
Evolving Explicit Opponent Models in Game Playing
Alan J. Lockett, Charles L. Chen*, and Risto Miikkulainen

Department of Computer Sciences
Department of Electrical and Computer Engineering*

The University of Texas at Austin
alockett@cs.utexas.edu, clchen@ece.utexas.edu, risto@cs.utexas.edu

ABSTRACT
Opponent models are necessary in games where the game state is
only partially known to the player, since the player must infer the
state of the game based on the opponent’s actions. This paper
presents an architecture and a process for developing neural
network game players that utilize explicit opponent models in
order to improve game play against unseen opponents. The
model is constructed as a mixture over a set of cardinal
opponents, i.e. opponents that represent maximally distinct game
strategies. The model is trained to estimate the likelihood that the
opponent will make the same move as each of the cardinal
opponents would in a given game situation. Experiments were
performed in the game of Guess It, a simple game of imperfect
information that has no optimal strategy for defeating specific
opponents. Opponent modeling is therefore crucial to play this
game well. Both opponent modeling and game-playing neural
networks were trained using NeuroEvolution of Augmenting
Topologies (NEAT). The results demonstrate that game-playing
provided with the model outperform networks not provided with
the model when played against the same previously unseen
opponents. The “cardinal mixture” architecture therefore
constitutes a promising approach for general and dynamic
opponent modeling in game-playing.

Categories and Subject Descriptors
F.1.1 [Theory of Computation]: Models of Computation – self-
modifying machines. I.2.1 [Computing Methodologies]: Artificial
Intelligence -- Applications and Expert Systems – games. J.m
[Computer Applications]: Miscellaneous – card games.

General Terms
Algorithms, Experimentation, Theory.

Keywords
Opponent modeling, neuroevolution, neural networks, games of
imperfect information, AI, artificial intelligence, evolutionary
computation.

1. INTRODUCTION
Opponent modeling is used in the game-playing literature to refer to
the process of training computer players to play against specific
opponents. General strategies that can defeat all opponents do not
exist, e.g., in games where the state space is too large to model, or
where aspects of the current game state are not observable. Role
Playing Games (RPGs), RoboCup Soccer, and Go fall into the first
category; poker and other games of chance are examples of the
second category. From the perspective of an individual player,
massively multi-player online RPGs (MMORPGs) and first-person
shooter games fall into both categories. Furthermore, even if an
optimal strategy may exist in a game, it may be considered unfair
for automated players to take advantage of it when playing against
humans. Thus a variety of effective, opponent-specific models are
useful in many games.
Opponent models can be either explicit or implicit. Much of the
work on opponent modeling to date uses implicit models; that is, the
learning algorithm encodes knowledge about opponents within its
internal representation or decision-making process as a side effect of
the training process. In some sense, any player that is successfully
trained against diverse, specific opponents will encode a
rudimentary, black-box knowledge of its opponents; this knowledge
constitutes its implicit opponent model. The goal with an implicit
model is to defeat specific opponents, but it is not clear how or
whether this implicit knowledge of specific opponents can
generalize to previously unseen opponents without further training.
Explicit modeling, by contrast, means training a functional form
(e.g., a neural net) to take information about the opponent as input
and produce a representation of the opponent as an output, either in
terms of the actions the opponent is to take, the game-playing
characteristics the opponent is expected to possess, or the strategies
that an opponent is likely to employ. An automated game player can
then be trained to utilize the output of the explicit model to
determine its own counterstrategy. An explicit model is therefore
intended to generalize directly to previously unseen opponents
without any extra training by enabling recognition of unseen
opponents.
A crucial question in designing an explicit opponent model is what
information should be included in the model. This issue is
intimately connected with the problem of generalization. The most
direct approach would be to use the opponent’s past actions in order
to predict his future actions. In practice, however, predicting future
actions directly does not generalize well to previously unseen
opponents, as we will see. Another approach is to model previously
unseen opponents with reference to a set of known opponents. This
approach can be effective only insofar as the set of known
opponents fully characterizes all relevant dimensions of player
action. In this vein, one can conceive of a opponent space defined
by these dimensions, and a set of cardinal opponents that generate

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007…$5.00.

2106

the opponent space. Any possible opponent can be viewed along
these lines as a linear combination of opponents in the cardinal set.
Thus, a reasonable opponent model would only need to identify
appropriate coefficients to describe unseen opponents linearly in
terms of the cardinal opponents. We refer to such coefficients as a
mixture, and to opponents generated from such coefficients as
mixture players. Opponent actions can be predicted from these
mixtures by combining the actions of the cardinal opponents.
To capture the intuition for this approach, consider an analogy with
how humans learn to play games. Over time we learn to recognize
broad themes in our opponents: whether they have a tendency to be
aggressive, cautious, presumptuous, etc. By identifying the degree
to which a new opponent exemplifies one or more of these basic
strategies, we can then play effectively against that opponent using
past knowledge. The cardinal opponents described above can play a
similar role.
This paper evaluates opponent models in the game of Guess It, a
simple game of chance first described by Isaacs [7]. The best mixed
strategy in a game-theoretic sense wins about half of all the games
played. Further, there are basic strategies that can defeat this
strategy with high probability, though each of them is also defeated
easily by other basic strategies. Playing Guess It well therefore
requires diagnosing the opponent’s strategy. Once the opponent’s
playing style is known, he can be easily defeated. In fact, networks
trained to play Guess It using only the identity of the opponent as
input play the game better than networks that also take the game
state as input. Thus the key to winning in Guess It is the ability to
model the opponent. On the other hand, the game is sufficiently
simple to allow a clear demonstration that the mixture-based
approach to opponent modeling is both feasible and promising.

2. RELATED WORK
This work builds directly on that of DiPietro et al. [4], who showed
that opponent modeling could be used to learn to play effectively
against basic opponents in Guess It. The opponent models were
implicit, in the sense that no identifying information about the
opponent was provided to the learners. They compared
evolutionary, hill-climbing, and particle swarm learning algorithms,
each of which was trained to find a mixed strategy for Guess It by
playing against one basic opponent at a time. Separate learners were
trained for each game state and then combined into a team to play
the game. Both the evolutionary and the particle swarm algorithms
successfully learned to defeat their opponents. Evolutionary
algorithms adapted fastest, but particle swarm generated more
optimal solutions. Unfortunately, the solutions learned did not
generalize across opponents. A change in opponents required
retraining the algorithms completely, with an accompanying
temporary drop in performance. It took 100 generations for the
learners to return to peak performance against the new player. In
contrast, in the approach taken in this paper, neural networks are
trained to play the game, with an opponent model as input. Using
such the game state and a functional form makes it possible to avoid
training a player for each game state. Though this approach results
in a game player that is more complex and correspondingly more
difficult to train, it makes it possible to construct explicit opponent
models that generalize well to unseen opponents.
A significant body of work on opponent modeling has been done in
poker, much of which includes explicit opponent modeling [9, 12].
Billings et al. [1] used statistical methods to estimate the probability

of the opponent’s hand given his history of calling, raising, or
folding. They also developed a predictor to determine what
decision a specific opponent would make when holding a given
hand. Although the original predictor was only 51% accurate,
Davidson et al. [2, 3] used a neural network trained with
backpropagation to increase its accuracy to 81%. These data are
especially interesting since their poker player, Loki, gathered
statistics on actual human players by playing in online poker games.
However, the approach required a significant history of data for
training and therefore could not be used online. In contrast, the
mixture-based approach does not require additional training in order
to generalize to new players, though it could benefit from adding
knowledge of new opponents to the system offline.
Considerable work on opponent modeling has also been performed
in the domain of RoboCup Soccer. For instance, Riley and Veloso
[11] used explicit models of opponent actions in order to build a
coach for a four-legged soccer team, with whom players would
‘confer’ at breaks in order to adjust their strategy. The probable
locations of the opponent team members were modeled. Further,
Whiteson et al. [15] worked on RoboCup Keepaway, where three
players must keep the ball away from a fourth player. Implicit
opponent models are needed in order to avoid the fourth player.
They trained a group of neural networks to interact competitively on
the task, with strong results.
Opponent modeling has proven useful in video games as well. In
particular, Spronck et al. [13] and Ponsen et al. [10] implemented
opponent modeling in Warcraft, a popular strategy game. In this
domain, a form of reinforcement learning called dynamic scripting
allows automated players to learn online. A number of uses for
opponent modeling were discussed, including developing automated
sidekicks that can better anticipate their teammates’ actions, and
autonomous players that can mimic their owner’s action while the
owner is temporarily away from the game.
The approach taken in this paper is based on NeuroEvolution of
Augmenting Topologies (NEAT), developed by Stanley and
Miikkulainen [14]. In this approach, only inputs and outputs are
specified for the neural network. The appropriate internal topology
is discovered through a search using a genetic algorithm.
Connections and hidden nodes are added and changed with a given
probability, and are retained in the population if they improve the
performance of the network against a fitness function. In theory, the
capability of the algorithm to iteratively add structure (or
complexify) allows it to adjust to new situations without losing old
capabilities. The implementation used in this paper, SharpNEAT
[5], makes a minor adjustment to NEAT by adding a pruning stage
once learning stagnates, whereby excess structure can be removed.
It is important to note that the opponent modeling architecture
proposed in this paper is independent of the particular
neuroevolution algorithm. However, since NEAT has been used
effectively in various game-playing approaches in the past, it was a
natural choice for the opponent modeling approach as well.
Supervised training algorithms such as backpropagation could not
be used in Guess It, due to the lack of supervised targets for the
bluff and call probabilities on the task of playing against mixture
players.

3. GUESS IT
The game of Guess It consists of a fixed set of cards, 13 in our
experiments. Six cards are distributed to each player, and neither

2107

player may see the other player’s cards. The goal is to identify the
13th card, which is hidden from both players. The game proceeds in
turns. On their turn, each player has one of three options: (1) ask for
a card they do not have; (2) bluff by asking for a card they do have;
or (3) attempt to name the center card. If the player asks for a card
in the opponent’s possession, the opponent loses it and must reveal
that card. If the player bluffs, then he must reveal the bluff card
after the opponent’s next turn. If the player correctly names the
center card, he wins, but if he is incorrect, he loses. When the
opponent asks for a card not held by the player, then either the
opponent is bluffing, or the card requested is the center card. What
a player expects the opponent to do is therefore central. If the
opponent does not often bluff, then the player should attempt to call
the bluff, i.e., name the requested card as the center card. If the
opponent is given to bluffing, however, then the request should be
ignored. Conversely, the player must decide whether or not to bluff
himself. If the opponent is expected to call the bluff (and therefore
lose), then a bluff should be attempted. If the opponent will ignore
the bluff, then the player cannot afford to lose a card, because that
lowers his chance of winning later.
As discussed by DiPietro et al. [4], there are certain heuristics that
every player should follow to maximize their chance of winning. If
they know the center card, they should name it. If they have no
cards remaining, then they should try to guess the center card, since
their opponent will be able to name correctly on the next turn. Also,
for computer players, the exact choice of card to play is generally
irrelevant, so cards can be picked at random when bluffing or
asking. Beyond these circumstances, there are two decisions a
player must make: (1) whether to call a potential bluff; and (2)
whether to ask or bluff otherwise. Following DiPietro, a set of basic
opponents can be defined as:

Always Ask: Always asks for an unknown card; never calls, never
bluffs.

Always Bluff: Always bluffs with its own card; never calls.

Call Then Ask: Calls every potential bluff; otherwise asks for an
unknown card and never bluffs.

Call Then Bluff: Calls every potential bluff; otherwise bluffs with
its own card and never asks.
These four opponents can be considered as the cardinal points in a
two-dimensional opponent space defined by the probabilities of
calling and bluffing. They are used as a cardinal set in the mixture-
based approach. Each of the players is easily defeated, and all
except AlwaysAsk can be defeated outright in every game.
AlwaysBluff defeats CallThenBluff, CallThenBluff wins against
CallThenAsk, CallThenAsk usually beats Always Ask, and
AlwaysAsk defeats AlwaysBluff. Thus each one can be defeated by
adopting one of the other strategies, and a player with a sufficient
model of these opponents should do well against them.

4. VALIDATING THE APPROACH
To test what information about the opponent would be most useful
to a player of Guess It, players were evolved given various types of
information about the game state and the opponent.
Three types of information were tested, including 13 inputs
representing the card status, seven inputs representing the move
history, and four inputs identifying the members of the cardinal set.
Card status indicates the state of each of the 13 cards, one per input,
each with three possible values: held by the player, known to the

player, or unknown. Move history has six inputs for each of the six
possible moves made by an opponent in the game, with three
possible values: ask, bluff, or call. Move history also has a seventh
input indicating whether the current opponent has ever called in any
past game. The card state and the move history together comprise
the game state. The four input identifiers represent four basis vectors
over the player space, i.e., 0001, 0010, 0100, and 1000, and were
used to inform the network whether it was playing against
AlwaysAsk, AlwaysBluff, CallThenAsk, or CallThenBluff. Various
combinations of these three input groups were tested against the
four cardinal players. Note that it is possible to play optimally
against each of the cardinal players if their identity is known, so the
identifier should correlate most highly with success, even without
the game state.

Table 1. Best fitness for players with different input information
after 100 generations, averaged over 10 runs. All comparisons
are pairwise statistically significant (p < 0.05) except Cards +
IDs (Row 2) vs. IDs + Moves (Row 5) and Cards + IDs (Row 2)
vs. Cards + IDs + Moves (Row 4). IDs alone provide the most
useful information for the player, followed by IDs + Moves;
more information beyond the IDs slows down learning,
probably due to the increased complexity of training a larger
network.

Inputs Used Avg. Best Fitness, 100 Gens.
Cards 327.9 (Gen 94)
Cards + IDs 377 (Gen 97)
Cards + Moves 357 (Gen 70)
Cards + IDs + Moves 369.7 (Gen 92)
IDs + Moves 382.3 (Gen 94)
ID Only 395.8 (Gen 35)

Six populations of networks were trained with NEAT,
corresponding to six different combinations of the three information
sets. Each population of network players was allowed 100
generations in which to learn the task. In each generation, each
player played 100 games against each of the four cardinal
opponents. The networks were awarded one point for each game
won and no points for each game lost; thus, a perfect fitness score
would be 400 points. After 100 generations, the best fitness
achieved was taken to represent the speed with which the network
had learned and thus the utility of the information with which it was
provided. Results were averaged over 10 trials, and a t-test for
statistical significance was performed. All results are pairwise
statistically significant with the exception of Cards + IDs vs. IDs +
Moves and Cards + IDs + Moves vs. Cards + IDs. The results are
given in Table 1.
These results suggest that the identifiers do indeed provide a greater
advantage to the player than the move history alone. All input
combinations using the IDs are better than any without it. As
expected, the identifier alone without any other information
performs near optimally (its fitness is rightly below 400 because it is
not always possible to defeat AlwaysAsk). When other information
is included as well, the networks become larger and more difficult to
optimize, and thus the fitness decreases. So identifiers are the piece
of information about the opponent that contributes most to the

2108

success of the player, where such IDs are known. This result
validates the general approach of using mixtures of the cardinal
opponents to describe new opponents (that cannot be described
directly with IDs). In Guess It, the player only needs to know the
identity of its opponent in order to win.
In the above analysis, Guess It players are characterized by two
parameters, call probability and bluff probability. All other aspects
are played automatically to avoid illegal actions and to ensure
victory when victory is immediately possible. It is worth asking
whether these two dimensions adequately characterize the game.
This question was tested by evolving a set of networks with total
control over all aspects of the game, deciding not only when to call,
ask, or bluff, but also which cards should be chosen for bluffing,
asking, and guessing. Such networks could make illegal moves, but
they also had the capability to recognize and employ card-specific
strategies. Surprisingly, these networks could not learn to defeat the
four cardinal opponents reliably, even after 10,000 generations.
Compared with fitness values over 350+ in Table 1, the networks
with total control attained values between 150 and 200 after 100
generations and between 300-350 after 10,000 generations.
Furthermore, such networks do not play well against opponents that
use card-specific strategies; the six networks from Table 1 more
readily defeated a sample opponent designed to only bluff on even
cards, and only ask for odd cards. These tests confirmed that it is
better to use the two-parameter model of Guess It players as
opposed to a more complex representation.
The decision to model previously unseen opponents as linear
combinations, or mixtures, of cardinal players also needs to be
validated. An alternative model would be to attempt to predict the
opponent’s actions directly. In Guess It, the hidden portion of the
game state includes two factors: whether the opponent bluffed or
asked on his last turn, and whether the opponent will call a potential
bluff. To evaluate this alternative, predictor networks were trained
using NEAT. NEAT was used as a training mechanism instead of
backpropagation due to the likelihood that an appropriate topology
would require recurrent connections, which did indeed develop
during evaluation. The predictor took the game state, represented
by the thirteen inputs for the card state and the seven inputs for the
opponent’s move history, as its input, and estimated the probability
that the opponent would bluff or call as its output. Since Guess It
players are described by these two parameters, the predictors were
thus designed to produce a complete opponent model. A rule-based
player then used the output of the predictor in order to play
optimally. Fitness of the predictor network was determined as
number of wins out of 400 games each generation.
Averaged over 10 trials the players with these predictors achieved a
fitness of 346 after 100 generations, compared with 357 for the
network in Table 1. There are reasons for this result. First, the
predictor only looks at the opponent’s actions in the current turn; it
only implicitly describes the opponent’s strategy as a whole.
Second, using a rule-based player on top of the predictor meant that
inaccuracies in the predictor led to faulty play; it is difficult to
estimate the accuracy, or confidence, of the predictors and take it
into account in making decisions. For these reasons, the mixture-
based model is a more promising alternative, and will be pursued in
this paper.

5. MIXTURE-BASED APPROACH
The mixture-based approach recasts opponent modeling as the
problem of identifying a mixture of known cardinal strategies based
on opponent play. In the case of Guess It, a mixture is a vector of
four coefficients describing an opponent in terms of its similarity to
each of the cardinal opponents. Players can then take this mixture as
an input to influence their move decisions.
In some cases it might be possible to construct a set of rules for
optimal play once the mixture is known. However, this assumes that
the mixture can be identified accurately, and that the opponent space
is fully characterized by the cardinal set. Since these assumptions
may not be valid, players that use a mixture-based opponent model
should be trained to filter out or adjust to this noise (as was
demonstrated in Section 4). A process for building a game player
with an explicit opponent model of this form therefore involves
three steps:

1. Identify a cardinal set of opponents sufficient to describe
anticipated opponents.

2. Train a neural network or some other learning platform to
identify the mixture based on the opponent’s play.

3. Train a player that takes as input the game state and the
mixture given by the network in step 2.

This process is illustrated in Figure 1 for the game of Guess It. The
two components of the game player are the Mixture Identification
Module and the Decision Module. The Mixture Identification
Module takes the move history of the opponent as its input and
generates the four coefficients for the mixture. The Decision
Module takes the game state and the mixture coefficients as its input
and produces game actions as its output. During training, a bank of
cardinal opponents is also necessary. The Decision Module must be
trained using a sufficient sample of mixture outputs, since it must
learn to deal with the noise patterns of the Mixture Identification
Module.
For Guess It, the cardinal set consists of the four basic opponents
described above. As described above, Guess It opponents can be
represented adequately by two probabilistic parameters: the
probability of calling a potential bluff and the probability of
bluffing. Defined this way, all opponents must fall within the region
[0,1] × [0,1]. In a strict sense only two cardinal opponents would
be needed to form a basis over this space (e.g. AlwaysBluff and
CallThenAsk); all four were used in the experiments as they have
been previously used with success [4]. This redundancy did not
cause problems in practice.

Network inputs and outputs. The Mixture Identifier takes the
move history of the opponent as input. There are at most six
opponent moves, and each of these corresponds to one input node in
the network. Each move is provided to the network as soon as it
becomes available. The input value is 1 if the opponent bluffed on
that move, –1 if the opponent asked, and 0 if the move is still
unknown. A seventh input indicates whether the opponent called in
any previous game; it has a value of 1 if he did and 0 if he did not.
An important aspect of this input representation is that the
opponent’s previous move is unknown at the current move unless he
asked for a card that belonged to the player. The Mixture Identifier
has four outputs, corresponding to the mixture coefficients for each
of the four cardinal players.

2109

The Decision Module takes the four outputs of the mixture identifier
as its input, as well as the current game state. It has two outputs,
corresponding to the bluff probability and call probability. The
game state for the Mixture-Based Player was represented by the
seven-input move history as described above. This input set (Moves
+ IDs) was used because it achieved the highest fitness against the
cardinal set among candidates from Table 1 that did not use only the
explicit opponent IDs. Although the IDs alone performed best, IDs
are not available against previously unseen opponents, and strong
performance against previously unseen opponents is the goal of this
research. The Mixture Identifier provides surrogates for these IDs,
but in order to enable a reliably controlled experiment, it is
preferable that both the control (which does not see the Mixture
Identifier output) and the Mixture-Based Player (Figure 1) have the
same network topology. The control needs input from the game
state, since it will not have any information in the form of IDs
against previously unseen opponents. Therefore both the control and
the Mixture-Based Player were given access to the game state
through the seven-input move history (see section 6 for experiment
details).

Training the Network. Both modules were trained against a variety
of mixture opponents. These opponents were created by sampling
the uniform distribution on [0,1] once for each of the cardinal
players, then normalizing the result to sum to 1, creating a
probability distribution over the cardinal set. During game play, the
mixture opponents sampled this distribution at each move, and then
played the move suggested by the cardinal opponent thus chosen.
Note that these mixture players are complete over the player space
[0,1] × [0,1] only because all four basic opponents were included
in the cardinal set. If a probability distribution over just two
opponents had been used instead, it would not have been possible to
produce players close to (0,0), and the region close to (1,1) would
have been inadequately modeled.
The Mixture Identifier was trained with NEAT. Like the prediction
task in Section 4, mixture identification is essentially a supervised
task. However, since it involved a sequence of inputs and outputs,
recurrent connections are typically useful; they allow the network to
maintain a state, resulting in more stable output across moves [6].
Recurrency would also be necessary in other games where it is
impractical to provide the entire move history as input to the
Mixture Identifier. Since NEAT allows discovering the necessary
recurrency automatically, it was used to construct the Mixture
Identifier as well.
The population was evaluated against 400 mixture opponents in
each generation. After each game, the mixtures suggested by the
network at each move were averaged, and the Euclidean distance d
between the average mixture and the actual distribution defining the
opponent was calculated. The network fitness was then updated by 1
– d. The maximum award was therefore 1, and the maximum
possible fitness in each generation was 400. The Mixture Identifier
was trained to achieve a fitness of at least 302/400, which it was
able to do successfully in each of 10 trials, reaching a mean fitness
of 302.48 in 466.6 generations on average.
After the Mixture Identifier was trained, it was given to the Decision
Module. During each generation, 400 games were played against
different mixture opponents and 50 games against each of the
cardinal opponents, for a total of 600 games. For each game, the
network was awarded one fitness point for each game won, so that

its fitness in each generation ranged from 0 to 600. When playing
against a cardinal opponent, either during training or during
evaluation, the Mixture-Based Player was given the exact mixture
corresponding to the cardinal opponents (e.g. 0001, 0010, 0100,
1000), following the assumption that the cardinal opponents
represent known opponents. During training, the mixture opponents
represent previously unknown opponents. The mixture-based
approach was evaluated in a computational experiment similar to
the validation experiments, as will be described next.

Figure 1. Mixture-Based Architecture for Opponent Modeling
in Guess It. Randomly chosen mixtures of opponents in the
cardinal set are used to train the Mixture Based Player, which
consists of two modules. The Mixture Identification Module
takes the history of the opponent’s moves and produces an
estimate of how close the opponent is to each opponent in the
cardinal set. The Decision Module takes these mixture
coefficients and the game state and generates game actions as its
output. The Mixture-Based Player is only consulted when it is
not possible to make an optimal move based on a heuristic; in
other situations an optimal rule is invoked. The two output
nodes of the Decision Module specify whether to call if possible
and whether to bluff if possible; the default is to ask.

2110

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

 (a) Cardinal opponents– bluff (b) Cardinal opponents–call (c) Evaluation Set – bluff (d) Evaluation Set – call

0

1 2 3 4 5 6 7 8

AlwaysAsk Eval 1 Eval 4 Eval 7
AlwaysBluff Eval 2 Eval 5 Mixture-Based
CallThenAsk Eval 3 Eval 6 Control
CallThenBluff

Figure 2. Opponent behavior given by the bluff and call probabilities, derived from the output of the Mixture Identifier when played as
first player against the Mixture-Based Player. Horizontal axis is the sequence in which the Mixture Identifier was queried; vertical axis
is the probability of either bluffing (a, c) or calling (b, d). (a) Bluff probability for the four cardinal opponents, starting out at a bias
point in the Mixture Identifier and moving to their static location by round 2-3. (b) Call probability for the four cardinal opponents.
Note that the Mixture-Based Player defeats CallThenAsk and CallThenBluff within two rounds, so that the bluff and call probability
for these players do not have time to stabilize away from the initial bias point. (c) Bluff probability for the nine networks in the
evaluation set, including the Mixture-Based Player and the Control Player. (d) Call probability for the evaluation set. Members of the
evaluation set change during the game depending on the opponent’s actions. Their behaviors therefore form trajectories across the
opponent space, visualized above. These trajectories cover much of the space, suggesting that the set proffers a comprehensive
dynamic challenge for the Mixture-Based Player.

6. MIXTURE-BASED EXPERIMENT
How well does the mixture-based approach generalize to new
opponents? In order to answer this question, Mixture-Based Players
were evolved in 10 independent trials, and their performance was
measured and averaged. In each trial, a Mixture Identifier was first
evolved, and then used to evolve the Decision Module. Each
Mixture Identifier was trained to a fitness of greater than 302/400,
which indicates that its mixture output is on average within a
Euclidean distance of 0.25 from the actual probability distributions
encountered during training. On 10 trials, the highest fitness for the
Mixture Identifier was 302.92 and the lowest was 302.08; the
Mixture Identifier never reached a fitness higher than 305 in
unbounded training. Such imperfect performance is realistic given
that opponent strategies can be generally described only
approximately in most games. Each Decision Module was trained
for 100 generations according to the setup described in the last
section. At that point, the player averaged a best fitness of
543.1/600 (90.51% win rate, variance 0.8%) over 10 trials.
In addition to the Mixture-Based Player, another player was trained,
called the “Control Player”, that was in all respects identical to the
Mixture-Based Player, except that it was not allowed to see the
output of the Mixture Identifier, either during training or during
evaluation. The training regimen for the Control was the same as
for the Mixture-Based Player, consisting of 400 games against
mixture opponents and 50 games against each of the cardinal
opponents. Since each mixture opponent is drawn randomly, the
chance of encountering exactly the same mixture twice during the
same generation is low. The Control was trained for 100

generations, at which point it achieved a fitness of 562.5/600
(93.8% win rate, variance 0.7%) averaged over 10 trials. Note that
the Control Player performed better in training than the Mixture-
Based Player (the difference is statistically significant, p < 0.01).
However, this measure only represents performance against the
opponents encountered in training, which follow the same static
mixture strategy throughout the game. It does not reflect how well
the player would perform against more realistic, dynamic opponents
that may vary their strategy according to their opponent. With static
opponents, the move history contains sufficient information to play
well; the mixture inputs require the Decision Module to learn a
more complex, higher-dimensional function, which it does less
accurately.
In order to evaluate the performance of both players against unseen,
dynamic opponents, both players played 20,000 games against a
bank of eleven evaluation opponents, half as first player and half as
second. Their performance score was then the win probability
against all opponents, that is, the win percentage over all 220,000
games played. The eleven evaluation opponents included the four
cardinal opponents as well as the seven networks trained to validate
the mixture-based approach, that is, the six networks whose fitness
was given in Table 1 plus the network trained to predict opponent
actions. Thus, the evaluation opponents represent a diverse set of
dynamic strategies, some of which are trained to adapt to their
opponent’s play (e.g. the predictor, as well as the networks that
receive the move history as an input).
To illustrate their diversity, the opponents are mapped in terms of
their call and bluff probability in Figure 2. Since there is no way to

2111

arrive at estimates of these probabilities directly, the output of the
Mixture Identifier during play by the Mixture-Based Player is used
as a proxy for these values. Note that the Mixture Identifier does not
acquire sufficient information to correctly categorize the opponents
in the first two rounds of the game. Figure 2a shows the cardinal
players. In the first round, AlwaysAsk and AlwaysBluff appear
identical, but in later rounds enough information becomes available
to correctly place them in the static locations where they belong.
The positions of CallThenAsk and CallThenBluff cannot be
correctly ascertained by the Mixture Identifier, since these strategies
are defeated by the player in the second and first rounds,
respectively. Figure 2b shows an estimate of the trajectories formed
by the other members of the evaluation set. Unlike in Figure 2a, the
predictions of the Mixture Identifier do not stabilize after a few
rounds. Furthermore, the various players move through diverse
regions of the player space. These results demonstrate that the
evaluation set is indeed distributed broadly throughout opponent
space, and thus the evaluation set represents a realistic, dynamic
challenge for assessing the generalization performance of the
Control and Mixture-Based Player to previously unseen opponents.
Averaging results from 10 trials of such evaluations, each with
separately trained players, the Mixture-Based Player won 71.3% of
its games, and the Control Player won 57.7%. With the four cardinal
opponents removed from consideration, the mixture-based player
won 61.5% of its games against the remaining truly unknown
opponents, whereas the Control Player won 54.6%. Thus the player
with the Mixture Identifier won approximately 44,000 more games
than the control, and was 11.3% more likely to win against a
previously unseen opponent.
Furthermore, in a separate evaluation over the same 10 trials, the
Mixture-Based Player played 20,000 games directly against the
Control Player from the same trial. The Mixture-Based Player won
77.6% of these games on average, showing that the Mixture-Based
Player has a clear competitive edge over the Control; in fact, in only
one trial did the Control Player outplay the Mixture-Based Player.
All the above results are statistically significant (p < 0.05),
demonstrating that the Mixture-Based approach is an effective way
to model behavior of novel opponents.

7. DISCUSSION
The results in this paper demonstrate that a cardinal set of opponents
can be used to train an explicit opponent model that conveys a
material advantage to its bearer. Although Guess It is a simple
game, there is no obvious reason why these results would not apply
to a more complex game as well. The mixture-based architecture in
Figure 1 generalizes readily to almost any game setting and
therefore provides a promising starting point for further work in
opponent modeling.
Using probability distributions to generate mixture opponents forced
a four-dimensional representation for the opponent space, whereas if
call and bluff coefficients had been used, only two cardinal
opponents would have been needed. As discussed above, this
decision was made because the use of these four opponents had
been effective in the past. In this work, however, the only effect of
this choice in Guess It is that it skews the topology of the opponent
space around (0, 0) and (1, 1). Coefficient-based representations
should be analyzed in future work, particularly because the
dimensionality of the opponent space will be larger for more
complex games.

This work proceeds on the assumption that opponents in Guess It
can be modeled as points in the control space of [0,1] × [0,1].
Using a linear combination of cardinal opponents to represent
different opponents implies that the opponents are uniformly
distributed over the space. However, in reality, there are most likely
regions of high and low density around points that correspond to
effective and ineffective strategies, respectively. Ideally, the mixture
identifier should be trained to high accuracy in more dense regions
in order to provide the greatest advantage to the Decision Module
against most opponents.
Another assumption is that static points in the control space can
adequately describe opponents in the opponent space. However, as
seen in Figure 2, opponents are more likely to appear as trajectories
in this space. To the extent that these trajectories can be described
in terms of a parameter set, even very complex opponents could be
modeled as static points in an expanded space with both controls
and parameters as dimensions. It is uncertain, however, whether
such a more complex representation is necessary. In these
experiments, the mixture-based players were evaluated against
opponent networks with up to 24 input parameters, yet the two-
dimensional representation of opponents (as points in [0,1] ×
[0,1]) still provided a significant advantage. Moreover, the Mixture-
Based Player was able to play dynamically against a changing
opponent strategy. Against a human opponent, the human shifted
strategy midway through the game from AlwaysBluff to
AlwaysAsk. As a result, the Mixture-Based Player made a
corresponding adjustment to its strategy within two rounds. This
change occurred because the Mixture Identifier was trained to
recognize its opponents on average. In actual play, an opponent
occasionally exhibits behavior that suggests a distribution
significantly different from its actual distribution. The more moves
the opponent made, however, the less likely such deviations would
become. Therefore, Mixture Identifiers that are capable of averaging
out such deviations are preferred in evaluation. As a side effect,
Mixture Identifiers learned to respond to shifts in opponent play
during the game.

8. FUTURE WORK
The results presented in this paper are encouraging, suggesting that
explicit modeling of previously unseen opponents is possible using
the mixture-based approach. Significantly more work can be done
to extend and further verify these results in more complex games.
Poker and other card games are an obvious next step, since
sophisticated play typically requires recognizing and taking
advantage of the playing style of the opponent in order to achieve
success. The primary issue, for card games as well as more complex
games in general, is how a sufficient cardinal set can be identified.
One potential approach would be to delineate a method for
determining a set of control and parameter dimensions that define
the opponent space. The bases of this space could then be used to
generate a cardinal set directly. It is unclear whether such cardinal
opponents would constitute realistic opponents, and it is highly
unlikely that the structure of the generated opponent space would
reflect the distribution of actual opponents.
In games where real opponents are available for training, a different
approach can be used. Poker, for instance, has a vast online
community where potential algorithms can be tested against human
opponents, as was done in by Billings et al., [1]. In such an
environment, it might be possible to use e.g. a self-organizing map

2112

[8] to categorize opponents. A SOM learns a topological map of its
input space, extracting the most descriptive dimensions and
neighborhood structure automatically. A SOM of opponent space
could be used for selecting mixture opponents that accurately
represent the structure of the opponent space.
On the other hand, the current approach does not store information
about the opponent between games; each game is treated
independently. An interesting direction for future work would be to
extend the architecture to model the opponent over a sequence of
games. Such an extension should work well in repeated games such
as poker, chess, and e.g. sports video games.

9. CONCLUSION
The mixture-based approach to explicit opponent modeling allows
identifying and defeating previously unknown opponents by
representing them as a mixture over a set of known cardinal
opponents. The approach is effective, especially in games where
players are unable to see the complete state of the game and
therefore must infer their situation based on the opponent’s play.
Experiments in the game of Guess It show that the mixture-based
approach generates automated players that continuously diagnose
the strategy of their opponents and dynamically respond to an
opponent’s changing play. The same process should apply to a
variety of interesting games, thus making opponent modeling an
integrated part of game-playing AI in the future.

10. ACKNOWLEDGEMENTS
This research was supported in part by NSF under grant EIA-
0303609.

11. REFERENCES
[1] Billings, D., Papp, D., Schaeffer, J., and Szafron, D. Opponent

Modeling in Poker. Proceedings of 15th National Conference
of the American Association on Artificial Intelligence. AAAI
Press, Madison, WI, 1998, 493-498.

[2] Davidson, A., Billings, D., Schaeffer, J., and Szafron, D.
Improved Opponent Modeling in Poker. Proceedings of the
2000 International Conference on Artificial Intelligence
(ICAI'2000). 1999, 1467-1473.

[3] Davidson, A. Using Artificial Neural Networks to Model
Opponents in Texas Hold ’Em. Unpublished manuscript;
http://spaz.ca/aaron/poker/nnpoker.pdf. 1999.

[4] DiPietro, A., Barone, L., and While L. Learning In RoboCup
Keepaway Using Evolutionary Algorithms. Proceedings of the

Genetic and Evolutionary Computation Conference (GECCO-
2002). Kaufmann, San Francisco, 2002, 1065-1072.

[5] Green, C. Phased Searching with NEAT: Alternating Between
Complexification and Simplification. Unpublished manuscript;
http://sharpneat.sourceforge.net/phasedsearch.html. 2004

[6] Gomez, F. and Miikkulainen, R. 2-D Pole Balancing with
Recurrent Evolutionary Networks. Proceedings of the
International Conference on Artificial Neural Networks
(ICANN-98). Springer, Berlin, 1998, 425-430.

[7] Isaacs, R. A card game with bluffing,. The American
MathematicalMonthly, vol. 62. 1955, 99-108.

[8] Kohonen, T. The Self-Organizing Map. Proceedings of the
IEEE, vol. 78. 1990, 1464-1480.

[9] Korb, K., Nicholson, A., and Jitnah, N. Bayesian Poker.
Proceedings of the Conference on Uncertainty in Artificial
Intelligence (UAI-99). 1999, 343-350.

[10] Ponsen, M., Munoz-Avila, H., Spronck, P., and Aha, D.
Automatically Generating Game Tactics via Evolutionary
Learning. AI Magazine, 27(3). AAAI Press, Madison, WI,
2005, 75-84.

[11] Riley, P., and Veloso, A. Planning for Distributed Execution
Through Use of Probabilistic Opponent Models. IJCAI-2001
Workshop PRO-2: Planning under Uncertainty and Incomplete
Information. 2001.

[12] Southey, F., Bowling, M., Larson, B., Piccione, C., Burch, N.,
and Billings, D. Bayes’ Bluff: Opponent Modeling in Poker.
Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence (UAI-05). 2005, 550-558.

[13] Spronck, P., Ponsen, M., Sprinkhuizen-Kuyper, I., and Postma,
E. Adaptive Game AI with Dynamic Scripting. Machine
Learning, 63. Kluwer, Hingham, MA, 2005, 217-248.

[14] Stanley, K. and Miikkulainen, R. Continual Coevolution
Through Complexification, Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2002).
Kaufmann, San Francisco, 2002, 113-120.

[15] Whiteson, S., Kohl, N., Miikkulainen, R., and Stone, P.
Evolving RoboCup Keepaway Players through Task
Decomposition. Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO 2003). Kaufmann, San
Francisco, 2003, 356-368.

2113

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

