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ABSTRACT 
The accurate quantification of proteins is important in several 
areas of cell biology, biotechnology and medicine. Both relative 
and absolute quantification of proteins is often determined 
following mass spectrometric analysis of one or more of their 
constituent peptides. However, in order for quantification to be 
successful, it is important that the experimenter knows which 
peptides are readily detectable under the mass spectrometric 
conditions used for analysis. In this paper, genetic programming 
is used to develop a function which predicts the detectability of 
peptides from their calculated physico-chemical properties. 
Classification is carried out in two stages: the selection of a good 
classifier using the AUROC objective function and the setting of 
an appropriate threshold. This allows the user to select the balance  

point between conflicting priorities in an intuitive way. The 
success of this method is found to be highly dependent on the 
initial selection of input parameters. The use of brood 
recombination and a modified version of the multi-objective 
FOCUS method are also investigated. While neither has a 
significant effect on predictive accuracy, the use of the FOCUS 
method leads to considerably more compact solutions. 

Categories and Subject Descriptors 
J.3 [Computer Applications]: LIFE AND MEDICAL 
SCIENCES - Biology and genetics 

General Terms 
Algorithms, Design, Theory 

Keywords 
Genetic Programming, input selection, classification, AUROC, 
proteomics, mass spectrometry 

1. INTRODUCTION 
Precise measurement of protein quantities within a biological 
sample is crucial to the development of various scientific 
techniques. Applications range from medical diagnosis [16] 
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through systems biology [1] to nutritional analysis [11].  Mass 
spectrometry (MS) is an increasingly popular method for 
determining the absolute quantity of defined proteins within a 
given system. 
All MS techniques use the mass/charge (m/z) ratio to distinguish 
different analytes. The application of MS to protein quantification 
relies on the use of differentially isotope labeled peptide 
surrogates, either produced synthetically (AQUA) [11] or via an 
artificial protein of concatenated peptides (QconCAT) [3]. These 
reference peptides are designed to mimic the native peptide 
produced following proteolysis of the protein(s) being 
quantitated. Known concentrations of the labeled reference 
peptides are added to the biological sample containing the 
protein(s) of interest either before (QconCAT) or after (AQUA) 
digestion with a protease, commonly trypsin. 
The protease has the effect of splitting the proteins into various 
shorter-chain peptides. The resultant complex peptide mixture 
may then be partially separated using a variety of liquid 
chromatographic methods before mass determination. The 
instrument used in this study is an electrospray ionisation (ESI) 
quadrupole time-of-flight (Q-ToF) mass spectrometer and is 
particularly suitable for the accurate mass determination and 
quantification of polypeptides [9]. 
The native peptide and the differentially labeled reference peptide 
differ only by the presence of different isotopes and they have the 
same physico-chemical properties. Therefore their behaviour 
during chromatographic separation and following ionisation and 
detection in the mass spectrometer is identical. However, as the 
reference peptide has a defined mass difference from the native 
peptide (determined by the method of isotope labeling) it can be 
easily distinguished based on their m/z ratio.  Precise 
determination of the amount of native peptide can then be 
determined by comparison of the signal intensity with the known 
quantity of reference peptide.  From this, the absolute 
concentration of the protein from which the native peptide was 
derived can be inferred. 
The most problematic step in this method is selecting the best 
peptides for quantification, i.e. those that give the best signal-to-
noise ratio following MS analysis. Not all peptides that are 
produced by cleavage of a protein give a detectable MS peak. 
Unfortunately, all mass spectrometers detect within a limited m/z 
range, so particles outside this range will not be detectable. In 
addition, some peptides will not behave favourably on the 
chromatographic media used for their separation, either not 
binding in the first instance, or not eluting.  Most protein 
sequences are split at easily identified sites by trypsin digestion. 
However, some protein sequences are prone to ‘missed 
cleavages’, when some peptide bonds fail to cleave at the 
expected site. Use of the peptides resulting from these cleavages 
would therefore result in inaccurate quantification. Other peptides 
are unlikely to be ionised and will therefore be invisible to mass 
spectrometric detection [18].  Other characteristics, as yet 
undefined, also determine peptide detectability by ESI-MS. 
Predicting whether any particular peptide will be detectable is 
clearly a complex task. However, the properties described above 
(ionisability, response to trypsin digestion, elution behaviour, 
etc.) are all chemical properties which should depend upon the 
chemical structure of the peptide in question. A variety of 
quantitative chemical properties of peptides are readily obtained 

as described in Section 2. These may then be used as independent 
variables in a statistical or machine learning technique. 
Two previous studies have used decision trees [10] and artificial 
neural networks (ANNs) [18] to map the chemical properties of 
proteins to their MS detectability, using different ionisation 
methods. In addition to the overall properties of the peptides, both 
studies used some information concerning the positions of 
individual amino acids in the peptide chains and information 
concerning the environment of the target peptide within the 
original protein, i.e. the identities of nearby amino acids. 
Previous studies have used genetic algorithms to solve a related 
problem, the optimization of experimental settings for ESI-MS 
[19]. In this study, we use genetic programming (GP) to create a 
mathematical function that relates the chemical properties of a 
peptide to its detectability by ESI-MS. We do not use amino acid 
positional information or information concerning the environment 
of the peptide within its parent protein. It is intended that this 
information will be incorporated in later investigations. Our 
method has 2 steps- 

• In the first step, a population of programs is evolved 
using the area under the receiver-operator characteristic 
curve (AUROC) as the objective function. The AUROC 
is a measure of the extent to which a model can 
differentiate between positive and negative outputs. It is 
calculated across the range of input-output space and it 
therefore summarises the whole decision surface. The 
AUROC function is described in more detail in section 
3.1 and in a number of other studies, for example [6]. 

• In the second step this decision surface is examined in 
more detail by considering how the classification 
accuracy varies as the output threshold is adjusted. 

The advantage of this 2-step method is that it allows the user to 
interact with the system, after the creation of a ‘good’ model. The 
threshold is chosen by the user while taking into account the 
characteristics of a working model. This issue is discussed in full 
in section 3.3. 
The rest of this paper is made up of the following sections. 
Section 2 describes how the data - physico-chemical parameters 
and MS peak intensities - were obtained. Section 3 describes the 
experimental method used for this research. It is comprised of 
subsections on the AUROC function, data sampling, threshold 
setting and the selection of input parameters. Section 4 states the 
design parameters used to create and evolve the GP itself. Section 
5 is a results section and Section 6 a conclusion. The paper ends 
with acknowledgements (Section 7) and references (Section 8). 

2. PEPTIDE DATA 
For each peptide, 393 properties were calculated by averaging  
the property values of each individual amino acid over the whole 
peptide. These parameters cover a wide range of physico-
chemical properties. Some example properties are 
hydrophobicity, isoelectric point, molecular mass and predicted 
proportion of a particular secondary structure (e.g. alpha-helical). 
These properties are hereafter referred to as input variables, or 
simply ‘inputs’. On the other hand, the set of input values that 
refer to a particular peptide sequence are described as ‘input 
vectors’. The values of all input variables for each peptide were 
normalised to a range of [-1, 1] via a linear transformation.  
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The behaviour of trypsin as a proteolytic enzyme is well 
understood and the peptides produced may be predicted using an 
‘in silico digest’ of each protein. This involves the application of 
a simple rule – the enzyme cleaves each amino acid after every 
lysine or arginine residue, unless followed by a proline. This rule 
was applied to 13 protein sequences, resulting in 931 unique 
peptides (including peptides with up to one missed cleavage). 
These peptides were then cross-referenced with those generated in 
the laboratory using in-solution tryptic digestion on the same 13 
proteins, which are commercially available as purified proteins. 
The signal intensity of each of the 931 unique peptides generated 
from these proteins was determined following reversed-phase 
chromatographic separation in-line with electrospray ionization 
and detection using a Q-ToF mass spectrometer (from Waters 
Corporation). A little over half of the peptides resulted in 
measurable signals. The target outputs were Boolean, i.e. each 
peptide is/is not detectable. However, in future we intend to apply 
GP to the prediction of signal intensities.  

3. EXPERIMENTAL METHOD 
3.1 Objective Function 
The objective function used by the GP was the AUROC. This 
measure is widely used in medical decision-making. We briefly 
describe this function here. More complete analyses are provided 
in various texts, for example [6], [20]. 
When classifying data as true or false, there are 4 possible 
outcomes: true positive, false positive, true negative and false 
negative. These classification types are commonly represented in 
a confusion matrix, as in Table 1. The number of true positives 
may be expressed as a fraction of the actual number of positives 
in the sample and the other quantities may similarly be expressed 
as fractions. 

Table 1. Binary confusion matrix showing classification types 

 Positive Negative 

Positive 
prediction 

True positive 
(TP) 

False positive 
(FP) 

Negative 
prediction 

False negative 
(FN) 

True negative 
(TN) 

Many tests result in a numeric output, which will then result in a 
‘true’ or ‘false’ prediction, depending whether the output is 
greater than or less than some threshold. By using a low 
threshold, the number of positive predictions will be increased. 
Some of these predictions may be true positives. On the other 
hand some of them may be false positives. Receiver-Operator 
Characteristic (ROC) curves focus on the ‘true’ predictions, 
plotting the true positives against the false positives, as illustrated 
in Figure 2. Following the curves from left to right corresponds to 
lowering the threshold, resulting in a greater proportion of both 
true and false positives. 
For a particular predictor the ROC curve may be estimated by 
obtaining the output from each input vector. The predictor’s 
threshold is then successively set to each of these output values, 
each threshold giving rise to a point on the ROC curve. 
The ideal situation occurs when a particular threshold completely 
separates the positive and negative data, resulting in a true 
positive rate of 1.0 and a false positive rate of 0.0. This ideal is 
indicated by the upper dashed line in Figure 1. The area under the 

ROC curve, or AUROC, is a measure of the extent to which the 
predictive model approaches this ideal. It is easily estimated using 
the trapezium rule. Models with an AUROC value close to 1.0 
(the upper dashed line in Figure 1) allow a fairly accurate 
separation of positive and negative samples. On the other hand 
models with an AUROC close to 0.5 (the lower dashed line) have 
little or no discriminatory power. 

Figure 1. A Receiver-Operator Characteristic Curve 

3.2 Data Sampling 
The data were split randomly into 10 partitions and 10-fold cross 
validation was performed 10 times. Thus, each partition was ‘held 
back’ for testing in turn. The remaining data were split randomly 
in the ratio 2:1 into training and validation sets, 10 times. Overall, 
the data were therefore split 100 times into training, validation 
and test sets in the ratio 6:3:1. For each split, a population of 
solutions (programs) was created and evolved using the training 
data. 

The validation data was used for 2 purposes, identifying an early 
stopping point and program selection. Evolution ran for a 
maximum of 500 generations. However, evolution was stopped if 
there had been no improvement in the best-performing program 
on the validation data for 25 generations, in order to avoid 
overfitting. The ‘patience’ of the algorithm was set at 25 
generations following an initial investigation which showed that 
validation accuracy frequently improved after 10 generations of 
stagnation but very rarely improved after 25 generations of 
stagnation. It was found that very few evolutionary runs 
completed all 500 generations, suggesting that the algorithm ran 
to convergence in the great majority of cases.  Once evolution had 
been halted, the program that gave the highest AUROC on the 
validation data was selected as the ‘best’ program. 

3.3 Threshold Setting 
The next task was to choose a threshold. Each program gives a 
real-valued output for each input vector. The output can be 
calculated for each point within the training set. A threshold can 
then be set which results in the required number of positive or 
negative outputs. The dataset used here contains 501 detectable 
peptides and 430 peptides that were not detected. However, only 
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60% of the data is used for training purposes. One would 
therefore expect to find about 300 (around 60% of 501) detectable 
peptides within the training data. 
A ‘balanced’ prediction may therefore be made by setting the 
threshold such that 300 peptides are predicted to be detectable. It 
is however possible to increase the threshold so that the number 
of peptides predicted to be detectable is reduced, but the 
confidence with which they are predicted will, hopefully, be 
increased. The confidence in the prediction may be expressed as 
the positive predictive value (PPV), which is the proportion of 
predicted positive values that are actually positive, i.e. 
TP/(TP+FP). 6 different thresholds were set for each solution, 
corresponding to the prediction of 300, 270, 240, 210, 180 and 
150 detectable peptides within the training data. These correspond 
to 100%, 90%, 80%, 70%, 60% and 50%, respectively, of the 
expected number of detectable peptides. Using a number of 
different thresholds allows the user to get a picture of the decision 
surface. In particular it is possible to analyse the effect of 
increasing thresholds in reducing the number of positive 
predictions but increasing the PPV. 
Note that the thresholds are set using the training data as a guide. 
The test data are not used in the selection of the best program or 
in threshold-setting. This means that the test data may be used to 
give an unbiased assessment of the performance of each program. 
All results quoted in Section 5 are obtained using these data. 

3.4 Input Selection 
The search space using all 393 input variables is clearly extremely 
large. In order to investigate whether the large search space made 
optimisation difficult, we performed two further series of runs 
using subsets of the available inputs. After carrying out evolution 
using all inputs, the inputs were placed in order of their frequency 
within the final populations, i.e. the number of occurrences of a 
node corresponding to each input. These values were normalised 
by dividing by the total number of programs produced, giving the 
average number of times each input was used per program. 

The GP algorithm was then repeated using subsets of the original 
inputs. 

• Firstly, only the inputs that had an average usage in 
excess of 0.05 per program were included. This 
criterion reduced the number of inputs to 34. 

• Secondly, just those inputs that had an average usage in 
excess of 1.00 per program were included. This 
criterion reduced the number of inputs to 6. 

Results using all 393 inputs and those from using the two reduced 
input sets are compared in Section 5. 

4. GENETIC PROGRAM DESIGN 
The ‘programs’ used in this study were binary trees, whose 
internal nodes were simple mathematical functions, i.e. +, -, ×, ÷. 
(The division function was made a closed function by defining the 
result of dividing by zero as 0.) Terminal nodes were either inputs 
or constant values. 
The population size was 100, with initial populations generated 
using the ramped half-and-half method with starting tree depths 
between 5 and 10 inclusive. Evolution took place in steady-state 
mode using tournaments of size 2 to select both parents and 

programs to be removed. Crossover was performed by swapping 
randomly chosen subtrees from 2 parents, with a probability of 
0.7. Six different mutation operators were used: subtree 
replacement, point replacement, shrink, swap, constant value 
mutation and expand. These operators are described in [14] and 
[4]. The overall mutation rate was 0.2, with the operator being 
chosen at random. 
The training procedure was repeated using a crossover operator 
that included brood recombination [17], with a brood size of 8. 
This may give a ‘push’ to the evolutionary process in situations 
where the crossover operator is unable to explore the search-space 
adequately. Brood recombination may be viewed as an attempt to 
introduce a more homologous crossover operator, by ‘weeding 
out’ the products of destructive crossover [4]. An alternative way 
of viewing brood recombination is that it improves the 
‘evolvability’ of programs [2]. 
Further factors influencing the performance of a GP are the 
maintenance of diversity and avoidance of bloat within the 
population. To test whether this is an important factor with the 
peptide dataset, experiments were also performed using a multi-
objective function related to Edwin de Jong’s ‘Find Only and 
Complete Undominated Sets’ (FOCUS) method [13]. This 
method uses a 3-objective function composed of the basic fitness 
function, a measurement of diversity based upon the average 
‘distance’ of a program from all other programs within the 
population and the length of a program. The aim is to maximise 
the diversity and minimise the length of a program while 
optimising the basic fitness function. 
In the original FOCUS method, only non-dominated programs 
were maintained in the population. Other programs were 
discarded, leading to small population sizes. Our findings on a 
number of datasets, to be published in future work, indicate that 
this procedure can lead to a collapse in the population to very 
small numbers of individuals and hence premature convergence. 
In this study we therefore use a modified form of the FOCUS 
method. We keep a constant population size and select programs 
for breeding and removal using tournament selection based on a 
ranking of programs according to the number of other programs 
by which each program is dominated. 
Overall, we report the results of 12 different experiments: using 6, 
34 or 393 input parameters; with and without brood re-
combination; and with and without a multi-objective fitness 
function. 
All computer code has been written by DCW in the Java 
programming language. It is intended that the source code and 
documentation will be made available for download from the 
webpage http://dbkgroup.org/dcw/. 

5. RESULTS 
5.1 Positive Predictive Values and 
Sensitivities 
Table 2 shows the positive predictive value (PPV) and sensitivity 
for balanced prediction, i.e. the number of positive predictions on 
the training sample is approximately equal to the expected 
number of positive predictions. The positive predictive value is 
the fraction TP / (TP+FP), i.e. the fraction of peptides that are 
predicted to be detectable that are actually detectable. The 
sensitivity is defined as TP / (TP+FN), i.e. the fraction of the 
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samples that are actually detectable that are predicted to be 
detectable. The last line in Table 2 may be interpreted thus: 
‘Of the peptides that are actually detectable, 70.3% of them are 
predicted to be detectable (along with some false positive 
predictions). Positive predictions are made with 69.9% 
confidence.’ 
When the scientific context of the data is considered it may be 
seen that optimisation of the PPV is of greater importance than 
optimisation of the sensitivity. Each protein gives rise to a number 
of peptides upon trypsin digestion. However, not all possible 
peptides are needed for protein identification (and quantification). 
It has been shown that identification of as little as 20% of the 
possible peptides is in some cases sufficient to allow protein 
identification [8]. A sensitivity considerably lower than 100% 
may therefore be acceptable. On the other hand, it is important to 
have a high PPV. Creating isotope labeled peptides for 
quantification is time-consuming and expensive. Identifying 
detectable peptides with high confidence will reduce the 
frequency with which effort is devoted to producing peptides that 
are not detectable. 
A comparison of the first four and second four rows shows that 
using just 34 inputs improves both the fraction of detectable 
peptides that are identified and the confidence with which these 
predictions are made. The last four rows show further small 
improvements in PPV and sensitivity under most algorithms upon 
reducing the number of inputs to 6. 
Introducing multi-objective evaluation into the algorithm is seen 
to improve the performance when all 393 inputs are used. On the 
other hand, the introduction of brood re-combination does not 
have a beneficial effect on PPVs and sensitivities and may even 
be detrimental. 
Table 2. Results, showing average cross-validated positive 
predictive value (PPV) and sensitivity 

Number of 
inputs 

Brood re-
combination

? 

Multi-
objective

? 

PPV Sensi-
tivity 

393 No No 0.634 0.646 

393 Yes No 0.606 0.606 

393 No Yes 0.667 0.668 

393 Yes Yes 0.667 0.667 

34 No No 0.703 0.701 

34 Yes No 0.700 0.704 

34 No Yes 0.700 0.692 

34 Yes Yes 0.704 0.699 

6 No No 0.707 0.705 

6 Yes No 0.701 0.697 

6 No Yes 0.705 0.704 

6 Yes Yes 0.699 0.703 

 
When applied to the 34-input and 6-input models neither brood 
re-combination nor a multi-objective evaluation function had 
substantial effect. The implication of this is that reducing the size 
of the search space enables a basic GP algorithm to perform well, 
by focusing on the models that are likely to be more informative. 

On the other hand, when the search space is very large, the 
evolutionary process has more difficulty finding a satisfactory 
model and is therefore more sensitive to the algorithm used. 

5.2 Program Sizes 
Table 3 shows the average size (number of nodes) of the best 
programs produced for each run. It is clear from this table that the 
modified FOCUS method produces considerably more compact 
solutions than the basic method. The incorporation of the multi-
objective function into the GP therefore serves a purpose in 
producing input-output relationships that are much more readily 
interpretable. The use of brood re-combination on the other hand 
has a smaller and variable effect on program size. 

Table 3. Average cross-validated program sizes (number of 
nodes) for the best-performing programs under a variety of 
GP algorithms 

Number of 
inputs 

Brood re-
combination

? 

Multi-
objective

? 

Program size 

393 No No 72.5 

393 Yes No 74.3 

393 No Yes 21.5 

393 Yes Yes 15.3 

34 No No 75.9 

34 Yes No 76.4 

34 No Yes 18.4 

34 Yes Yes 18.2 

6 No No 70.2 

6 Yes No 77.6 

6 No Yes 21.4 

6 Yes Yes 21.2 

5.3 Threshold Setting 
Figure 2 shows the variation in average PPV and sensitivity 
values as the threshold is adjusted, for programs trained with 34 
input parameters and a basic GP algorithm, i.e. without brood 
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Figure 2. Average cross-validated positive predictive value 
(PPV) and sensitivity as a function of the number of peptides 
predicted to be detectable, using 34 input parameters 
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recombination or FOCUS. As expected, increasing the threshold 
(moving from right-to-left) reduces the sensitivity but increases 
the PPV, or confidence level, with which predictions are made. 
Figure 3 shows the average PPVs of GPs trained with 393, 34 and 
6 inputs. Also included is the performance of the best performing 
solution, i.e. the program with the highest AUROC on validation 
data. This figure confirms the improvement in performance upon 
reducing the number of input parameters. The results for the 
‘best’ solution show the advantage of using the AUROC as an 
objective function. High AUROC values imply that it is possible 
to increase the proportion of true positives without a large 
increase in the number of false positives, i.e. there is a point in 
Figure 1 close to (0,1). We see this for the best solution (the top 
line in Figure 3). As the number of predicted detectable peptides 
is increased (moving from left to right) the PPV falls off for most 
predictors. However, for the best predictor the PPV remains high 
as the number of predicted detectable peptides is increased. For 
this predictor a fairly low threshold may be set without 
introducing large numbers of false positives. 
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0.8
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0.84
0.86
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V
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34-input
393-input

  
Figure 3. Positive predictive values (PPV) as a function of the 
number of peptides predicted to be detectable, including 
average results using 393, 34 and 6 inputs and the result using 
the best 6-input predictor. 
It can be seen from Figure 3 that peptides may be predicted to be 
detectable with a confidence level of 80% using this predictor. 
This result is a considerable improvement on results obtained 
using decision trees [10] and is comparable to those obtained 
using neural networks [18]. In addition, both earlier studies used 
further information relating to the internal structure (amino acid 
sequence) and environment (location within the parent protein) of 
the peptides. In future studies we intend to include this 
information and anticipate improvements in classification 
accuracy. 

6. CONCLUSIONS AND FURTHER WORK 
We have shown that genetic programming is an effective tool in 
the prediction of mass spectrometric peptide detectability, giving 
results that compare favorably with those obtained using neural 
networks or decision trees. An additional advantage of the method 
described here is that the model and the threshold to be used are 
set independently. This allows a user to assess the balance 
between sensitivity and confidence in predictions made on a 
working model. 

The identification of the most significant inputs is a simple task 
for the GP technique, unlike approaches such as neural networks. 
This allows the user to evaluate those physico-chemical properties 
that may affect peptide detectability, thus ultimately improving 
our understanding of the mechanisms involved in peptide analysis 
by MS. Our understanding of these mechanisms is further 
enhanced by the use of a multi-objective function which reduces 
the incidence of program bloat. 
It was found that re-running the GP on a subset of the original 
input parameters, selected by their relative frequency in 
successful trees, enabled the search algorithm to perform better 
while using the same GP algorithm. This was seen to be more 
effective than improving the GP algorithm through the 
introduction of batch recombination or a multi-objective fitness 
function. 
We cast some light on the efficacy of different objective functions 
and GP methods when applied to a ‘real’ dataset. We have 
specifically looked at the use of AUROC, PPV and sensitivity 
statistics as measures of a classifier’s performance and at the 
FOCUS method and brood re-combination as attempts to improve 
the performance of the GP itself. 
We intend to incorporate additional information concerning 
individual amino acid residues into future models and anticipate 
improvements in classification accuracy. Genetic Programming 
will also be applied to the problem of predicting actual MS peak 
intensities, rather than just a binary classification (is/is not 
detectable). This should allow the generation of expected 
spectrograms, which may be compared with the observed 
spectrograms. 
In parallel with the development of genetic programming methods 
one of the authors (KW) has been developing two further 
algorithms for the prediction of peptide detectability. These use 
decision trees [5] and a nearest-neighbour algorithm [7]. As a part 
of the QconCat project the authors are in the process of 
combining all three methods, so creating a classification method 
based on a consensual approach. 
We believe that the development model used here, in which the 
identification of an effective classifier and the choice of a 
threshold are carried out in separate steps, could be profitably 
applied to other classification problems. Investigations are 
ongoing into the effectiveness of the FOCUS method and 
modifications thereof. 
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