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ABSTRACT 
This paper proposes a novel application of differential evolution 
to solve a difficult dynamic optimisation or optimal control 
problem. The miss distance in a missile-target engagement is 
minimised using differential evolution.  The difficulty of solving 
it by existing conventional techniques in optimal control theory is 
caused by the nonlinearity of the dynamic constraint equation, 
inequality constraint on the control input and inequality constraint 
on another parameter that enters problem indirectly.   

The optimal control problem of finding the minimum miss 
distance has an analytical solution subject to several simplifying 
assumptions. In the approach proposed in this paper, the initial 
population is generated around the seed value given by this 
analytical solution. Thereafter, the algorithm progresses to an 
acceptable final solution within a few generations, satisfying the 
constraints at every iteration. Since this solution or the control 
input has to be obtained in real time to be of any use in practice, 
the feasibility of online implementation is also illustrated.  

Categories and Subject Descriptors 
I.2.8 [Problem Solving, Control Methods, and Search]: 
Heuristic methods 

General Terms 
Algorithms 

Keywords 
Missile guidance, optimal guidance law, evolutionary algorithm, 
differential evolution, optimal control, online implementation 

 

1. INTRODUCTION 
Evolutionary algorithms (EAs) have been eminently successful in 
solving static optimisation problems where traditional hill 

climbing methods have failed. However, their performance as 
general purpose optimisers have been sub-par for problems 
solvable by traditional methods, since they fail to exploit problem 
specific features like gradient information that can lead to quick 
convergence to the optimum solution. Not surprisingly, most 
applications of EAs have been for static optimisation problems. 
For dynamic optimisation or optimal control applications, EAs 
could be employed for finding solutions online, under any of the 
following circumstances [1]: (i) the plant or system model is 
available, and dynamics is slow enough to allow the computation 
time needed by the EA to arrive at the solution (ii) a ‘good 
enough’ solution, not necessarily the best, is all that is needed for 
the application (iii) massively parallel implementation is possible, 
so that the best solution is obtained in a small interval of time.  
However, the missile guidance problem falls in none of the above 
three categories. The dynamics is very fast, and the best solution 
(least miss distance) is the one that is acceptable.  Though 
computational capacities of computers have been increasing 
rapidly, the onboard computing power on the missile is still not 
large enough to allow massively parallel implementation. To 
overcome the above difficulties, this paper proposes a two loop 
hybrid control.  

This paper is organised as follows:  section 2 gives a brief 
introduction to the guidance problem from a perspective 
necessary to develop the paper. The problem formulation and 
solution methodology is developed in section 3. It is followed by 
implementation and results in section 4 and the concluding 
remarks in section 5.  

2. MISSILE GUIDANCE AS AN OPTIMAL 
CONTROL PROBLEM 

2.1 The simplified linear model  
The linear state model of the missile target engagement (Figure 1) 
is given by [2]  
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In this linear time-varying system, missile acceleration cn   is 

subtracted from target acceleration Tn  to the form the relative 

acceleration y&& . A double integration yields the relative vertical 

position y, which at the end of the engagement, 
Ftt= , is the miss 

distance )( Fty . By assuming that the closing velocity cV  is 

constant, the relative range at any time t during the flight time 
Ft  

is given by  

 gocTM tVR = ,   where  ttt Fgo −=  

Linear quadratic optimal control theory can be applied to find the 
optimal control that minimises the performance index 

 dtnJ
Ft

c∫=
0

2                                            (2a) 

subject to  the state equation (1), and                                            
 0)( =Fty        
         (2b) 

where )( Fty is the miss distance.  

The control input that achieves this is given by  
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Figure 1. Two-dimensional missile-target engagement model 
 

(3) is the well known Optimal Guidance Law (OGL).  The OGL 
works on the basis of the cancellation of guidance system 

dynamics which is given by   
Tsn

n

c

L

+
=

1
1 . 

The OGL assumes that unconstrained control input is available; in 
other words, commanded acceleration nc saturation does not 

occur. If the input is not unconstrained, it results in a non-zero 
miss distance. Equation (2b) would no longer be satisfied. 
In order to obtain the above analytical solution, certain 
simplifying assumptions have been imposed: the state equation 
constraint describing the kinematics of the missile-target is linear 
(given by (1) above), the control (3a) is unconstrained, and  N ′   
too is unconstrained (3c) [2].   However, in practice, these 
assumptions prove to be too strong to reflect the reality. The 
kinematics involved is known to be highly nonlinear [3], and the 
control available is limited by the acceleration saturation that 
every physical system like a missile is subject to.  N ′  too faces a 
lower and upper bound [2]. 

2.2 The nonlinear engagement model 
A more exact, nonlinear model of the missile-target engagement 
is given by  
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where   )/(tan 12
1

TMTM RR−=λ ,  nL  is the actual acceleration 
that results when acceleration nc is commanded, and T  is the 
time-constant of the missile guidance system. The subscript ‘1’ 
denotes the component along axis 1 and the subscript ‘2’ the 
component along axis 2. For instance, 1TR&  is the component of 

TR&  along axis 1, and 2TR& the component of TR&  that along axis 
2.  RM = (RM1, RM2) and RT = (RT1,  RT2) are the positions of the 
missile and the target respectively. RTM = (RTM1, RTM2) is the 
relative separation of the missile and the target, where RTM1 = RT1 
- RM1, and RTM2 = RT2 - RM2. The acceleration nc is the control 
input to the plant (4).  

3. PROBLEM FORMULATION 
3.1 The Mayer type optimal control 
formulation 
Application of the OGL to the linear model (1) to the numerical 
example in section 4 shows that the OGL produces very low miss 
distances as the missile-target separation is varied. However, 
application of the OGL for the more realistic nonlinear model (4) 
shows large miss distances as the missile-target separation and 
consequently the flight time increase (Figure 2). The reasons for 
this are explained in [4], [5].  
Reduction of the miss distance is possible by solving the more 
exact, nonlinear Mayer form optimal control problem [6] 
described below:   

 Minimise   )()())(( FF
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c tXtXtnJ S=    (5a) 
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 subject to  the nonlinear kinematics (4), which is of the 
 form  

 ),( cnXfX =&      (5b) 

 max,|| cc nn ≤         (5c) 

 ,)( 00 XtX =  )( FtX  free,   and   Ft  free  (5d) 

However, the solution (5) is far more difficult than the solution of 
(2) [5], [7].  
The present paper proposes a simpler, but not as widely 
applicable method as the one in [8]: make use of the closed form 
solution (3) that is available for the linearised model. This can 
serve as a good starting point for generating trial solutions around 
it, and the best solution can be found thereafter by a stochastic 
search technique like differential evolution (DE).  The approach 
herein also makes online implementation feasible.  

3.2 The Proposed Approach 
Next, three heuristic propositions that are central to the proposed 
approach are made in this paper.  
Proposition 1: A common, but approximate way of estimating the 

flight time Ft̂   is 

 )0(/)0(ˆ
cTMF VRt =         (6) 

where ‘^’ is used to indicate that an estimated value is being 
referred to. Since (6) is only approximate, treat  Ft  as variable 

within a certain upper and lower bound:  

 FFF ttt ˆ2.1ˆ8.0 <<     

Proposition 2:  Even if accurate  Ft  is available, still treat  Ft  as 
variable, as per proposition 1.  This is because the OGL can give a 
large miss distance when applied to the nonlinear plant even with 
accurate Ft .  

Proposition 3: The guidance system dynamics has a number of 
time constants, either widely differing from each other in 
magnitude, or closely spaced.  If the time constants are of widely 

differing magnitudes, the slowest time constant T̂  will usually 
dictate the system performance. If they are closely spaced, they 
can be conveniently represented as a binomial representation [1]: 
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Expanding the denominator as a binomial series,  

 TssT
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sT n
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Regardless of whether the time constants are of widely differing 
magnitudes, or closely spaced, the missile system dynamics can 

always be represented by a single, approximate time constant T̂ .  

 Hence treat T as variable within the bounds 
 ]2.1,8.0[ˆ ∈T

T   

3.3  Problem formulation  
With Ft  and T as the variables, bounded by   

 ]2.1,8.0[ˆ ∈
F

F

t
t                 (7a) 

 ]2.1,8.0[ˆ ∈
T
T     

                 (7b) 
solve the following optimisation problem:  
 Minimise )( FTM tRJ =       (7c) 

 subject to 
 the nonlinear kinematics (3)               (7d) 
 .max,0 cc nn ≤≤       (7e) 

 55 ≤′≤− N                      (7f) 

  
As compared to the optimal control problem formulation (5), the 
approach proposed in the present paper is much simpler: start with 
a set of randomly generated feasible solutions seeded with the 
values of the input variables TtF

ˆandˆ  to the OGL, and use an 
intelligent algorithm to improve upon these feasible solutions and 
arrive at the best solution iteratively.  
The missile-target kinematics (7d) and the bounds constraints (7e) 
and (7f) can be treated as a black box, with its input as  tF and T 
and its output as the miss distance RTM (tF). The control input 

),,,( yyTtnn Fcc &= varies as the quantities  tF and T are varied, 
in turn varying the output RTM (tF) of the black box. The control 
input is fixed at the bound, if it exceeds any bound in its time 
history; similarly N’ is fixed at the bound if it exceeds any bound. 
The minimum RTM (tF) can be found by an exhaustive search by 
varying the input variables over their whole range. However, an 
intelligent search technique employing directed random search 
like any EA can produce a quicker solution. The nominal values 

of Ft̂ given by (7) and T (specified in the problem data) are used 
to seed the initial population.  

4. IMPLEMENTATION AND RESULTS 
The proposed method is implemented in the following numerical 
example [2], [5].   

g3ft/6.96
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The heading error (HE) was assumed to be zero.  

gnn Tc 93.max, == . 

The maximum value of  N’ was taken as 5, for the OGL. The 
approximate system time constant T in (1) was taken to be 1 s.  
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The initial population comprises individuals that are the randomly 
generated pairs of  TtF

ˆandˆ  about the seed values of T = 1 s, and 

10000,4/000,40)0(/)0(ˆ === cTMF VRt s. The fitness of 
each trial solution or individual is evaluated by solving (7d) with 
the OGL as the control input, and obtaining the miss distance as 
the output. The best solution is that pair of Ft  and T which gives 
a miss distance less than the tolerance during the generations, or 
the least miss distance after the maximum number of generations 
allowable.  
DE was chosen out of all EAs available, to speed up the 
execution, since the DE algorithm is one of the simplest of all 
EAs, and hence very suitable for quick execution. The population 
size was 12, and the stopping criterion was fixed as the earlier of 
the tolerance limit of 3 feet of miss distance, or a maximum of 
four generations. All these tuning parameters were arrived at 
empirically, to give the minimum run time.  
Even with DE, the missile dynamics is too fast to allow the 
optimal solution to be determined online using a computationally 
intensive method like any EA. Hence a two-loop hybrid control is 
proposed herein (Figure 3). The upper loop comprising OGL 
would be in action till some intermediate time interval T1 where 
0<T1< tF, during which the DE-OGL would arrive at the best 
solution. At T1, the upper loop would stop functioning, and from 
T1 onwards, the DE-OGL would be applied. For the example 
problem in this paper, our implementation of the DE-OGL needs 
a maximum of T1 = 2 seconds to calculate the control needed. 
Clearly, DE-OGL can be applied to the plant only for flight times  
tF ≥  2 T1. However, for small tF s, there is no need for DE-OGL, 
since the small angle approximation is still valid, and 
performance of the OGL itself is quite good. For the example 
problem in this paper, which started with head-on encounter 
initial conditions, OGL performs well up to almost 6 seconds of 
flight time (Figure 2).    
The coding and simulation was done in Matlab® language. The 
fourth-order Runge-Kutta method was used to solve (4) with a 
step size of 0.01 second. The DE implemented used binomial 
crossover, with a crossover constant (CR) of 0.9, and weighting 
factor (F) of 0.8, with parts of the code adapted from [9].  The 
implementation was done on a  Pentium IV, 3 MHz computer 
with 512 MB RAM and 4 GB virtual memory.  

Figure 2 shows the miss distances obtained for various Ft ’s, for 
various initial separations of the missile and target. It can be seen 
that over the entire range of Ft ’s, the proposed DE-OGL 
performs as well as OGL, or even better, in terms of miss 
distance.  Figures 4 and 5 give an indication of how this is 
achieved. The proposed method dictates higher values of cn  and 

N ′  in the initial stage than the OGL. It is to be noted that the 

control input cn  is partly singular (the initial part of the flight) 
and partly bang-bang (from about 6.92s, approx.).  The 
improvement in solutions (miss distance) as the generations 
proceed is shown in Figure 6.   
 

5. CONCLUDING COMMENTS  
A new differential evolution tuned optimal guidance law that 
performs better than the conventional OGL has been presented.   
 A limitation of the proposed method is that the range of operating 
conditions has been only extended; it applicability for highly 
nonlinear operating conditions is still to be improved, unlike in 
[8], which applies to all initial conditions. However, the approach 
in [8] was an offline solution, while the method herein is online-
implementable. The approach in [10] too applies to larger range 
of operating conditions, but it does not consider saturation of 
control, an important practical constraint. Moreover, the approach 
therein too was for a single set of initial conditions, and redoing 
the exercise was necessary for a different set of initial conditions, 
as the authors themselves point out.     
Another point to be noted is that the method herein assumed 
constant target manoeuvre; its performance for random target 
manoeuvre is yet to be studied.  
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Figure 4.  nc requirement of OGL and DE-OGL 
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Figure 3.  Online implementation of DE-OGL 
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Figure 6.  Improvement of the solution through the 
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