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ABSTRACT
In this paper, we describe an evolutionary approach to in-
ducing a generative model of expressive music performance
for Jazz saxophone. We begin with a collection of audio
recordings of real Jazz saxophone performances from which
we extract a symbolic representation of the musician’s ex-
pressive performance. We then apply an evolutionary al-
gorithm to the symbolic representation in order to obtain
computational models for different aspects of expressive per-
formance. Finally, we use these models to automatically
synthesize performances with the expressiveness that char-
acterizes the music generated by a professional saxophonist.

Categories and Subject Descriptors
J.5 [Computer Applications]: Arts and Humanities

General Terms
Algorithms

Keywords
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1. INTRODUCTION
Evolutionary computation [6] is being considered with

growing interest in musical applications. One of the mu-
sic domains in which evolutionary computation has made
most impact is music composition. A large number of evo-
lutionary systems for composing musical material have been
proposed (e.g. [3, 34]). In addition to music composition,
evolutionary computing has been considered in music impro-
visation applications where an evolutionary algorithm typi-
cally models a musician improvising (e.g. [2]). Nevertheless,
little research focusing on the use of evolutionary computa-
tion for expressive performance analysis has been reported
(e.g. [9]).
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In the past, the main approaches to study expressive per-
formance have been empirical approaches based on statisti-
cal analysis (e.g. [31]), mathematical modeling (e.g. [33]),
and analysis-by-synthesis (e.g. [8]). In all these approaches,
it is a person who is responsible for devising a theory or a
mathematical model which captures different aspects of mu-
sical expressive performance. The theory or model is later
tested on real performance data in order to determine its
accuracy.

In this paper we describe an approach to investigate musi-
cal expressive performance based on evolutionary computa-
tion. Instead of manually modeling expressive performance
and testing the model on real musical data, we let a com-
puter use a sequential covering genetic algorithm to auto-
matically induce expressive performance models from real
performance data: audio recordings of Jazz standards. The
algorithm incrementally constructs a set of rules by learning
new rules one at a time, removing the positive examples cov-
ered by the latest rule before attempting to learn the next
rule. The algorithm provides an interpretable specification
of the expressive principles applied to a music interpreta-
tion and, at the same time, it provides a generative models
of expressive performance, i.e. a model capable of endowing
a computer generated music performance with the timing
and energy expressiveness that characterizes the music gen-
erated by a professional saxophonist.

The use of evolutionary techniques for modeling expres-
sive music performance provides a number of potential ad-
vantages over other supervised learning algorithms. By ap-
plying our evolutionary algorithm, it is possible to (1) ex-
plore and analyze the induced expressive model as it ’evolves’,
(2) guide and interact with the evolution of the model, and
(3) obtain different models resulting from different execu-
tions of the algorithm. This last point is very relevant to
the task of modeling expressive music performance since it
is desirable to obtain a non-deterministic model capturing
the different possible interpretations a performer may pro-
duce for a given piece.

The rest of the paper is organized as follows: Section 2
describes how we extract a set of acoustic features from the
audio recordings in order to obtain a symbolic description of
the different expressive parameters embedded in the record-
ings. In Section 3, we describe our evolutionary approach for
inducing expressive music performance computational mod-
els for different aspects of Expressive performance. Section 4
reports on related work, and finally Section 5 presents some
conclusions and indicates some areas of future research.
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2. MELODIC DESCRIPTION
In this section, we summarize how we extract a symbolic

description from the monophonic recordings of performances
of Jazz standards. We need this symbolic representation in
order to apply a sequential covering genetic algorithm to
the data. In this paper, our interest is to model note-level
transformations such as onset deviations, duration transfor-
mations and energy variations. Thus, descriptors providing
note-level information are of particular interest.

2.1 Algorithms for feature extraction
First of all, we perform a spectral analysis of a portion of

sound, called an analysis frame, whose size is a parameter
of the algorithm. This spectral analysis lies in multiplying
the audio frame with an appropriate analysis window and
performing a Discrete Fourier Transform (DFT) to obtain
its spectrum. In this case, we use a frame width of 46 ms,
an overlap factor of 50%, and a Keiser-Bessel 25dB window.
Then, we perform a note segmentation using low-level de-
scriptor values. Once the note boundaries are known, the
note descriptors are computed from the low-level and the
fundamental frequency values.

2.2 Low-level descriptors computation
The main low-level descriptors used to characterize ex-

pressive performance are instantaneous energy and funda-
mental frequency.

The energy descriptor is computed on the spectral do-
main, using the values of the amplitude spectrum at each
analysis frame. In addition, energy is computed in different
frequency bands as defined in [13], and these values are used
by the algorithm for note segmentation.

For the estimation of the instantaneous fundamental fre-
quency we use a harmonic matching model derived from
the Two-Way Mismatch procedure (TWM) [17]. For each
fundamental frequency candidate, mismatches between the
harmonics generated and the measured partials frequencies
are averaged over a fixed subset of the available partials. A
weighting scheme is used to make the procedure robust to
the presence of noise or absence of certain partials in the
spectral data. The solution presented in [17] employs two
mismatch error calculations. The first one is based on the
frequency difference between each partial in the measured
sequence and its nearest neighbor in the predicted sequence.
The second is based on the mismatch between each harmonic
in the predicted sequence and its nearest partial neighbor in
the measured sequence. This two-way mismatch helps to
avoid octave errors by applying a penalty for partials that
are present in the measured data but are not predicted, and
also for partials whose presence is predicted but which do not
actually appear in the measured sequence. The TWM mis-
match procedure has also the benefit that the effect of any
spurious components or partial missing from the measure-
ment can be counteracted by the presence of uncorrupted
partials in the same frame.

First, we perform a spectral analysis of all the windowed
frames, as explained above. Secondly, the prominent spec-
tral peaks of the spectrum are detected from the spectrum
magnitude. These spectral peaks of the spectrum are de-
fined as the local maxima of the spectrum which magnitude
is greater than a threshold. The spectral peaks are compared
to a harmonic series and a two-way mismatch (TWM) er-
ror is computed for each fundamental frequency candidates.

The candidate with the minimum error is chosen to be the
fundamental frequency estimate.

After a first test of this implementation, some improve-
ments to the original algorithm where implemented to deal
with some errors of the algorithm:

• Peak selection: a peak selection routine has been added
in order to eliminate spectral peaks corresponding to
noise. The peak selection is done according to a mask-
ing threshold around each of the maximum magnitude
peaks. The form of the masking threshold depends
on the peak amplitude, and uses three different slopes
depending on the frequency distance to the peak fre-
quency.

• Context awareness: we take into account previous val-
ues of the fundamental frequency estimation and in-
strument dependencies to obtain a more adapted re-
sult.

• Noise gate: a noise gate based on some low-level sig-
nal descriptor is applied to detect silences, so that the
estimation is only performed in non-silent segments of
the sound.

2.3 Note segmentation
Note segmentation is performed using a set of frame de-

scriptors, which are energy computations in different fre-
quency bands and fundamental frequency. Energy onsets
are first detected following a band-wise algorithm that uses
some psycho-acoustical knowledge [13]. In a second step,
fundamental frequency transitions are also detected. Fi-
nally, both results are merged to find the note boundaries
(onset and offset information).

2.4 Note descriptor computation
We compute note descriptors using the note boundaries

and the low-level descriptors values. The low-level descrip-
tors associated to a note segment are computed by averaging
the frame values within this note segment. Pitch histograms
have been used to compute the pitch note and the fundamen-
tal frequency that represents each note segment, as found in
[18]. This is done to avoid taking into account mistaken
frames in the fundamental frequency mean computation.

2.5 Intra-note segment characterization
Once we have found the intra-note segment limits, we de-

scribe each one by its duration (absolute and relative to note
duration), start and end times, initial and final energy val-
ues (absolute and relative to note maximum) and slope. For
the stable part of each note (sustain segment), we extract an
averaged spectral centroid and spectral tilt in order to have
timbral descriptors related to the brightness of a particu-
lar execution. We compute the spectral centroid as the fre-
quency bin corresponding to the barycenter of the spectrum,
expressed as (6), where fft is the fast fourier transform of
a frame, N is the size of the fast fourier tarnsform, and k is
the bin index. For the spectral tilt, we perform a linear re-
gression of the logarithmic spectral envelope between 2kHz
and 6kHz, and get the slope expressed in dB/Hz.

SC =

�N
k=1 k|fft(k)|
�N

k=1 |fft(k)| (1)

2160



2.6 Note clustering
Once each of the notes in the audio recordings has been

characterized by its intra-note features as described above,
we proceed to apply a k-means clustering algorithm to iden-
tify groups of similar notes. This clustering of notes is moti-
vated by the fact that we are interested in devising a mech-
anism to determine in which musical context a particular
type of note (e.g. a note with a very sharp attack) should
be played. In the folowing section we tackle this problem by
inducing a classifier whose input is a particular note musi-
cal context and its output is a class representing a particular
cluster of notes. For synthesis purposes we simply select the
most convenient note within the selected cluster and modify
the note to fit our context.

3. LEARNING THE EXPRESSIVE PERFOR-
MANCE MODEL

In this section, we describe our inductive approach for
learning an expressive music performance model from per-
formances of Jazz standards. Our aim is to obtain a model
capable of endowing a computer generated music perfor-
mance with the expressiveness that characterizes human gen-
erated music. That is to say, we intend to generate automat-
ically human-like expressive performances of a piece given an
inexpressive description of the piece (e.g. a textual descrip-
tion of its score). We are aware of the fact that not all the
expressive transformations performed by a musician can be
predicted at a local note level. Musicians perform music
considering a number of abstract structures (e.g. musical
phrases) which makes of expressive performance a multi-
level phenomenon. In this context, our aim is to obtain a
computational model of expressive performance which com-
bines note-level and structure-level information. As a first
step in this direction, we have based our musical analysis
on the implication/realization model, proposed by Narmour
[26]. The Implication/Realization model is a theory of per-
ception and cognition of melodies. The theory states that a
melodic musical line continuously causes listeners to gener-
ate expectations of how the melody should continue. Any
two consecutively perceived notes constitute a melodic in-
terval and if this interval is not conceived as complete, it is
an implicative interval, i.e. an interval that implies a sub-
sequent interval with certain characteristics. That is to say,
some notes are more likely than others to follow the im-
plicative interval. Two main principles recognized by Nar-
mour concern registral direction and intervallic difference.
The principle of registral direction states that small inter-
vals imply an interval in the same registral direction (a small
upward interval implies another upward interval and anal-
ogously for downward intervals), and large intervals imply
a change in registral direction (a large upward interval im-
plies a downward interval and analogously for downward
intervals). Based on these two principles, melodic patterns
or groups can be identified that either satisfy or violate the
implication as predicted by the principles. Figure 1 shows
prototypical Narmour structures.

A note in a melody often belongs to more than one struc-
ture, i.e. a description of a melody as a sequence of Narmour
structures consists of a list of overlapping structures. We
parse each melody in the training data in order to automat-
ically generate an implication/realization analysis.Figure 2
shows the analysis for a fragment of All of me.

Figure 1: Prototypical Narmour structures

Figure 2: Narmour analysis of All of Me

3.1 Training data
The training data used in our experimental investigations

are monophonic recordings of four Jazz standards (Body and
Soul, Once I Loved, Like Someone in Love and Up Jumped
Spring) performed by a professional musician at 11 differ-
ent tempos around the nominal tempo. For each piece, the
nominal tempo was determined by the musician as the most
natural and comfortable tempo to interpret the piece. Also
for each piece, the musician identified the fastest and slowest
tempos at which a piece could be reasonably interpreted. In-
terpretations were recorded at regular intervals around the
nominal tempo (5 faster and 5 slower) within the fastest-
slowest tempo limits. The data set is composed of 4360
performed notes. Each note in the training data is anno-
tated with its corresponding performed characteristics and
a number of attributes representing both properties of the
note itself and some aspects of the context in which the note
appears. Information about the note include note duration
and the note metrical position within a bar, while infor-
mation about its melodic context include performed tempo,
information on neighboring notes as well as the Narmour
group in which the note appears in third position.

3.2 Learning task
In this paper, we are concerned with note-level expres-

sive transformations, in particular transformations of note
duration, onset, energy and note type. Initially, for each
expressive transformation, we approach the problem as a
classification problem, e.g. for note duration transforma-
tion we classify each note to belong to one of the classes
lengthen, shorten or same. Once we obtain a classification
mechanism capable of classifying all notes in our training
data, we apply a regression algorithm in order to produce a
numerical value representing the amount of transformation
to be applied to a particular note (in the case of note type
we apply a nearest neighbor algorithm to obtain the index
of the most suitable note within the selected cluster). The
complete algorithm is detailed in the next section.

The performance classes that interest us are lengthen,
shorten and same for duration transformation, advance, de-
lay and same for onset deviation, and soft, loud and same
for energy variation. A note is considered to belong to class
lengthen, if its performed duration is 20% longer (or more)
that its nominal duration, e.g. its duration according to
the score. Class shorten is defined analogously. A note is
considered to be in class advance if its performed onset is
5% of a bar earlier (or more) than its nominal onset. Class
delay is defined analogously. A note is considered to be
in class loud if it is played louder than its predecessor and
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louder than the average level of the piece. Class soft is de-
fined analogously. We decided to set these boundaries after
experimenting with different ratios. The main idea was to
guarantee that a note classified, for instance, as lengthen
was purposely lengthened by the performer and not the re-
sult of a performance inexactitude. In the case of note type
prediction, the classes of interest are the different clusters
containing individual segmented notes.

3.3 Algorithm
We applied a genetic sequential covering algorithm to the

training data. Roughly, the algorithm incrementally con-
structs a set of rules by learning new rules one at a time,
removing the positive examples covered by the latest rule
before attempting to learn the next rule. Rules are learned
using a genetic algorithm with the usual parameters r, m
and p respectively determining the fraction of the parent
population replaced by crossover, the mutation rate, and
population size. We set these parameters as follows: r = 0.8,
m = 0.05 and p = 200. For each class of interest (e.g.
lengthen, shorten, same), we collect the rules with best
fitness during the evolution of the population. For obtain-
ing rules for a particular class of interest (e.g. lengthen)
we consider s negative examples the examples of the other
two complementary classes (e.g. shorten and same). It is
worth mentioning that although the test was running over 40
generations, the fittest rules were obtained around the 20th
generation. Once we obtain the set of rules covering all the
training examples, for each rule, we apply linear regression
to the examples covered by the rule in order to obtain a
linear equation predicting a numerical value. This leads to
a set of rules producing a numerical prediction and not just
a nominal class prediction. In the case of note type pre-
diction, we apply 1-nearest neighbor within the predicted
cluster in order to obtain the index of the most ’suitable’
note in the cluster. Since we are interested in selecting a
note for synthesis purposes, the most ’suitable’ note in a
particular cluster is the note that requires least transforma-
tion (i.e. pitch transposing and time stretching) to satisfy
the pitch, duration, onset and energy requirements. The
algorithm is as follows:

GeneticSeqCovAlg(Class,Fitness,Threshold,
p,r,m,Examples)

Pos = examples which belong to Class
Neg = examples which do not belong to Class
Learned_rules = {]
While Pos do

P = generate p hypothesis at random
for each h in P, compute fitness(h)
while max(fitness(h)) < Threshold do

create a new generation Pnew
P = Pnew
for each h in P, compute fitness(h)

Return the hypothesis Newrule from P
that has the highest fitness

Rpos = members of Pos covered by NewRule
NumericNewRule = NewRule with Class

replaced by NumericValue
Learned_rules = Learned_rules

+ NumericNewrule
Pos = Pos - Rpos

Return Learned_rules

The outer loop learns new rules one at a time, remov-
ing the positive examples covered by the latest rule before

attempting to learn the next rule. The inner loop per-
forms a genetic search through the space of possible rules
in search of a rule with high accuracy. At each iteration,
the outer loop adds a new rule to its disjunctive hypothesis,
Learned rules. The effect of each new rule is to generalize
the current disjunctive hypothesis (i.e. increasing the num-
ber of instances it classifies as positive) by adding a new
disjunct. At this level, the search is a specific-to-general
search starting with the most specific hypothesis (i.e. the
empty disjunction) and terminating when the hypothesis is
sufficiently general to cover all training examples. In the
case of duration, onset and energy rules, NumericNewRule is
a rule where the consequent NumericValue is a linear equa-
tion X = w0 + w1 ∗ a1 + w2 ∗ a2 + · · · + wk ∗ ak where X is
the predicted value expressed as a linear combination of the
attributes a1, . . . , ak of the training examples with predeter-
mined weights w0, . . . , wk. The weights are calculated using
the set of positive examples covered by the rule Rpos by lin-
ear regression. In the case of note type rules, NumericValue
is the index of a note in the predicted cluster determined by
the nearest neighbor algorithm using the distance

�
PitchDif2 + DurationDif2

where PitchDif is the normalized difference between the
pitch of the score note and the pitch of a note in the pre-
dicted cluster. Similarly DurationDif is the normalized
difference between the duration of the score note and the
duration of a note in the predicted cluster. The rationale
for this distance measure is that for audio synthesis quality
purposes we are interested in minimizing the processing of
the samples in the clusters.

The inner loop performs a fine grained search to determine
the exact form of each new rule. In the inner loop, a new
generation is created as follows:

• Select: probabilistically select (1 − r)p members of P
to add to Ps. The probability of Pr(hi) of selecting
hypothesis hi from P is

Pr(hi) = F itness(hi)
Σ(hj)

(1 ≤ j ≤ p)

• Crossover: probabilistically select (r∗p)/2 pairs of hy-
pothesis from P (according to Pr(hi) above). For each
pair, produce an offspring by applying the crossover
operator (see below) and add it to Ps.

• Mutate: Choose m percent of the members of Ps with
uniform probability and apply the mutation operator
(see below).

Hypothesis representation. The hypothesis space of rule
preconditions consists of a conjunction of a fixed set of at-
tributes. Each rule is represented as a bit-string as follows:
the previous and next note duration are represented each by
five bits (i.e. much shorter, shorter, same, longer and much
longer), previous and next note pitch are represented each
by five bits (i.e. much lower, lower, same, higher and much
higher), metrical strength by five bits (i.e. very weak, weak,
medium, strong and very strong), tempo by three bits (i.e.
slow, nominal and fast) and Narmour group by three bits.
For example in our representation the rule
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“if the previous note duration is much longer and its pitch
is the same and it is in a very strong metrical position and
the current note appears in Narmour group R then lengthen
the duration of the current note”

is coded as the binary string:

00001 11111 00100 11111 00001 111 110 001

The exact meaning of the adjectives which the particular
bits represent are as follows: previous and next note dura-
tions are considered much shorter if the duration is less than
half of the current note, shorter if it is shorter than the cur-
rent note but longer than its half, and same if the duration
is the same as the current note. Much longer and longer are
defined analogously. Previous and next note pitches are con-
sidered much lower if the pitch is lower by a minor third or
more, lower if the pitch is within a minor third, and same if
it has same pitch. Higher and much higher are defined anal-
ogously. The note’s metrical position is very strong, strong,
medium, weak, and very weak if it is on the first beat of the
bar, on the third beat of the bar, on the second or fourth
beat, offbeat, and in none of the previous, respectively. The
piece was played at slow, nominal, and fast tempos if it was
performed at a speed slower of more than 15% of the nom-
inal tempo (i.e. the tempo identified as the most natural
by the performer), within 15% of the nominal tempo, and
faster than 15% of the nominal tempo, respectively. In the
case of the note’s Narmour groups we decided to code only
one Narmour group for each note. This is, instead of spec-
ifying all the possible Narmour groups for a note, we select
the one in which the note appears in third position (if there
is no such group, we consider one in which the note appears
either in first or second position, in that order).

Genetic operators. We use standard single-point crossover
and mutation operators with two restrictions. In order to
perform a crossover operation of two parents the crossover
points are chosen at random as long as they are on the
attributes sub string boundaries. Similarly the mutation
points are chosen randomly as long as they do not generate
inconsistent rule strings, e.g. only one class can be predicted
so exactly one 1 can appear in the last three bit sub string.

Fitness function. The fitness of each hypothesized rule is
based on its classification accuracy over the training data.
In particular, the function used to measure fitness is

tpα

(tp+fp)

where tp is the number of true positives, fp is the number of
false positives, and α is a constant which controls the true
positives to false positives ratio. Often α is set to 1 which
results in the standard fitness function

tp
(tp+fp)

This fitness function favors individuals covering a small num-
ber of true positive and 0 false positives (resulting in a fit-
ness value of 1) over individuals covering a large number

of true positives and 1 false positive (resulting in a fitness
value of less than 1). In our application this is an undesir-
able property of the fitness function since we are interested
in inducing general expressive performance rules covering a
large number of examples (possibly including a small num-
ber of false positives). Thus, in our algorithm we have set
α = 1.15 which, for our application, is a good compromise
between coverage and accuracy.

3.4 Results

It is always difficult to evaluate formally a model which
captures subjective knowledge, as it is the case of an ex-
pressive music performance model. The ultimate evaluation
may consist of listening to the transformations the model
performs. Alternatively, the model may be evaluated by
comparing the model’s transformation predictions and the
actual transformations performed by the musician. Figure
3 shows the note-by-note duration ratio predicted a model
induced by executing the algorithm and compare it with
the actual duration ratio in the recording. Similar results
were obtained for the predicted onset deviation and energy
variation. As illustrated by Figure 3 the induced model
seems to accurately capture the musician’s expressive perfor-
mance transformations (despite the relatively small amount
of training data). The correlation coefficient for the onset,
duration and energy sub models is 0.75, 0.84 and 0.86, re-
spectively. These numbers were obtained by performing a
10-fold cross validation on the data. At each fold, we re-
moved the performances similar to the ones selected in the
test set, i.e. the performances of the same piece at similar
tempos. We ran the sequential covering genetic algorithm 20
times in order to observe the differences between the correla-
tion coefficient of different runs. We observed no substantial
differences.

The use of an evolutionary algorithm for inducing an ex-
pressive performance model provides the possibility of ex-
amining the model as it ’evolves’. This is, it is possible to
examine and interpret the rules induced by the algorithm
at each population generation. In particular, we are inter-
ested in interpreting high-accuracy rules in late populations
(25th generation or later). The evolutionary approach to ex-
pressive performance modeling permits to guide the model
search in a natural way. For instance, we have experimented
by imposing restrictions on the general shape of rules in or-
der to prioritize simple interpretable rules, e.g. rules with
blocks of 1’s.

We examined some of the classification rules the algorithm
induced (before replacing the class with the numerical pre-
dicted value). Some of these rules proved to be of musical
interest and correspond to intuitive musical knowledge. In
order to illustrate the types of rules found let us consider an
example duration rule:

RULE: 11111 01110 11110 00110 00011 010 010 001

“At nominal tempo, if the duration of the next note is similar
and the note is in a strong metrical position and the note
appears in a D Narmour group then lengthen the current
note.”
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Figure 3: Correlation between model predicted duration values and the actual performed values in Body and
Soul at a tempo of 65

4. RELATED WORK
Evolutionary computation has been considered with grow-

ing interest in musical applications [25]. A large number of
experimental systems using evolutionary techniques to gen-
erate musical compositions have been proposed, including
Cellular Automata Music [23], a Cellular Automata Music
Workstation [12], CAMUS [24], MOE [5], GenDash [35], CA-
MUS 3D [21], Vox Populi [20], Synthetic Harmonies [2], Liv-
ing Melodies [4] and Genophone [19]. Composition systems
based on genetic algorithms generally follow the standard
genetic algorithm approach for evolving musical materials
such as melodies, rhythms and chords. Thus, such composi-
tion systems share the core approach with the one presented
in this chapter. For example, Vox Populi [20] evolves popu-
lations of chords of four notes, each of which is represented
as a 7-bit string. The genotype of a chord therefore con-
sists of a string of 28 bits (e.g. 1001011 0010011 0010110
0010101) and the genetic operations of crossover and mu-
tation are applied to these strings in order to produce new
generations of the population. The fitness function is based
on three criteria: melodic fitness, harmonic fitness and voice
range fitness. The melodic fitness is evaluated by comparing
the notes of the chord to a reference value provided by the
user, the harmonic fitness takes into account the consonance
of the chord, and the voice range fitness measures whether
or not the notes of the chord are within a range also spec-
ified by the user. Evolutionary computation has also been
considered for improvisation applications such as [2], where
a genetic algorithm-based model of a novice Jazz musician
learning to improvise was developed. The system evolves a
set of melodic ideas that are mapped into notes considering
the chord progression being played. The fitness function can
be altered by the feedback of the human playing with the
system.

Nevertheless, very few works focusing on the use of evo-
lutionary computation for expressive performance analysis
have been done. In the context of the ProMusic project,
Grachten et al. [9] optimized the weights of edit distance
operations by a genetic algorithm in order to annotate a
human Jazz performance. They present an enhancement

of edit distance based music performance annotation. In
order to reduce the number of errors in automatic perfor-
mance annotation, they use an evolutionary approach to
optimize the parameter values of cost functions of the edit
distance. In another study, Hazan et al. [10] proposed an
evolutionary generative regression tree model for expressive
rendering MIDI performances. Madsen at al. [16] present
an approach to exploring similarities in music classical pi-
ano performances based on simple measurements of timing
and intensity in 12 recordings of a Schubert piano piece.
The work presented in this chapter is an extension to our
previous work [30] where we induce expressive performance
classification rules using a genetic algorithm. Here, in addi-
tion to considering classification rules, we consider regression
rules, and while in [30] rules are independently induced by
the genetic algorithm, here we apply a sequential covering
algorithm in order to cover the whole example space.

There have been several approaches for addressing expres-
sive music performance using machine learning techniques
other than evolutionary techniques. The most related work
to the research presented in this chapter is the work by
Ramirez et al. [28, 29] and Lopez de Mantaras et al. [14].

Lopez de Mantaras et al. report on SaxEx, a performance
system capable of generating expressive solo performances
in jazz. Their system is based on case-based reasoning, a
type of analogical reasoning where problems are solved by
reusing the solutions of similar, previously solved problems.
In order to generate expressive solo performances, the case-
based reasoning system retrieves, from a memory containing
expressive interpretations, those notes that are similar to
the input inexpressive notes. The case memory contains
information about metrical strength, note duration, and so
on, and uses this information to retrieve the appropriate
notes. However, their system does not allow one to examine
or understand the way it makes predictions.

Ramirez et al. explore and compare different machine
learning techniques for inducing both, an interpretable ex-
pressive performance model (characterized by a set of rules)
and a generative expressive performance model. Based on
this, they describe a performance system capable of generat-
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ing expressive monophonic Jazz performances and providing
’explanations’ of the expressive transformations it performs.
The work described in this chapter has similar objectives
but by using a genetic algorithm it incorporates some desir-
able properties: (1) the induced model may be explored and
analyzed while it is ’evolving’, (2) it is possible to guide the
evolution of the model in a natural way, and (3) by repeat-
edly executing the algorithm different models are obtained.
In the context of expressive music performance modeling,
these properties are very relevant.

With the exception of the work by Lopez de Mantaras et
al. and Ramirez et al., most of the research in expressive
performance using machine learning techniques has focused
on classical piano music where the tempo of the performed
pieces is not constant and melody alterations are not per-
mitted (in classical music melody alterations are considered
performance errors). Thus, in these works the focus is on
global tempo and energy transformations while we are in-
terested in note-level tempo and energy transformations as
well as in melody ornamentations which are a very impor-
tant expressive resource in Jazz.

Widmer [36] reported on the task of discovering general
rules of expressive classical piano performance from real per-
formance data via inductive machine learning. The perfor-
mance data used for the study are MIDI recordings of 13
piano sonatas by W.A. Mozart performed by a skilled pi-
anist. In addition to these data, the music score was also
coded. The resulting substantial data consists of informa-
tion about the nominal note onsets, duration, metrical in-
formation and annotations. When trained on the data an
inductive rule learning algorithm discovered a small set of
quite simple classification rules that predict a large number
of the note-level choices of the pianist.

Tobudic et al. [32] describe a relational instance-based ap-
proach to the problem of learning to apply expressive tempo
and dynamics variations to a piece of classical music, at dif-
ferent levels of the phrase hierarchy. The different phrases
of a piece and the relations among them are represented
in first-order logic. The description of the musical scores
through predicates (e.g. contains(ph1,ph2)) provides the
background knowledge. The training examples are encoded
by another predicate whose arguments encode information
about the way the phrase was played by the musician. Their
learning algorithm recognizes similar phrases from the train-
ing set and applies their expressive patterns to a new piece.

Other inductive machine learning approaches to rule learn-
ing in music and musical analysis include [7] and [1]. In [7],
Dovey analyzes piano performances of Rachmaniloff pieces
using inductive logic programming and extracts rules under-
lying them. In [1], Van Baelen extended Dovey’s work and
attempted to discover regularities that could be used to gen-
erate MIDI information derived from the musical analysis of
the piece.

5. CONCLUSION
This paper describes an evolutionary computation ap-

proach for learning an expressive performance model from
recordings of Jazz standards by a skilled saxophone player.
Our objective has been to find a computational model which
predict how a particular note in a particular context should
be played (e.g. longer or shorter than its nominal dura-
tion). In order to induce the expressive performance model,
we have extracted a set of acoustic features from the record-

ings resulting in a symbolic representation of the performed
pieces and then applied a sequential-covering genetic algo-
rithm to the symbolic data and information about the con-
text in which the data appear. In addition, some of the
classification rules induced by the algorithm proved to be of
musical interest. We plan to increase the amount of train-
ing data as well as experiment with different information
encoded in it. Increasing the training data, extending the
information in it and combining it with background musical
knowledge will certainly generate a more accurate model.
Another research line is to extend our model to be able to
base its prediction on expressive features such as vibrato and
tremolo. We plan to induce models by extending the notes’
characterization by such expressive features.
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