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ABSTRACT 
This paper describes an extension to the Restricted Growth 
Function grouping Genetic Algorithm applied to the Consensus 
Clustering of a retinal nerve fibre layer data-set. Consensus 
Clustering is an optimisation based method which combines the 
results of a number of data clustering methods, and is used when 
it is unknown which clustering method is expected to perform the 
best. Consensus Clustering has been shown to produce results 
which are better than the averaged results of the input methods, 
but could benefit from a more efficient optimisation method. A 
Restricted Growth Function grouping Genetic Algorithm is a new 
method of grouping a number of objects into mutually exclusive 
subsets based upon a fitness function. This method does not suffer 
from degeneracy, and thus could be applied to the Consensus 
Clustering problem more efficiently than Simulated Annealing, 
the current optimisation method. Within this paper it is shown that 
this type of Genetic Algorithm can indeed improve the 
performance of Consensus Clustering, and in fact can be 
improved further by taking advantage of some application 
specific properties. These findings are demonstrated on a retinal 
nerve fibre layer data-set and on a synthetic data-set. 

Categories and Subject Descriptors 
I.2.8 [Problem Solving, Control Methods, and Search] 
Heuristic methods  

General Terms 
Algorithms, Measurement, Performance, Reliability 

Keywords 
Grouping, Genetic Algorithms, Restricted Growth Functions, 
Consensus Clustering, Retinal Nerve Fibre Layer. 

1. INTRODUCTION 
There are many data analysis problems which involve the 
partitioning of a set of objects into a number of mutually 
exclusive subsets, which is a known NP hard problem [6]. 
Applications in which partitions are determined using distance or 
correlation metrics are known as clustering, the more general area 
is often referred to as grouping problems. Any algorithm that 
applies a global search for the optimal clustering arrangement in a 
data-set will run in exponential time to the size of problem space, 
and so a heuristic or approximate procedure is nearly always 
required to cope with most real-world problems. Many different 
heuristic algorithms have been developed to solve clustering type 
problems, the most common being K-Means [19] and Hierarchical 
clustering [30]. Most algorithms make use of a starting allocation 
of variables, for example, based upon random points in the data 
space or upon the most correlated variables and therefore contain 
bias in their search. They are also prone to becoming stuck in 
local maxima during the search. There has also been research into 
the use of artificial intelligence techniques such as Genetic 
Algorithms [4], Neural Networks [16] and Simulated Annealing 
[17] to solve the grouping problem resulting in a more general 
partitioning method which can be applied to clustering. These 
methods aim to overcome the biases and local maxima involved 
with heuristic searches but require fine-tuning of parameters.  

Due to the high degree of variation between clustering methods, a 
method called Consensus Clustering [27] has been previously 
developed, designed to combine the results of a number of 
clustering results into a single set which has a high similarity with 
the input methods. Consensus Clustering (CC) requires an 
optimisation method in order to combine the input clustering 
results, and Simulated Annealing [15] has been successfully 
applied to perform this task, although other more efficient 
methods could be used. CC is used when it is not known which 
data clustering method is expected to perform the best, and has 
been shown to produce results which are better than the averaged 
results of the input clustering methods. Thus CC provides a "safe 
bet" rather than having to guess which clustering method may 
produce the most accurate results. 

Within this paper an investigation into the integration of the 
Restricted Growth Function Genetic Algorithm (RGFGA) and CC 
is presented. An RGFGA is a grouping Genetic Algorithm based 
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on Restricted Growth Functions [3, 22] which has shown a high 
degree of accuracy and efficiency when applied to grouping 
problems [28]. Additionally it is shown in this paper that by 
taking advantage of some of the specific properties of the CC 
problem, a vast improvement in the convergence rate and 
accuracy of the RGFGA can be obtained. These findings are 
demonstrated on a retinal nerve fibre layer data-set and on a 
synthetic multivariate normal data-set. 

This paper is organised as follows: Section 2 details the methods 
utilised in this paper, along with notation and comparison metrics 
used. Section 3 describes the improvements made to the RGFGA 
crossover. Section 4 describes the data-sets that the methods 
presented are applied to, along with the description of the 
experiments carried out. Section 5 details the results of all of the 
experiments and discusses their implications. Finally, Section 6 
draws some conclusions. 

2. METHODS 
This section details the methods which are used in this paper.  

2.1 Notation 
Let X = [x1, …, xn.] be a list of variables, such that xi = xj only 
when i = j. G = [g1, …, gm], where gi⊆X, i = 1, ..., m is a partition 
of X if the union of all the gi is X and gi∩gj=φ if and only if i ≠ j. 
gij is defined as the jth element of gi. The cardinality of gi is 
denoted as si. The term clustering arrangement will be used to 
refer to G and cluster to refer to gi. 

2.2 Consensus Clustering 
Consensus Clustering [27] is a method for deriving a single set of 
clusters from several clustering methods. The aim of the method 
is to take advantage of where all of the methods agree in order to 
form the consensus clustering arrangement. The method consists 
of two stages, a pre-processing stage where a matrix is 
constructed containing the level of agreement between input 
methods, and an optimisation stage, where an optimal clustering 
arrangement is searched given a fitness function applied to the 
agreement matrix. Similar work can be seen in protein secondary 
structure prediction; where methods fail to completely agree 
consensus algorithms are employed [2]. These can either report 
only full agreements, or the majority of agreements. In [20] a 
Consensus Clustering type technique was introduced for testing 
the stability of clustering methods when applied to gene 
expression data. This method differs from the Consensus 
Clustering algorithm which is the subject of this paper since the 
inputs to the consensus method are the results of running a single 
algorithm on data-sets which are perturbations of the original. An 
investigation into the use of ensemble methods to combine a set 
of partitions is carried out in [26].  

2.2.1 The Agreement Matrix 
The consensus clustering agreement matrix will be denoted as A, 
and each element as aij. Given k clustering arrangements, defined 
as in section 2.1, denoted G1 ,... ,Gk then an n by n matrix is 
constructed as follows. The matrix is initially set to zero. For each 
unique possible pairing of variables (xi, xj) for each cluster of each 
clustering arrangement, element aij is incremented by one. This 
means that if for a given pair of variables (xi, xj), all of the 
methods thought they should be clustered together, then the 
corresponding element of the agreement matrix (aij) would be k. 

However, if no method thought the variables should be clustered 
together, then the value would be zero. Note that aii = k and that 
aij = aji. 

2.2.2 Optimising the Clustering Arrangement 
Given the agreement matrix, a search for an optimal clustering 
arrangement can be conducted. The fitness function detailed in 
equation (1) has been found to be highly effective for rating a 
candidate arrangement [27]. Given an appropriate value of β, the 
fitness function rewards clustering arrangements where the input 
clustering arrangements agree between each other, and penalises 
any pair of variables which have been placed together where there 
is low agreement. A good value for β was found to be k/2 (number 
of input methods divided by two) as discussed and justified in 
[27]. Currently, Simulated Annealing [15] is used to perform the 
optimisation, since it is a simple method to implement and has a 
good track record of searching out global maxima. 
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2.3 Clustering Methods 
Consensus Clustering requires a number of clustering results as an 
input. The methods used within this paper are described within 
Table 1; these consist of K-means clustering, Partitioning Around 
Medoids, Hierarchical clustering using average linkage and 
Model-based Clustering.  

Table 1. CC Input Clustering Methods 

Method Abbreviation Reference 

K-Means KME [30] 

Partitioning Around Medoids PAM [13] 

Hierarchical (Average) HAV [19] 

Model-based Clustering MBC [5] 
 

These four methods have been chosen as they are amongst the 
most common methods used for clustering and also represent a 
number of different approaches to clustering, i.e. agglomerative, 
partitional and model-based.  
To compare how similar two cluster arrangements are, the 
Weighted Kappa (WK) metric [1, 14] is used. The metric ranges 
between +1 for identical clustering arrangements to -1 for 
completely dissimilar arrangements, and the expected WK 
between two random clustering arrangements is zero. An 
interpretation of the WK metric can be seen in [1]. 

2.4 RGFGA 
A Restricted Growth Function (RGF) is a list 
f = [f(1), f(2), ..., f(n)] such that equation (3) holds. 

{ } 1)(),...,2(),1(max)1(
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=
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For example, in the case where n = 5, both f = {1,1,2,1,3} and 
{1,2,3,4,1} are valid RGFs, but {1,2,3,1,6} and {1,3,1,2,3} are 
not. It has been shown that for a given value of n, the set of all 
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valid RGFs has a one to one mapping to the set of all partitions of 
the integers 1, ..., n; hence RGFs can be used for a variety of 
combinatorial optimisation tasks such as data clustering [12], bin 
packing [6], and Consensus Clustering. A Genetic Algorithm 
based on RGFs was introduced in [28]. In order to convert an 
RGF f to a partition of integers (a clustering arrangement), given 
the sequence f(i), then variable xi is placed into cluster gf(i). 
Falkenauer’s Grouping Genetic Algorithm has been designed for 
dealing with grouping problems [4]. Additionally, the PMX 
crossover operator, developed for ordering problems [8], can be 
adjusted to handle grouping problems as shown in [29]. List of 
lists representations have also been used [18] along with graph 
partitioning based representations [21]. 
Many of the representations used in optimisation algorithms 
(including those in the GAs described above) suffer from 
degeneracy. Degeneracy occurs when multiple chromosomes 
represent the same solution [25]. Degeneracy can lead to 
inefficient exploration of the search space as the same clustering 
arrangements are repeatedly revisited. The minimisation of 
degeneracy is considered an essential part of the design of any 
GA representation [23]. This is not the same as redundancy, 
which is defined as the amount of excess information in the 
chromosome, and in some cases redundancy can be beneficial [9]. 
Other methods for clustering using Genetic Algorithms represent 
a clustering arrangement as a series of cluster centres (as points in 
the clustering space), where the data objects are placed in the 
cluster whose centre is the closest (e.g. using Euclidean distance), 
similar to the strategy used in K-Means clustering. Examples of 
this representation can be found in [11]. However, this 
representation, although successfully implemented, is not generic 
enough for the general grouping problem, and could not be used 
in bin-packing, for example. 

2.4.1 RGFGA Representation 
Within the RGFGA, a chromosome representing a clustering 
arrangement G of n objects is represented by an RGF. The initial 
population is created according to [28], where the value of a gene, 
f(i), is randomly chosen from the discrete uniform distribution 
ranging between 1 and max{f(1),f(2),...,f(i-1)}, note that f(1) = 1. 

2.4.2 RGFGA Crossover 
In order to describe the Crossover operator, the notion of 
Hamming Distance between two RGFs (f and g) must be defined, 
and is given in equation (4): 
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Crossover is different to that of a standard Genetic Algorithm 
(GA) and consists of mapping a path between the two parents and 
selecting two children randomly from this path. Similar to path 
re-linking [24] this path consists of a list (for a given pair of 
parents) of RGFs where the first item in the path is the first 
parent, and the last item in the path is the second parent. The 
Hamming Distance between any two adjacent RGFs in the path is 
one. A full description of Crossover and the proofs of certain 
properties of RGFs can be found in [28]; an overview of how the 
path between two chromosomes/RGFs is constructed follows: 

Definition 1. Let f and g be two RGFs. We say f ≤ g if f(i) ≤ g(i), 
1 ≤ i ≤ n. We write f < g if f ≤ g and f ≠ g. 

Definition 2. Let f and g be two RGFs, then we define fg  as: 
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The proof that this is an RGF can be found in [28]. 

Definition 3. Let f and g be RGFs such that f ≠ g and let j be the 
smallest integer such that f(j) < g(j), 2 ≤ j ≤ n and k be the largest 
integer such that f(k) > g(k). Two functions can be defined: 
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Proposition 1. Let f and g be RGFs such that f ≠ g. Then (f ↑ g) is 
an RGF and HD((f ↑ g),g) = HD(f,g) - 1. The proof of this can be 
found in [28]. A similar result holds for (f ↓ g). 
Let f and g be two distinct RGFs. If f < g, then (f ↑ g) exists. 
Clearly, fgf ≤ . Hence, according to Proposition 1, if 

fgf ≠ then (f ↑ g) is an RGF that is one step closer (in terms of 
Hamming Distance) to fg  than f is. Hence, by repeating this 
construction, there exists a finite sequence of RGFs, f1,...,fk such 
that f1 = f, fi = )( 1 fgfi ↑−

and fgfk = . Similarly, there exists a 

finite sequence of RGFs, g1,...,gl such that fgg =1
, gi 

= )( 1 ggi ↓−
, and gl = g. We say the sequence of functions f1,...,fk 

g1,...,gl, is a path from f to g. 

2.4.3 RGFGA Mutation 
Three mutation operators are implemented which have one of the 
following effects: 

1) A variable is moved from one cluster to another cluster 
2) Two clusters are merged together 
3) A cluster is split into two non-empty clusters 

An individual is mutated according to the mutation rate, and one 
of the mutation operators is chosen at random. Elements within a 
cluster, or clusters are chosen at random depending on what is 
appropriate to the mutation operator. Note that when a mutation 
has been applied, there is a chance that the chromosome which 
has mutated is no longer a valid RGF, i.e. equation (3) no longer 
holds. If this is the case, a re-labelling will need to be applied as 
described in [28]. 

2.4.4 RGFGA Fitness 
Within this paper, the fitness function under consideration is the 
fitness function of the CC problem, defined in equation (1). Given 
that CC is defined to be evaluated on a list of lists rather than a 
RGF, equations (1) and (2) have to be rewritten as follows: 
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Note that this computational complexity of equation (1) is 
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computation complexity of equation 5, which is O(n(n-1)/2). 
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3. IMPROVEMENTS TO CROSSOVER 
Given two candidate clustering arrangements within the CC 
problem, f and g such that HD(f,g) = 1, and p is the position that 
they differ (2 ≤ p ≤ n), then if CRGF(f) is known, then CRGF(g) can 
be calculated according to an update formula, derived as follows:  
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Note that DRGF(f,g,i,j) is zero when both i ≠ p and j ≠ p. 
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Hence the calculation of the fitness CRGF(g) becomes of 
complexity O(n-1) (from the two final summations immediately 
above). Therefore, with the RGFGA Crossover operator, it should 
theoretically be possible to explore a large proportion of the 
children on the path between two parents. The intention is that 
adjacent RGFs on the two sides of the paths are explored and 
evaluated using the update formulae. The starting points will be 
the two parents, and a number of children are explored moving 
from one parent to the other from both edges of the path; the best 
child from each edge will be the resultant children. The 
computational effort to explore a number of children from each 
edge will be set to equal the same complexity as evaluating a 
child, thus being equal to the complexity of the current RGFGA 
Crossover. Within equation (7) the value of x is the number of 
children to be explored using the update formulae from each edge. 
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The proportion of the total possible children explored will depend 
on the Hamming Distance between the parents. If this proportion 
is too small, then the variation in the children produced by the 
update formulae version of Crossover may be too small and may 
adversely affect the results. It is reasonable to assume that the 
average HD between two random RGFs may be related to the size 
of the RGF, n; from equation (4) it can be seen that as n increases 
HD(f,g) would be expected to increase). To see if this was indeed 
true, a number of simulations (1,000,000 for each value of n) were 
conducted for varying values of n from 1 to 100 (in steps of 1), 
this range was chosen as it encompasses the dimensionality of the 
two test data-sets, see section 4.1. For each RGF size (n), 
1,000,000 random pairs of RGFs were created using the method 

described in [28], and the HD measured between them and 
averaged over the number of simulations.  

Figure 1 shows a plot of √n, n, n√n and n2 against the average 
Hamming Distance from the simulations; these four functions of n 
have been chosen since it is known that the Hamming Distance 
between two RGFs will always be less than or equal to n(n-1)/2 
[28]. Note that some of the data for the plot against n2 has been 
omitted since the values on the y-axis become large and obscure 
the plots for the other functions. All four appear to have a clear 
linear relationship; however Table 2 shows the results of applying 
linear regression to the four sets of data. From this set of results it 
can be seen that n√n has the best fit against Hamming Distance, 
since the value for R2 is the greatest, and it has the most plausible 
value for the y-axis intercept (we know that when n=1, HD=0). 
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Figure 1. The Four Functions of n Against Hamming Distance 

 

Table 2. Linear Regression Results for the Four Functions of 
n 

Function of n R2 Gradient Y-Intercept 

√n  0.898 41.247 -140.511 

n 0.982 3.476 -39.094 

n√n 1.000 0.336 0.461 

n2 0.987 0.033 23.331 
 

From Table 2, is would be reasonable to assume that the HD 
between two random RGFs of size n is approximately ⅓n√n 
(using the linear fit for n√n from Table 2). From equation (7) it is 
clear that n children out of the total possible number of children 
on the path between two parents will be explored. This means that 
if given two random RGFs as parents then the proportion of 
children considered is equal to 3/√n (n children explored divided 
between ⅓n√n expected children).  
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Given that the dimensionality of the problems being considered in 
this paper is less than 100, over 30% of the total possible children 
will be considered, a significant enough percentage to justify the 
new Crossover operator. Since the population starts off random 
and then starts towards becoming homogeneous (as seen in [28]), 
this proportion will be expected to increase as the number of 
generations increases. Figure 2 shows this percentage for values 
of n ranging from 10 to 1000 (for two random parents/RGFs), 
note that when n=1000, the percentage is approximately 10% 
which is still a reasonable proportion of the children. 

4. DATA-SETS AND EXPERIMENTS 
This section describes the two data-sets which are used within this 
paper along with the experiments which have been carried out. 

4.1 Data-sets 
A real-world data-set and a synthetic data-set are used within this 
paper and are described as follows. 

4.1.1 The GDx Data 
The GDx data-set is a set of ophthalmic data that was the result of 
a study carried out in Australia called the Blue Mountain Eye 
Study [11]. This study concerned the vision and prevalence of 
common eye diseases of an urban population, and was carried out 
between 1992 and 1994 on several thousand people. One of the 
sets of measurements taken during this study was the thickness of 
the retinal nerve tissue, using GDx test equipment. GDx stands for 
Glaucoma Diagnosis. It is thought that the thickness of the retina 
nerve tissue is strongly related to numerous eye conditions, 
especially Glaucoma [7]. The GDx test measures the thickness of 
the retinal nerve tissue (Nerve fibre layer) on 64 evenly spaced 
points on an annulus centred on the optic nerve head in the retina 
and uses polarimetric imaging techniques to estimate the nerve 
fibre layer thickness at each point. Research has been carried out 
which maps the distribution of nerve fibre bundles around the 
optic nerve head [7], and current theory states that any 
measurements in the same nerve fibre bundle sector should be 
highly related. Within this paper it is aimed to test this theory by 
applying a number of clustering methods to the GDx data-set and 
then obtaining a consensus set of clusters through the use of 
Consensus Clustering. The accuracy of the clustering methods 
and Consensus Clustering can be directly measured using the WK 
metric and the allocation of GDx points to nerve fibre bundle. 

41-80

311-40

271-310 231-270

121-230

81-120

 

 
Figure 3. The Optic 
Nerve Head Divided 

into Sectors 
 

The mapping of the distribution of nerve fibre bundles can be 
found in [7] and is shown in Figure 3. Within this figure the text 
for each section refers to the angle between the retina and the 
optic nerve head; the first GDx point starts at zero degree, and the 
rest are evenly spaced clockwise every 5.625 degrees. The data 
used in this paper is a subset of the entire Blue Mountain GDx 

data-set; it has been filtered on a study specific quality metric and 
only data for the right eye has been selected. 

4.1.2 The Multivariate Normal Data 
This data-set was previously developed and used in [27]. A vector 
of random variables x has a Multivariate Normal distribution if 
every linear combination of the vector is also normal; if this is the 
case then the notation x ~ N(μ,Σ) is used. Here μ is a vector of 
means and Σ is a matrix of covariances. The Multivariate Normal 
data-set used in this paper is a concatenation of ten length samples 
from Multivariate Normal distributions varying in dimensionality 
from 1 to 11. This results in a 66 variable data-set. The expected 
clustering results are therefore known, i.e. variable 1 in cluster 1, 
variable 2 and 3 in cluster 2 etc... However, due to the low sample 
size (10), methods may result in non-perfect clustering results, i.e. 
a WK value of less than 1 when compared with the expected 
arrangement. This data-set will be referred to as the MVN data-
set. 

Table 3. Description of Experiments 

Abbreviation Description 

GDx_IMP The improved RGFGA using the update 
formulae based Crossover run on the GDx data. 

GDx_NOX The RGFGA with no Crossover, (see below for 
GA parameter settings), run on the GDx data. 

GDx_S The standard RGFGA run on the GDx data. 

GDx_SA Simulated Annealing run on the GDx data. 

MVN_IMP The improved RGFGA using the update 
formulae based Crossover run on the MVN data.

MVN_NOX The RGFGA with no Crossover, (see below for 
GA parameter settings), run on the MVN data. 

MVN_S The standard RGFGA run on the MVN data. 

MVN_SA Simulated Annealing run on the MVN data. 
 

4.2 Experiments 
Both data-sets are clustered once using the methods described in 
section 2.3. A Consensus Clustering agreement matrix is then 
constructed for each of the sets of results. Consensus Clustering 
experiments were then conducted as described in Table 3. Since 
each method is stochastic, the experiments were repeated 25 times 
and the results averaged to reduce the chance of "fluke" results. 
The _NOX experiments were introduced to demonstrate the 
improvements gained by the Crossover operators. All experiments 
were restricted to a run of 250,000 fitness function evaluations (or 
equivalent), which was found to be a high enough value to allow 
the methods to converge. For the Genetic Algorithms, a 
population size of 500 has previously been found to be 
appropriate, the Crossover rate was set to 100% and the Mutation 
rate was set to 50%. With the _NOX experiments, the Crossover 
rate was set to 0% and the mutation rate was set to 100%. 

5. RESULTS 
The results section is split up into three parts. The first part 
considers the clustering results for both data-sets, the second 
looks at the quality of the Consensus Clustering results, and the 
third part looks at the performance of the optimisation methods 
applied to the Consensus Clustering of the input clustering results. 

2178



5.1 Clustering Results 
Table 4 shows the WK results for the four input methods on the 
two data-sets; the average results are also shown. The value in 
parentheses is the ranking of the method with regards to the other 
methods (across the same data-set).  
The HAV method produces the best set of results across both 
data-sets, achieving a high WK result and a ranking of 1. The 
MBC method produces a below average result, with a WK of less 
than 0.4, and a rank of 4th place. For the two remaining methods, 
they attain approximately the same WK result, being within a WK 
difference of 0.050 from each other for both data-sets. The 
average results are in the same general quality category according 
to [1], being a "Moderate" result. As can be seen from the table, 
the standard deviation (St.Dev.) of the WK results is quite high. 
For the GDx data-set, the WK results range from approximately 
0.30 to 0.55, and for the MVN the range is from approximately 
0.35 to 0.65, demonstrating how variable clustering results can 
range from method to method. 

Table 4. WK Results for the CC Input Methods 

Method GDx MVN 

KME 0.506 (3) 0.490 (2) 

PAM 0.556 (2) 0.450 (3) 

HAV 0.559 (1) 0.666 (1) 

MBC 0.296 (4) 0.354 (4) 

Average: 0.479 0.490 

St.Dev.: 0.125 0.130 
 

5.2 Consensus Clustering Results 
Table 5 summaries the CC results when applied to the input 
clustering methods. Both the final fitness and WK are given, 
averaged over the 25 repeated runs. 

Table 5. CC Results for Both Data-sets 

Fitness WK 
Method 

Mean St.Dev. Mean St.Dev. 

GDx_IMP 341.000 0.000 0.515 0.006 

GDx_NOX 341.000 0.000 0.497 0.006 

GDx_S 341.000 0.000 0.515 0.006 

GDx_SA 339.120 5.848 0.512 0.014 

MVN_IMP 217.000 0.000 0.619 0.015 

MVN_NOX 217.000 0.000 0.591 0.020 

MVN_S 213.960 1.719 0.618 0.020 

MVN_SA 214.440 5.987 0.592 0.033 
 

With the GDx data, looking at the fitness results, it is clear to see 
that the RGFGA based versions of CC outperform the Simulated 
Annealing version (GDx_SA) with regards to average fitness 
attained, and they also achieve a very consistent set of results 
since the standard deviation is zero. When compared to the WK 
results in Table 4, the performance of CC (WK = 0.515) would 
place it in third overall ranking, and only a WK difference of 
0.044 away from the maximum.  

With the MVN data-set, looking at the fitness results, two 
methods tie together; these are the improved RGFGA 
(MVN_IMP) and the Crossover-less RGFGA (MVN_NOX). 
These two methods both obtain the result for each of the 25 
repeated runs, since the standard deviation of the fitness is zero. 
The worst performing method is the standard version of the 
RGFGA (MVN_S), which gets a lower average than the other 
three methods. When compared to the WK results in Table 3, the 
performance of CC (WK = 0.619) would place it in second 
overall ranking (with a WK difference of 0.047 from the top 
ranking method), and a standard deviation (approximately) 
greater than the mean result of the input methods.  
Within both sets of results, there is what appears to be a slightly 
strange result. For example, with the GDx_IMP and GDx_NOX 
results, both attain the same average fitness but the average WK 
results are different. It is worth noting that this could indeed 
occur. The fitness function described in equation (5) is intended 
as an approximation to WK, since in most applications an analyst 
would not know the expected clustering results and therefore 
could not calculate the WK for any clustering results.  
The correlation between all of the evaluated pairs of data for the 
CC fitness function and WK which form the results presented in 
this paper can be calculated; this data is collated from all of the 
experiments carried out, and not just from the final results but 
from various stages during the experiments run. Only unique pairs 
are considered, since if a method has converged then the data 
being correlated may become biased (i.e. a large portion of the 
data being correlated containing the same numeric pair). For the 
GDx data the correlation is 0.889 and for the MVN data it is 
0.776. The overall relation between the CC fitness function and 
the WK metric is very high, demonstrating that the fitness 
function is indeed suitable for its purpose. However, there is a 
noted difference between the correlations for the two data-sets, 
this suggests that anomalous results may occur more often with 
the MVN data-set results than with the GDx data-set results, and 
indeed we have anecdotal evidence of this as noted above. 
To conclude this section of the results, it can be clearly seen that 
for both data-sets, the CC results produce a set of clustering 
results which is better than the average of the input methods. With 
regards to clustering the GDx data and investigating if the results 
match the allocation of GDx points to nerve fibre bundle, the 
results are very promising, there is clearly enough evidence to 
suggest that this is indeed the case. The results from Tables 4 and 
5 show that if an analyst did not know what the expected 
clustering results should be, then the use of Consensus Clustering 
with a diverse number of input clustering methods would be a 
reliable way to obtain a clustering arrangement with a high degree 
of confidence. This claim is also backed up by the results on the 
MVN data-set. However, the results do not irrevocably indicate 
which method of optimisation performs the best. The results of 
looking at the rate of convergence shed light on this and are now 
discussed in the next section. 

5.3 Optimisation Method Results 
This section looks at the convergence of the methods across the 
two data-sets. Figure 4 shows the convergence graph for the GDx 
experiments and Figure 5 shows the convergence graph for the 
MVN experiments. The figures are a plot of number of fitness 
calls against fitness, averaged over the 25 runs. 
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From Figure 4 (the GDx data-set results), it can be seen that the 
best rate of convergence is achieved by the improved version of 
the RGFGA (GDx_IMP), followed by the standard version of the 
RGFGA (GDx_S), then the Crossover-less version (GDx_NOX), 
and then Simulated Annealing (GDx_SA). GDx_IMP and GDx_S 
seem to have a much more rapid rate of convergence than the 
other two methods. From Figure 5 (the MVN data-set results), it 
can be seen that the rate of convergence rankings is the same as in 
Figure 4 (MVN_IMP, MVN_S, MVN_NOX and MVN_SA), but 
the difference between the methods is not as high. Both graphs 
indicate that both forms of RGFGA Crossover have a significant 
positive effect in the early generations of the algorithms 
execution, when compared with a Crossover-less version. 
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Figure 4. Convergence Graph for the GDx Data-set 
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Figure 5. Convergence Graph for the MVN Data-set 

 

To ascertain at what point a method has finally converged, the 
maximum fitness a method reaches is recorded, and then the first 
point this happens (in terms of fitness calls) is then ascertained. 
This value is averaged over the 25 runs to give an indication of at 
what point the methods converge. This is detailed in Table 6. For 
both the GDx and MVN data-sets, Table 6 supports the results 
presented in Figure 4 and Figure 5 respectively. In both cases the 
improved version of the RGFGA converges first, followed by 
Simulated Annealing. With the GDx data-set, the improved 
version converges significantly sooner than all of the other 
methods, whilst with the MVN data-set it converges just before 
Simulated Annealing. Note that these results should be considered 
in conjunction with those in Table 5, since convergence does not 
necessarily occur at the highest fitness value. This is the case with 
the improved version of the RGFGA but not with Simulated 
Annealing. 

Table 6. Average Convergence Point 

Method Convergence Point (Rank) 

GDx_IMP 72,456 (1) 

GDx_NOX 166,260 (4) 

GDx_S 141,289 (3) 

GDx_SA 128,859 (2) 

MVN_IMP 142,347 (1) 

MVN_NOX 194,260 (3) 

MVN_S 242,299 (4) 

MVN_SA 151,364 (2) 
 

Combining the results from these two figures and from Table 6, it 
would seem that the new version of Crossover for the RGFGA 
achieves a very rapid convergence in a low number of calls. 
However, convergence may not always be at the best solution, but 
instead be at a high scoring local maximum. The RGFGA will 
then rely on mutation to find a better solution. From [28] it was 
found that the standard version of the RGFGA had a tendency 
towards the population becoming homogeneous, since the 
Crossover operator is designed to produce children which are 
similar to the parents. The improved version of the Crossover 
operator, should if anything, be worse than the standard version 
for producing such homogeneity. This is due to the children being 
drawn from the two edges of the path, whilst the standard version 
chooses two children randomly from anywhere on the path. The 
Hamming Distance between a parent and a child under the new 
Crossover will never be more than n/2 whilst with the current 
Crossover the distance depends on how far apart the two parents 
are from each other. The new Crossover operator may well 
sacrifice diversity of the population for a much more rapid 
convergence; new methods of creating a more diverse initial 
population may well help this behavior. 

6. CONCLUSIONS 
Within this paper, an adapted version of Crossover for a 
Restricted Growth Function Genetic Algorithm has been 
introduced. This new crossover operator takes advantage of the 
way that the existing Crossover generates potential children, and 
the structure of the fitness function for the problem being 
addressed, Consensus Clustering. When applied to a real-world 
and synthetic data-set, the results show that the improved version 
of Crossover achieves a faster rate of convergence than the 
original RGFGA version and Simulated Annealing. However, 
there is evidence to suggest that although the new Crossover 
vastly improves convergence, it also increases the rate of 
population homogeneity; this will be rigorously investigated as 
future work (see below).  
The results on the ophthalmologic GDx data-set (and the MVN 
data-set) show that using Consensus Clustering can improve the 
accuracy of clustering, if it is unknown what the most appropriate 
method would be. The GDx results also show that there is good 
agreement between the clustering of the GDx annulus thickness 
measurements and the nerve fibre bundle sectors. 
Finally, the new Crossover operator is not restricted to the 
Consensus Clustering problem, but can be applied to any problem 
where an update formula can be derived as in section 3, for 
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example one should exist for bin packing problems. There is 
plenty of scope for extending this research, for example, an 
analysis of population homogeneity could be carried out, along 
with more experiments to investigate the scalability of the method 
as the problem dimensionality increases. Finally, the methods 
could be applied to other clustering and grouping type problems 
such as time series clustering and bin packing. 
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