 
to correctly place them in the static locations where they belong.  
The positions of CallThenAsk and CallThenBluff cannot be 
correctly ascertained by the Mixture Identifier, since these strategies 
are defeated by the player in the second and first rounds, 
respectively. Figure 2b shows an estimate of the trajectories formed 
by the other members of the evaluation set.  Unlike in Figure 2a, the 
predictions of the Mixture Identifier do not stabilize after a few 
rounds.  Furthermore, the various players move through diverse 
regions of the player space. These results demonstrate that the 
evaluation set is indeed distributed broadly throughout opponent 
space, and thus the evaluation set represents a realistic, dynamic 
challenge for assessing the generalization performance of the 
Control and Mixture-Based Player to previously unseen opponents.   
Averaging results from 10 trials of such evaluations, each with 
separately trained players, the Mixture-Based Player won 71.3% of 
its games, and the Control Player won 57.7%. With the four cardinal 
opponents removed from consideration, the mixture-based player 
won 61.5% of its games against the remaining truly unknown 
opponents, whereas the Control Player won 54.6%. Thus the player 
with the Mixture Identifier won approximately 44,000 more games 
than the control, and was 11.3% more likely to win against a 
previously unseen opponent.  
Furthermore, in a separate evaluation over the same 10 trials, the 
Mixture-Based Player played 20,000 games directly against the 
Control Player from the same trial.  The Mixture-Based Player won 
77.6% of these games on average, showing that the Mixture-Based 
Player has a clear competitive edge over the Control; in fact, in only 
one trial did the Control Player outplay the Mixture-Based Player. 
All the above results are statistically significant (p < 0.05), 
demonstrating that the Mixture-Based approach is an effective way 
to model behavior of novel opponents. 

7. DISCUSSION 
The results in this paper demonstrate that a cardinal set of opponents 
can be used to train an explicit opponent model that conveys a 
material advantage to its bearer. Although Guess It is a simple 
game, there is no obvious reason why these results would not apply 
to a more complex game as well. The mixture-based architecture in 
Figure 1 generalizes readily to almost any game setting and 
therefore provides a promising starting point for further work in 
opponent modeling. 
Using probability distributions to generate mixture opponents forced 
a four-dimensional representation for the opponent space, whereas if 
call and bluff coefficients had been used, only two cardinal 
opponents would have been needed. As discussed above, this 
decision was made because the use of these four opponents had 
been effective in the past. In this work, however, the only effect of 
this choice in Guess It is that it skews the topology of the opponent 
space around (0, 0) and (1, 1).  Coefficient-based representations 
should be analyzed in future work, particularly because the 
dimensionality of the opponent space will be larger for more 
complex games.   

This work proceeds on the assumption that opponents in Guess It 
can be modeled as points in the control space of [0,1] ×   [0,1]. 
Using a linear combination of cardinal opponents to represent 
different opponents implies that the opponents are uniformly 
distributed over the space. However, in reality, there are most likely 
regions of high and low density around points that correspond to 
effective and ineffective strategies, respectively. Ideally, the mixture 
identifier should be trained to high accuracy in more dense regions 
in order to provide the greatest advantage to the Decision Module 
against most opponents.    
Another assumption is that static points in the control space can 
adequately describe opponents in the opponent space.  However, as 
seen in Figure 2, opponents are more likely to appear as trajectories 
in this space.  To the extent that these trajectories can be described 
in terms of a parameter set, even very complex opponents could be 
modeled as static points in an expanded space with both controls 
and parameters as dimensions.  It is uncertain, however, whether 
such a more complex representation is necessary.  In these 
experiments, the mixture-based players were evaluated against 
opponent networks with up to 24 input parameters, yet the two-
dimensional representation of opponents (as points in [0,1] ×   
[0,1]) still provided a significant advantage.  Moreover, the Mixture-
Based Player was able to play dynamically against a changing 
opponent strategy. Against a human opponent, the human shifted 
strategy midway through the game from AlwaysBluff to 
AlwaysAsk. As a result, the Mixture-Based Player made a 
corresponding adjustment to its strategy within two rounds.  This 
change occurred because the Mixture Identifier was trained to 
recognize its opponents on average.  In actual play, an opponent 
occasionally exhibits behavior that suggests a distribution 
significantly different from its actual distribution.  The more moves 
the opponent made, however, the less likely such deviations would 
become. Therefore, Mixture Identifiers that are capable of averaging 
out such deviations are preferred in evaluation. As a side effect, 
Mixture Identifiers learned to respond to shifts in opponent play 
during the game. 

8. FUTURE WORK 
The results presented in this paper are encouraging, suggesting that 
explicit modeling of previously unseen opponents is possible using 
the mixture-based approach.  Significantly more work can be done 
to extend and further verify these results in more complex games. 
Poker and other card games are an obvious next step, since 
sophisticated play typically requires recognizing and taking 
advantage of the playing style of the opponent in order to achieve 
success. The primary issue, for card games as well as more complex 
games in general, is how a sufficient cardinal set can be identified. 
One potential approach would be to delineate a method for 
determining a set of control and parameter dimensions that define 
the opponent space.  The bases of this space could then be used to 
generate a cardinal set directly.  It is unclear whether such cardinal 
opponents would constitute realistic opponents, and it is highly 
unlikely that the structure of the generated opponent space would 
reflect the distribution of actual opponents. 
In games where real opponents are available for training, a different 
approach can be used.  Poker, for instance, has a vast online 
community where potential algorithms can be tested against human 
opponents, as was done in by Billings et al., [1]. In such an 
environment, it might be possible to use e.g. a self-organizing map 
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[8] to categorize opponents. A SOM learns a topological map of its 
input space, extracting the most descriptive dimensions and 
neighborhood structure automatically. A SOM of opponent space 
could be used for selecting mixture opponents that accurately 
represent the structure of the opponent space. 
On the other hand, the current approach does not store information 
about the opponent between games; each game is treated 
independently. An interesting direction for future work would be to 
extend the architecture to model the opponent over a sequence of 
games.  Such an extension should work well in repeated games such 
as poker, chess, and e.g. sports video games. 

9. CONCLUSION 
The mixture-based approach to explicit opponent modeling allows 
identifying and defeating previously unknown opponents by 
representing them as a mixture over a set of known cardinal 
opponents. The approach is effective, especially in games where 
players are unable to see the complete state of the game and 
therefore must infer their situation based on the opponent’s play. 
Experiments in the game of Guess It show that the mixture-based 
approach generates automated players that continuously diagnose 
the strategy of their opponents and dynamically respond to an 
opponent’s changing play.  The same process should apply to a 
variety of interesting games, thus making opponent modeling an 
integrated part of game-playing AI in the future.   
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