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ABSTRACT
The idea behind hyper-heuristics is to discover some com-
bination of straightforward heuristics to solve a wide range
of problems. To be worthwhile, such combination should
outperform the single heuristics. This paper presents two
Evolutionary-Computation-based Models to produce hyper-
heuristics that solve two-dimensional bin-packing problems.
The first model uses an XCS-type Learning Classifier Sys-
tem which learns a solution procedure when solving indi-
vidual problems. The second model is based on a GA that
uses a variable-length representation, which evolves combi-
nations of condition-action rules producing hyper-heuristics
after going through a learning process which includes train-
ing and testing phases. Both approaches, when tested and
compared using a large set of benchmark problems, per-
form better than the combinations of single heuristics. The
testbed is composed of problems used in other similar studies
in the literature. Some additional instances of the testbed
were randomly generated.

Categories and Subject Descriptors
I.2 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods and Search A category in-
cluding the fourth, optional field follows...; D.2.8 [Software
Engineering]: Metrics—complexity measures, performance
measures

General Terms
Algorithms
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Evolutionary Computation, Hyper-heuristics, Optimization,
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1. INTRODUCTION
Cutting stock and packing problems are widely studied

because their many applications ranging from clothing and
metal to engineering and shipbuilding. The problems belong
to the class of most difficult problems known as NP-hard [8].
Given a set of pieces, the problem is to generate cutting
patterns from sheets of stock material, or objects, that op-
timize certain objectives, such as to minimize the trim loss,
or the number of objects used. In this particular investiga-
tion problems involve packing only 2D-rectangular pieces.
Since many precise requirements and constraints vary from
industry to industry, many different approaches and tech-
niques have been proposed for solving the problem [13]. For
small combinatorial problems, exact methods like linear pro-
gramming can be applied. However, when larger and more
complex problems appear, exact solutions are not a reason-
able choice since the search space grows exponentially, and
so does the time for finding the optimal solution. Various
heuristic and approximate approaches have been proposed
that guarantee finding near optimal solutions. However, it
has not been possible to find a reliable method to solve all
instances of a given problem. In general, some methods work
well for particular instances, but not for all of them.

The aim of this paper is to compare two different alterna-
tives on the usage of evolutionary approaches to generate
hyper-heuristics when solving 2D-rectangular bin-packing
problems. A hyper-heuristic is used to define a high-level
heuristic that controls low-level heuristics [4]. The hyper-
heuristic should decide when and where to apply each single
low-level heuristic, depending on the given problem state.
The choice of low-level heuristics may depend on the features
of the problem state, such as CPU time, expected number of
solutions, values on the objective function, etcetera. Select-
ing a particular heuristic is dynamic, and depends on both
the problem state produced by the previous heuristic applied
and the search space to be explored in that point of time.
In recent work which is based on the research by Ross et al.
[19] on unidimensional binpacking, evolutionary approaches
have been used to generate hyper-heuristics for the 2D-
Regular Cutting Stock Problems. Terashima et al. [22] use
the XCS Classifier System to generate the hyper-heuristics.
In other related work [21], authors use a Genetic Algo-
rithm with variable-length representation to produce hyper-
heuristics. Both previous approaches deliver very competi-
tive results for a set of different problem instances, beating
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in fact, results produced by the single heuristics. These
methods assemble a combination of single heuristics (selec-
tion and placement), and this combination is formed taking
into account the quality of partial solutions provided by the
single heuristics.

Since both methods were tested individually, the investi-
gation in this article focuses on refining and comparing them
against each other when faced with the same testbed and un-
der the same conditions. Results confirm the effectiveness
of both approaches against the single heuristics.

The paper is organized as follows. Section 2 describes the
2D bin-packing problem. Section 3 presents the solution
methods proposed and its justification. This is followed by
the experimental setup, the results, their analysis and dis-
cussion in section 4. Finally, in section 5 we include our
conclusions and some ideas for future work.

2. CUTTING AND PACKING PROBLEMS
The Cutting Stock Problem (CuSP) is among the earli-

est problems in the literature of operational research. In
1939, Kantorovich studied obvious applications in all the
industries whose products were in a flat sheet form; this re-
search was published in 1960 [15]. Since then, there have
been many investigations on the problem: an abstract de-
scription of the different solution methods which have been
given to the problem [11]; the applications and solutions
to the CuSP problem [6]; and the solution methods of the
problem [5]. Due to the diversity of problems and applica-
tions, Dyckhoff [6] has proposed a very complete and sys-
tematic categorization of cutting and packing problems. His
survey integrates a general system of 96 problems for the
Cutting Stock with four main features and their subtypes
as follows: Dimensionality: One (1), Two (2), Three (3)
or n; Assignation form (All the larger objects and a se-
lection of small figures (B), or A selection of large objects
and all the small figures (V)); Assortment of large objects
(One object (O), Identical shapes (I), or Different Shapes
(D)); and Assortment of small figures (Few figures of differ-
ent shapes (F), Many figures of different shapes (M), Many
figures of few of different and incongruent shapes (R), or
Congruent shapes (C)). Then our work will be limited to a
2VIC-Cutting Stock Problem. According to a new and more
complete typology recently proposed by Wäscher et al. [25]
the problem falls into the categories of two-dimensional, in-
put (value) minimization, weakly heterogeneous assortment
of small items, identical large objects, and regular (rectan-
gular) small items. The problem is considered as a Single
Bin-Size 2D-Bin-Packing Problem.

3. SOLUTION APPROACHES
In the literature one can see that Evolutionary Compu-

tation has been used in few CuSP investigations. Recently,
Hopper and Turton [13] have presented an empirical study
on the usage of Meta-Heuristics for solving 2D Rectangular
Bin Packing Problems. Evolutionary Computation usually
includes several types of evolutionary algorithms [23]: Ge-
netic Algorithms [9,12], Evolutionary Strategies [18,20], and
Evolutionary Programming [1,7]. In this research we use two
Evolutionary-Computation-based models to produce hyper-
heuristics: an XCS-based approach; and a GA with vari-
able length chromosomes, a resemblance of what is called a
messy-GA [10].

3.1 The Set of Heuristics Used
In a one dimensional packing problem, the related heuris-

tics refer to the way the pieces are selected and the bins in
which they will be packed. For a two dimensional problem,
additional difficulty is introduced by defining the exact loca-
tion of the figures, that is, where a particular figure should
be placed inside the object. In this investigation two kinds
of heuristics were considered: for selecting the figures and
objects, and for placing the figures into the objects. Some
of the heuristics were taken from the literature, others were
adapted, and some other variations developed by us. We
chose the most representative heuristics in its type, consid-
ering their individual performance presented in related stud-
ies and also in an initial experimentation on a collection of
benchmark problems. The selection heuristics used in this
research are:

• First Fit (FF).- Consider the opened objects in increas-
ing order and place the item in the first one where it
fits.

• First Fit Decreasing (FFD).- Sort pieces in decreasing
order, and the largest one is placed according to FF.

• Filler + FFD.- It places as many pieces as possible
within the open objects. If at least one piece has been
placed, the algorithm stops. The FFD algorithm is
applied, otherwise.

• Next Fit (NF).- Use the current object to place the
next piece, otherwise open a new one and place the
piece there.

• Next Fit Decreasing (NFD).- Sort the pieces in de-
creasing order, and the largest one is placed according
to NF.

• Best Fit (BF).- It places the item in the opened object
where it best fits, that is, in the object that leaves
minimum waste.

• Worst Fit (WF).- It places the item in the opened
object where it worst fits (with the largest available
room).

• Djang and Fitch (DJD).- It places items in an object,
taking items by decreasing size, until the object is at
least a third full. Then, it initializes w indicating the
allowed waste, and looks for combinations of one, two,
or three items producing a waste w. If any combi-
nation fails, it increases w accordingly. We adapted
this heuristic to consider the initial filling different to
a third, and the combinations for getting the allowed
waste up to five items.

Some of these heuristics are described also in Ross et al. [19]
and Hopper et al. [13].

The placement heuristics belong to the class of bottom-
left heuristics, that is, they keep the bottom-left stability
in the layout. They are based on a sliding technique. The
placement heuristics we used are:

• Bottom-Left (BL) [14].- It starts at the upper corner of
the object, then the piece slides vertically, all the way
down, until it hits another piece, it continues sliding to
the left (in straight line) as far as possible. A sequence
of down and left movements is repeated until the piece
reaches a stable position.
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• Improved-Bottom Left (BLLT) [16].- It is similar to
the above heuristic, but instead of moving the piece
all the way and straight to the left, it keeps sliding it
over the borderline of the bottom pieces until it reaches
a stable position.

Both heuristics were modified to generate two new heuris-
tics to consider rotation in the piece to place. These heuris-
tics are called BLR and BLLTR.

There are 40 of those combinations involving selection and
placement single heuristics and they are shown in Table 1.

Table 1: Representation of actions.
Action Selection Heuristic Placement Heuristic

1 First Fit (FF) Bottom-Left (BL)
2 Bottom-Left Rotate (BLR)
3 Improved Bottom-Left(BLLT)
4 Improved Bottom-Left Rotate(BLLTR)
5 First Fit Decreasing (FFD) Bottom-Left (BL)
6 Bottom-Left Rotate (BLR)
7 Improved Bottom-Left(BLLT)
8 Improved Bottom-Left Rotate(BLLTR)
9 First Fit Increasing (FFI) Bottom-Left (BL)
10 Bottom-Left Rotate (BLR)
11 Improved Bottom-Left(BLLT)
12 Improved Bottom-Left Rotate(BLLTR)
13 Filler+FFD Bottom-Left (BL)
14 Bottom-Left Rotate (BLR)
15 Improved Bottom-Left(BLLT)
16 Improved Bottom-Left Rotate(BLLTR)
17 Next Fit (NF) Bottom-Left (BL)
18 Bottom-Left Rotate (BLR)
19 Improved Bottom-Left(BLLT)
20 Improved Bottom-Left Rotate(BLLTR)
21 Next Fit Decreasing (NFD) Bottom-Left (BL)
22 Bottom-Left Rotate (BLR)
23 Improved Bottom-Left(BLLT)
24 Improved Bottom-Left Rotate(BLLTR)
25 Best Fit (BF) Bottom-Left (BL)
26 Bottom-Left Rotate (BLR)
27 Improved Bottom-Left(BLLT)
28 Improved Bottom-Left Rotate(BLLTR)
29 Best Fit Decreasing (BFD) Bottom-Left (BL)
30 Bottom-Left Rotate (BLR)
31 Improved Bottom-Left(BLLT)
32 Improved Bottom-Left Rotate(BLLTR)
33 Worst Fit (WF) Bottom-Left (BL)
34 Bottom-Left Rotate (BLR)
35 Improved Bottom-Left(BLLT)
36 Improved Bottom-Left Rotate(BLLTR)
37 Djang and Finch (DJD) Bottom-Left (BL)
38 Bottom-Left Rotate (BLR)
39 Improved Bottom-Left(BLLT)
40 Improved Bottom-Left Rotate(BLLTR)

The concept of hyper-heuristic is motivated by the objec-
tive to provide a more general procedure for optimization [4].
Meta-heuristics methods usually solve problems by operat-
ing directly on the problem. Hyper-heuristics deal with the
process to choose the right heuristic for solving the problem
at hand. The idea is to discover a combination of simple
heuristics that can perform well on a whole range of prob-
lems. For real applications, exhaustive methods are not a
practical approach. It is common to sacrifice quality of solu-
tions by using quick and simple heuristics to solve problems.
Many heuristics have been developed for specific problems.
But, is there a single heuristic for a problem that solves all
instances well? The immediate answer is no. Certain prob-
lems may contain features that would make specific heuris-
tic to work well, but those features may not be suitable for
other heuristics. The idea with hyper-heuristics is to com-
bine heuristics in such a way that a heuristic’s strengths
make up for the drawbacks of another.

3.2 Model 1: XCS-based Approach
Classifier Systems (of the Michigan type) evolve a set of

condition-action rules or ’classifiers’ and periodically use a
Genetic Algorithms with the ordinary genetic operators such
as selection, crossover and mutation, to breed new rules from
old ones. What is obtained is a set of rules representing an

adaptive system, that given a change in the environment,
would react accordingly. The LCS interacts with the en-
vironment perceiving situations σ, usually coded as binary
strings of length L, performing actions α, and finding scalar
feedback ρ. Knowledge is represented in a population [P ] of
classifiers. The population size is given by the parameter N .
The system interacts with the environment via detectors (in-
put) and effectors (actions). The environment also provides
a scalar reinforcement, also called reward. The module [P]
represents a population of classifiers where the left side con-
sists of the conditions, and the right side indicates the envi-
ronmental actions. Given an input a match set [M] is formed
by those classifiers in [P] that match their conditions with
the given situation in the environment. The system then
computes a prediction P (ai) for each action represented in
[M]. Actions are selected from [M] to form an action set [A].
Several action-selection methods have been studied in the
literature. One action is sent to the effectors and an imme-
diate reward may be returned by the environment. The most
important elements in a classifier system are the Reinforce-
ment component, the Discovery component, and the Fitness
calculation scheme. The Reinforcement component consists
of updating the ρ, ε (error on the prediction parameter), and
F (classifier’s fitness) parameters of classifiers in the previ-
ous action set [A]−1. The discovery component is based on a
Genetic Algorithm working in the match set [M] to generate
new classifiers. The fitness calculation scheme provides the
quantity to update the classifier’s fitness depending on the
classifier’s accuracy relative to the accuracies of the other
classifiers in the set.

The above two concepts were merged to solve 2D bin-
packing problems, following previous work by Ross et al. [19]
for one dimensional bin packing. An XCS type classifier sys-
tem [24] was used to form the hyper-heuristics. The block di-
agram of the system is shown in Figure 1. The XCS evolves
a behavior model which determines the possible actions for
all situations or states of the problem. In this particular
model, the actions are given by the selection and placement
heuristics to be applied in a given situation. To find the
appropriate set of rules linking problem states with heuris-
tics, the environment was coded using particular features in
the problem at hand. For example, the environment informs
the classifier system the size of the objects, the amount and
ratio of figures to be packed. Then, each classifier associates
the problem state with a selection and placement heuristic,
which are applied until certain condition is met. The process
continues until the problem is completely solved.

3.2.1 Representation
A rule determines the relationship between a condition

and an action.
The condition segment in a classifier has the following

information:

• Height representation: SH.- Items up to 1/3 of ob-
ject height; MH.- Items from 1/3 up to 1/2 of object
height; and LH.- Items over 1/2 of object height

• Width representation: SW.- Items up to 1/3 of
object width; MW.- Items from 1/3 up to 1/2 of object
width; and LW.- Items over 1/2 of object width

• Area representation: SA.- Items up to 1/4 of object
area; MA.- Items from 1/4 up to 1/3 of object area;
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Action
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Figure 1: Model combining Hyper-Heuristics and the XCS Classifier System.

LA.- Items from 1/3 up to 1/2 of object area; HA.-
Items over 1/2 of object area

• R.- Ratio of items left to be cut

The action segment contains the following information:
SCH, Selection Heuristic and PMH, Placement Heuristic.

Each part was coded into categories according to dimen-
sions in the height, width, and area of objects (small, medium,
and large, and we added huge for area). Each of them has
a proportion of items (00: 0-10%; 01: 10-20%; 10: 20-50%;
and 11: 50-100%). The percentages of items remaining to be
cut are as follows: 000: 0-14%; 001: 14-28%; 011: 28-42%;
010: 42-56%; 110: 56-70%; 100: 70-84%; and 111: 84-100%.

The action was selected from all possible combinations
of selection and placement heuristics, considering also the
possibility of rotating an object by 90 degrees. Those com-
binations were previously shown in Table 1.

The general procedure of the method has the following
steps:

1. The XCS generates a random population of classifiers.

2. The current problem state is matched against those
rules.

3. With the Matching Set and the Prediction Array an
Action Set is formed from which the best classifier is
taken to perform the indicated action (a combination
of selection and placement heuristic). That action is
carried out until an object is completely full or no other
remaining piece fits in that object.

4. Reward is applied depending on the selected reinforce-
ment scheme (Single or Multi-Step). In the single-step,
reward is paid after every application of the selected
combination of heuristics, whereas in the multi-step,
the reward is updated after a complete solution is de-
livered.

5. Once an instance has been completely solved, the best
classifiers are kept in the population and the solution
process starts again for that instance.

6. The procedure continues until a pre-established num-
ber of cycles is reached.

3.2.2 Fitness Function
For measuring the quality of solutions produced by Model

1, the following equation was used:

FF =

∑No
u=1 P 2

u

No
(1)

where No is the total number of objects used, and Pu is the
percentage of utilization for each object u, given by Pu =∑n

j=1 Apj

Ao
, where Ap represents the item area; Ao the object

area; and n the number of items inside the object.

3.3 Model 2: GA-Based Approach
In this model, a GA with variable-length individuals is

proposed to find a combination of single heuristics (selec-
tion and placement) to solve efficiently a wide variety of
instances of 2D-Regular bin-packing problems. The basic
idea is that, given a problem state P , this is associated with
the closest point in the chromosome which carries the se-
lection and placement to be applied. This application will
transform the problem to a new state P ′. The purpose is
to solve a problem by constructing the answer, deciding on
the heuristic to apply at each step. The current state P of
the problem is a much-simplified representation of the ac-
tual state, and is described in more detail in section 3.3.1.
A chromosome represents a set of labelled points within this
simplified problem state space; the label of any point is a
heuristic. The chromosome therefore represents a complete
recipe for solving a problem, using a simple algorithm: until
the problem is solved, (a) determine the current problem
state P , (b) find the nearest point to it, (c) apply the heur-
sitic attached to the point, and (d) update the state. The
GA is looking for the chromosome (a hyper-heuristic) which
contains the rules that apply best to any intermediate state
in the solving process of a given instance. The instances are
divided into two groups: the training and testing sets. The
general procedure consists in solving first all instances in
both sets with the single heuristics (each is a combination
of a selection and a placement heuristic). The best solu-
tion for each instance is kept, that is later used also by the
GA proposed. Then the GA works on the training set until
termination criterion is met and a general hyper-heuristic
is produced. All instances in both the testing and training
sets are then solved with this general hyper-heuristic. The
complete process is presented in Figure 2.
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Figure 2: Solution Model.

3.3.1 Representation
Each chromosome is composed of a series of blocks. Each

block j includes nine numbers. The first eight represent
an instance of the problem state. The initial four num-
bers indicate the percentage of pieces that remain to be
packed according to the following categories (Ao is the ob-
ject area, Ap is the item area): hj , huge items (Ao/2 < Ap),
lj large items (Ao/3 < Ap ≤ Ao/2), mj medium items
(Ao/4 < Ap ≤ Ao/3), and sj , small items (Ap ≤ Ao/4);
the following three numbers indicate the percentage of items
that remain to be packed according to a categorization based
on the height (Ho is the object height, Hp is the item
height): lj large items (Ho/2 < Hp), mj medium items
(Ho/3 < Hp ≤ Ho/2), and sj , small items (Hp ≤ Ho/3):
The eighth number, rj , represents the percentage of the to-
tal items that remain to be packed. The ninth number is
an integer indicating the combination of heuristics (selection
and placement), associated with this instance, see Table 1.

For a given problem state, the first eight numbers lie in the
range 0 to 1, so a block can be regarded as a labelled point
in the eight-dimensional unit cube. The label is the ninth
number, which identifies a selection and a placement heuris-
tic. The GA’s task is to position an unspecified number of
such labelled points, and the problem-solving algorithm is
simply this: given a point representing the problem’s current
state, find the nearest labelled point and do what the label
says, and repeat until all items in the problem have been se-
lected and placed. To determine ‘nearest’ we use Euclidean
distance. If we only allowed labelled points to lie inside the
unit cube, there would be possible edge effects because the
nearest labelled point to a corner would ‘cover’ more volume
than interior points. To counteract this, we permit labelled
points to lie anywhere in the (−3, 3)8 cube, although the
problem state can still only be in the unit cube. Experience
suggests that the slight asymmetry of this does not matter.

The action was selected from all possible combinations of
selection and placement heuristics, taking also into consid-
eration the possibility of rotating the items.

3.3.2 Genetic Operators
We dealt in this investigation with two crossover and three

mutation operators. The first crossover operator is very sim-
ilar to the normal two-point crossover. Since the number of
blocks in each chromosome is variable, each parent selects
the first and last block independently. However the points
selected inside each corresponding block are the same for

both parents. The blocks and poinst are chosen using a uni-
form distribution. The other crossover operator works at
block level, and it is very similar to the normal one-point
crossover. This operator exchanges 10% of blocks between
parents, meaning that the first child obtains 90% of infor-
mation form the first parent, and 10% from the second one.

The first mutation operator randomly generates a new
block and adds it at the end of the chromosome; the second
operator randomly selects and eliminates a block within the
chromosome; and the last one randomly selects a block in
the chromosome and a position inside that block to replace
it with a new number between −3 and 3, generated with
a normal distribution with mean 0.5 and truncated accord-
ingly.

3.3.3 The Fitness Function
The quality of solution produced by either a single heuris-

tic or a hyper-heuristic for a given instance, is given by
equation 1, also used in Model 1. Now, how is the fitness
of a chromosome measured during the GA cycle? To do
this, first, it is necessary to compute the fitness produced
by each individual combination of selection and placement
heuristics, for each instance. The best heuristic combina-
tion and its result, for each specified instance i are stored
(let us call it BSHi). These results are prepared in advance
of running the GA.

The GA cycle consists of the following steps:

1. Generate initial population

2. Assign 5 problems to each chromosome and get its fit-
ness

3. Apply selection (tournament), crossover and mutation
operators to produce two children

4. Assign 5 problems to each new child and get its fitness

5. Replace the two worst individulas with the new off-
spring

6. Assign a new problem to every individual in the new
population and recompute fitness

7. Repeat from step 3 until a termination criterion is
reached.

To compute the fitness for each chromosome (at steps 2
and 4 of the above cylce), the distance between the solution
obtained by that individual with respect to the best result
given by the single heuristic (BSHi) is measured. The fit-
ness is a weighted average and it is given by:

FF (HH) =

∑5
k=1 Pk · (FFk − BSHk)

∑5
k=1 Pk

(2)

where Pk is the number of times the k-th assigned instance
has been tackled so far; BSHk is the best fitness obtained
for the k-th assigned instance by a single heuristic; and FFk

is the fitness obtained by the hyper-heuristic for the k-th
assigned instance (using equation 1).

After each generation l, a new problem is assigned to each
individual m in the population and its fitness is recomputed
by a weighted average as follows:

FF l
m =

FF l−1
m · mpm + FF (m)

mp + 1
(3)
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where FF l−1
m is the fitness for individual m in the previous

generation; mpm is the number of problems individual m
has seen so far; FF (m) is the fitness obtained by individual
m for the new problem and computed with equation 1.

3.3.4 GA Parameter Set
After previous experimentation, the parameters for the

GA used in this investigation were set as follows: population
size, 50; number of generations, 400; crossover probability,
1.0; and mutation probability, 0.1.

4. EXPERIMENTS AND RESULTS
This section presents the experiments carried out during

the investigation and the results obtained. Problems from
several sources have been used in this research. Part of
the benchmark set was taken from the literature (the OR-
Library [2], set by Martello and Vigo [17], set by Berkey
and Wang [3], set by Terashima et al. [22]), and the rest
is composed of randomly generated instances for which an
optimal solution is known. The collection includes 1080 dif-
ferent instances. They were divided into two groups (A and
B) of 540 instances each (chosen at random). Aiming at
testing the model effectiveness, three kinds of experiments
were carried out.

4.1 Experimenting with Single Heuristics
All combinations of single heuristics were tested with the

two instance groups. The intention for doing this was to
establish the basis for comparison on the performance of
the hyper-heuristics delivered by the two proposed models.
The results of the single heuristics in Group A are shown in
Table 2. Table 3 shows results when Single Heuristics were
tested with Group B.

Results are grouped in sets of four heuristics in which the
selection heuristic is common in a given set. For example,
column 2 of Table 2 indicates results for the first four com-
binations in which the common selection heuristic is First
Fit. Results are compared against those generated by the
best single heuristics. Figures in cells indicate the percent-
age of problems solved with a particular number of extra
objects (left column) when compared with results provided
by the best heuristic. For example, on the column labeled
’FFD’, heuristics 5 to 8 solved 70.96% (this is the average
performance on the four heuristics) of the instances in set
A with the same number of objects as the best heuristic for
each given instance. In both Tables (2 and 3) best results
are provided by the set whose common selection heuristic
is the DJD (figures in bold). This is somehow as expected
since the DJD heuristic is, in general, a very good heuristic
for Bin-packing. There are other sets of heuristics showing
also a very good performance (13-16, 29-32) in which the
selection heuristic is the Filler plus First Fit, and Best Fit
Decreasing, respectively.

4.2 Experimenting with Model 1
In previous published work [22], results of this model were

compared against other conventional approaches for a lim-
ited set of instances. In this experiment, the idea is to com-
pare the results of Model 1 not only against the combina-
tions of single heuristics, but also against another model
producing hyper-heuristics using a different scheme (Model
2). The instance set used in this case is also much larger,

so the performance by each approach could be appreciated
in more detail. Table 4 shows the outcome for the XCS-
based model using both rewarding schemes (Single-Step and
Multiple-Step) for both instance sets. The way of rewarding
classifiers does not seem to make any difference in perfor-
mance. Figures in cells represent the percentage of extra
objects used compared against the result provided by the
best heuristic for each particular instance problem in each
set. In group A, both columns show practically the same re-
sults, however, for set B, there is just a slight improvement
when using Multiple-Step. It is interesting to observe in the
results, that the XCS-type solves around 4% of problems in
set A with one less object than the best single heuristics,
and around 10% of problems in set B.

4.3 Experimenting with Model 2
To produce the hyper-heuristics, Model 2 was tested as

follows. First, the number of complete runs was established
to five. Then for each particular run, and after the train-
ing phase was finished (held with set A only), the best five
hyper-heuristics were taken, tested and compared with the
two instance sets (separately), and then the best one was
chosen for the general comparison (reported in Table 6).
For instance, Run 1 produced results shown in Table 5. The
left segment shows results with the best five hyper-heuristics
for the training set A, and the right part shows results for
the testing set B. That means, for example, that HHI-1A is
the hyper-heuristic obtained with set A, and the correspond-
ing results when that hyper-heuristic was tested with set B
are shown in column labeled HHI-1B. The best five hyper-
heuristics produced by that run solve on average 88.6% (1.61
+ 94.09 + 1.61 + 89.78 + 1.08 + 92.47 +0 + 81.18 +0 +
81.18 divided by 5) of problems in set A with at least the
same number of objects as the best single heuristic. Perfor-
mance on set B is quite similar, confirming the effectiveness
of this model. Table 6 summarizes results for all five runs.
The best hyper-heuristic for each run was selected and kept
in the left columns (second to sixth). The corresponding re-
sults for those hyper-heuristics on set B are presented in the
right part of the Table (columns seventh to eleventh). The
average performance of these heuristics on set A is around
89.46% considering results with 0 or -1 extra objects. The
average performance of the same heuristics, but for set B,
lies around 85.6%. It is interesting to observe in these results
that, for set B, there are some hyper-heuristics that obtain
a percentage of problems for which the number of objects is
two less than the one obtained by the best single heuristics.

4.4 Comparison and Summary of Results
Table 7 summarizes results when comparing the perfor-

mance of single heuristics against both models used to gen-
erate hyper-heuristics. The second and third columns in-
clude results provided by the best single heuristics for sets
A and B, and shown in bold in Tables 2 and 3. Those results
are provided by combinations of single heuristics having in
common the DJD selection heuristic. The fourth and fifth
columns show the best results provided by the XCS-based
model which are produced when the Multiple-Step reward-
ing scheme is used. The last two columns are the results
for the best hyper-heuristic produced for all runs by Model
2. It is clear that the two models used to generate hyper-
heuristics outperform the single heuristics. Model 2 is, on
average for both groups, slightly better than Model 1.
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Table 2: Single Heuristics: Number of extra objects for problems in Set A.
FF FFD FFI Filler NF NFD BF BFD WF DJD

Obj 1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40

0 30.65 70.43 18.55 75.54 30.91 64.65 31.18 70.43 30.65 76.61
1 31.99 27.69 21.24 22.58 30.11 24.6 31.18 27.15 31.99 21.51
2 21.24 1.61 8.33 1.61 22.04 0.81 21.77 2.15 21.24 1.61
3 8.87 0.27 7.53 0.27 9.68 0.13 8.6 0.27 8.87 0.27
4 5.65 9.14 5.38 5.38 5.65
> 4 1.61 35.22 1.88 1.88 1.61

Table 3: Single Heuristics: Number of Extra Objects for Problems in Set B.
FF FFD FFI Filler NF NFD BF BFD WF DJD

Obj 1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32 33-36 37-40

0 28.49 65.32 13.44 68.28 29.84 63.84 29.3 66.67 28.76 71.77
1 32.8 31.45 21.77 28.49 30.91 25.13 31.18 30.11 32.53 25.27
2 20.97 2.96 8.6 2.96 19.35 2.02 20.7 2.96 20.96 2.69
3 9.68 0 11.02 0 11.56 0 10.57 0 9.41 0
4 6.72 0.27 8.6 0.27 6.99 0.13 6.72 0.27 6.99 0.27
> 4 1.34 36.56 1.34 1.34 1.34

Table 4: Model 1: Results obtained with Single-Step (SS) and Multiple-Step (MS) XCS for both problem
sets.

Obj XCS-SS-A XCS-MS-A XCS-SS-B XCS-MS-B

−2 0 0 0 0
−1 4.07 4.07 11.5 10.4

0 85.56 85.60 70.6 75.4
1 10.37 10.33 17.9 14.2

Table 5: Model 2: Results on Run 1 with training and testing sets A and B.
Obj HHI-1A HHI-2A HHI-3A HHI-4A HHI-5A HHI-1B HHI-2B HHI-3B HHI-4B HHI-5B

−1 1.61 1.61 1.08 0 0 2.15 2.15 2.69 1.08 1.61
0 94.09 89.78 92.47 81.18 81.18 81.18 76.88 80.11 71.51 73.12
1 4.3 8.6 6.45 18.82 18.82 16.67 20.97 17.2 27.42 25.27

> 2 0 0 0 0 0 0 0 0 0 0

Table 6: Model 2: The best five hyper-heuristics for all runs and test sets A and B.
Obj HHI-A HHII-A HHIII-A HHIV-A HHV-A HHI-B HHII-B HHIII-B HHIV-B HHV-B

−2 0 0 0 0 0 0 0.54 0.54 1.08 0.54
−1 1.61 3.23 5.38 6.45 3.76 2.69 8.6 8.6 8.06 10.22

0 94.09 76.88 83.33 84.95 87.63 80.11 72.58 76.88 76.88 80.65
1 4.3 19.89 11.29 8.6 8.6 17.2 18.28 13.98 13.98 8.6

Table 7: Best results for Single Heuristics, Model 1 and Model 2.
Obj SH-A SH-B XCS-A XCS-B HH-A HH-B

−2
−1 4.07 10.4 1.61 2.15
0 76.61 71.77 85.6 75.4 94.9 81.8
1 21.51 25.27 10.33 14.2 4.3 16.67
> 1 1.88 2.96
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5. CONCLUSIONS AND FUTURE WORK
This document has described experimental results for two

models to generate hyper-heuristics for the 2D-Regular bin-
packing problem. The first model uses a classifier system
to form hyper-heuristics. The rules in the classifier system
are composed of condition-action in which the condition is
a representation of the problem state and the action in-
dicates the combination of single heuristics (selection and
placement) which should be applied. The second model
is based on a variable-length GA which evolves combina-
tions of condition-action rules representing problem states
and associated selection and placement heuristics. Overall,
both schemes identify efficiently hyper-heuristics that, when
tested and compared with a large set of problem instances,
show very competitive performance, in fact, much better
than the best single heuristic for each instance. Of course,
a hyper-heuristics approach has a major benefit compared
to many other techniques. The significant search effort is
applied to find a search algorithm; in this paper, the dis-
covered algorithm is controlled either by a set of labelled
points (in the messy-GA approach) or a set of rules (in the
XCS approach). But once the algorithm has been found, it
is extremely cheap and fast to apply to any new problem
instance and does not involve any significant search effort.

Ideas for future work involve extending the proposed strat-
egy to solve problems including other kinds of pieces such as
polygonal, irregular, etcetera. It would be also interesting to
work the approaches for other multidimensional problems.
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