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ABSTRACT 
Design for specific customer service plays a crucial role for the 
majority of the market in modern electronics. However, 
adaptability to an individual customer results in increasing design 
costs. A key to manage these opposite requirements is a wide 
application of computer aided design tools for multi-objective 
optimisation of existing IP blocks. In this paper we introduce a 
new approach to multi-objective optimisation of mixed analogue-
digital signal circuits on the base of the univariate marginal 
distribution algorithm. Practical illustration of the use of this 
approach is demonstrated for an industrial electronics application 
design. Experiments indicate that multi-objective optimisation of 
mixed analogue-digital signal circuits on the base of the 
univariate marginal distribution algorithm meets different design 
specifications.    

Categories and Subject Descriptors 
J. 6 [Computer-Aided Engineering]: Computer-Aided Design 

General Terms 
Algorithms, Performance, Design 

Keywords 
Evolutionary probabilistic models, circuit optimisation, multi-
objective optimisation 

1. INTRODUCTION 
Time-to-market, cost, and specific customer cervices became 
prevailing factors in the increasing global realm of modern 
electronics. Simultaneous requirements of miniaturization result 
in an increasing level of design complexity to meet all opposite 
design requirements. A key to the satisfaction of design 
requirements is a wide application of computer aided design tools.  

Commercial circuit optimisation tools (NeoCircuit, Circuit 
Explorer, MunEDA, etc.) support optimisation at cell level. 

However, a design based on fully optimised library cells may fail 
to meet all design specifications at the system level. It results in 
additional iterations during design cycle and increasing design 
cost.   

Mixed analogue-digital signal circuits play an important role in 
different applications in telecommunication, automotive 
electronics, etc. In this paper, we focus on the application of the 
univariate marginal distribution algorithm (UMDA) to multi-
objective optimisation of mixed analogue-digital signal circuits at 
the system level.  

The UMDA has been applied to design of analogue circuits, e.g. 
[14]. Note, that evolutionary probabilistic models work on 
mesoscopic level [15]. They select individuals on microscopic 
level, whilst they generate new solutions using marginal 
distribution. Note that the marginal distribution is macroscopic 
variable. It allows to accumulate the information about 
perspective regions of the fitness function landscape and to find 
reasonable solutions quickly [15]. In this paper the approach [14] 
is expanded to multi-objective optimisation of mixed analogue-
digital circuits at the system level.  We use the symmetry 
recognition circuit as our benchmark. This circuit is used in an 
industrial electronics system based on piezoelectric transformer 
application [3, 20]. We compare the effectiveness of the classical  
UMDA and its modification by elitism for static fitness schedule.  
The outline of the paper is as follows. Section 2 briefly 
summaries some recent results in circuit design and optimisation 
research. Section 3 presents our approach.  We discuss our results 
in Section 4.  Conclusions are presented in Section 5. 

2. RELATED WORKS 
The computer-aided design of integrated circuits is not trivial. 
Cheap and reliable chips should have small area and meet all 
design specifications.  

Usually a design flow of mixed analogue-digital signal circuits is 
based on design experience. It results in long design cycle and 
high human efforts. Even insignificant changes in design 
requirements may result in long iterations to adapt the initial 
design to new customer requirements.  The main bottleneck is 
analogue circuits design [8]. 

Knowledge–based analogue design approaches are complex for 
formalization. Therefore, they failed in computer-aided design 
applications [8].  
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An alternative approach to analogue circuit computer-aided design is 
based on different optimisation techniques. It includes OPTIMAN 
[9], MAELSTROM [12], ASF [13], ASTRX/OBLX [21], 
ANACONDA [22], etc. They differ by the circuit performance 
evaluations and by the search algorithm. OPTIMAN [9] uses 
analytical models that are fast, but their accuracy is better for 
small-signal characteristics. Another approach is based on 
numerical simulation in the loop of the optimisation. 
MAELSTROM [12] and ANACONDA [22] use SPICE, while 
ASTRX/OBLX [21] exploits the asymptotic evaluation. ASF [13] 
combines SPICE and the analytical approaches. Simulated 
annealing and its different modifications are mainly used in the 
tools mentioned above [9, 13, 21]. A combination of genetic 
algorithms and simulated annealing in MAELSTROM [12] allows 
to enhance design capabilities. The genetic optimisation of 
circuits based on matching properties of devices [2] provides 
circuit tolerance to process variations. A novel algorithm based on 
combination of evolutionary strategies and simulated annealing 
optimises analogue circuit characteristics [2].  

The approach [12] has been used in the commercial tool 
NeoCircuit at Neolinear Inc., now acquired by Cadence. Another 
commercial tool leveraging intelligent systems techniques 
supports multiobjective optimisation formulation (AMS Genius at 
Analog Design Automation, now acquired by Synopsys). The 
commercial tool WiCkeD [1] is based on numerical optimisation 
algorithms. However, these tools are available for optimisation at 
the cell level only. 

In [16] hierarchical approach to analogue circuit design based on 
VHDL-AMS has been proposed. However, mutual influence of 
fully optimized library circuits has not been considered. 
Approximation of circuit performances is the backbone for 
analogue platform–based design of mixed signal circuits [4]. 
However, long simulation time is required for characterization of 
each component supported by the platform.      

The DAISY tool optimises discrete–time [6] and continious-time 
[10] ΔΣ modulators, based on the differential evolution algorithm 
and the fast dedicated ΔΣ behavioural simulator. However, the 
run times remain long [7]. 

Therefore, design efficiency is the main obstacle in effective 
circuit design. Up to date, there is no a method to resolve the 
problem if the system does not meet design specifications [11]. In 
the worst case, the complete redesign may be required. It 
increases the time to market and the development cost.  

Evolutionary computation is widely used for computer-aided 
design as design automation tools at various levels of abstraction. 
In this paper we restrict our discussion to multi-objective 
optimisation of mixed analogue-digital signal circuits at the 
system level.  

A design of a system with hundreds of transistors is too complex 
to attack at once. A long simulation run-time is another crucial 
obstacle. Smart algorithms are required to manage the complexity 
of the problem. They should be able to find a good solution with 
reasonable computational costs.  

Evolutionary probabilistic models have been recognized as a new 
computing paradigm in evolutionary computation. Evolutionary 

probabilistic models include the estimation of distribution 
algorithms, probabilistic model building genetic algorithms, ant 
colony optimisation, cross entropy methods. There is no 
traditional genetic algorithms crossover or mutation in 
evolutionary probabilistic algorithms. Instead, they explicitly 
extract global statistical information from their previous search 
and build a probability distribution model of promising solutions, 
based on the extracted information. New solutions are sampled 
from the probabilistic model. Probabilistic evolutionary 
algorithms represent a new systematic way to solve hard search 
and optimisation problems. They have shown to resolve a number 
of problems the conventional genetic algorithms experience great 
difficulties with and solve a number of difficult problems quickly, 
accurately, and reliably [15].  

The Estimation of Distribution Algorithms EDA has been 
proposed by Mühlenbein and Paaß [18] as an extension of genetic 
algorithms. Instead of performing recombination of strings, EDA 
generate new points according to the probability distribution 
defined by the selected points. In [17] Mühlenbein showed that 
genetic algorithms can be approximated by an algorithm using 
univariate marginal distributions only. UMDA is an evolutionary 
probabilistic models algorithm, which combines mutation and 
recombination by means of distribution. The distribution is 
estimated from a set of selected points. It is used then to generate 
new points for the next generation. In order to improve design 
abilities, mutation has been introduced into UMDA by a concept 
called Bayesian prior [15]. UMDA with Bayesian prior is able to 
overcome local minima [15]. Furthermore, the experimental 
research in order to make a reasonable choice of Bayesian prior 
for analogue circuit design [19] and an effective circuit 
representation [23] was used. Moreover, analogue circuits that are 
better than those produced by an expert circuit designer have been 
synthesized [14]. 

In this paper the approach [14] is expanded to multi-objective 
optimisation of mixed analogue-digital signal circuits at the 
system level. Note that we restrict our research to the static 
technique of fitness function evaluation only. 

3. OVERVIEW of MULTI-OBJECTIVE 
OPTIMISATION of MIXED ANALOGUE-
DIGITAL CIRCUITS BASED on the UMDA 
The design strategy used in our design flow is a performance- and 
area-driven concurrent top-down  down-up methodology. To tract 
complexity, a large design is broken up into a set of subblocks, 
until all blocks are at transistor level.  These low-level blocks are 
sized to be optimal. Then performance of the complete systems is 
checked. If it does not meet all specifications then optimisation at 
the system level and at the transistor level is done simultaneously. 
In the final optimisation loop the design space includes only 
crucial circuit parameters (for example, the transistors’ widths and 
lengths, values of independent voltages sources, etc.). They are 
given by a user.  

The design flow supported by our approach consists of design 
steps sequence (Fig. 1). Below we describe the design flow in 
more details. 
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Figure 1. A concurrent design flow supported by our approach 

First, a large design is cut into a set of subblocks. If they include 
no primitive components, they are designed and optimised firstly. 
Second, all subblocks are synthesized. Third, a user defines a set 
of crucial circuit parameters and device relationships (matching, 
ratio between transistors widths, etc.). Their acceptable variations 
range is given by a user as well. Finally, optimisation at system 
level is done. Pareto optimal fitness function is used for high 
quality design. 

Optimisation at low hierarchical levels can be performed either by 
a commercial tool or by the UMDA.  The final optimisation is 
performed by the UMDA.  

We use the linear circuit representation according to 
recommendations [23]. A genotype is formed by means of the 
combination of separate genes for each variable component (a 
transistor, an independent voltage source, etc.). Briefly, each gene 
consists of alleles for value parameters. Fig. 2 shows the general 
structure of our circuit representation.   

The UMDA [15] combines mutation and recombination by using 
probabilistic distribution. A set of selected points M is used to 
estimate the distribution. Our focus is on the truncation selection, 
where NM=τ  is the amount of selected individuals, N is the 
population size. Note that we use truncation selection because of 
its simplicity.  Selected individuals are then used to generate N 
new points for the next generation according to the probability 
p(X, t) in the population at the generation t  

∏
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n is equal to the genotype length.  
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where Maxi and Mini are equal to the maximal and minimal 
acceptable value of parameter i, respectively; 

           Di is equal to the incremental value of parameter i; 

          Np is a number of varying parameters. 

 

UMDA [15] 

Step 1. Set t=1. Generate N possible design solutions randomly. 

Step 2. Select M < N solutions according to a selection method.  

Step 3. Compute marginal frequencies ),( txp i
s
i of the selected 

set. 

Step 4. Generate N new solutions according to the marginal 

distribution ∏
−

=+
n

i
i

s
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),()1,( . Set t=t+1. 

Step 5. If termination criteria are not met, go to Step 2. 

 

We use mutation settings according to recommendations [19]. 

The decision as to how many iterations should be done and 
evaluated can be based upon several factors such as termination 
conditions of an optimisation algorithm used, certain metric 
factor, a time/effort factor of wanting to generate a circuit with 
better metrics. A subjective factor where an experienced circuit 
designer decides when to stop additional iterations based on the 
designer’s experience in circuit design can be used as well. 

4. EXPERIMENTAL RESULTS 
The proposed approach to evolutionary probabilistic optimisation 
of mixed analogue-digital signal circuits based on the UMDA has 
been prototyped in a software framework EvolCircuit. We have 
integrated in one system an existing in-house tool for simulation 
TITAN [5] and a new tool for probabilistic evolutionary circuit 
optimisation based on the UMDA.  The system supports a 
combination of  standard  cells  and  custom  cells.  Standard cells  

Heuristics for 
level 0

Heuristics for 
level i

Heuristics for 
level i+1
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(b)                                                         
Figure 2.  a) Chromosome and b) the parameters of the circuit elements, created from it 

represent cells that have been designed previously by the third 
party and have been included in a cell library. Note that we use 
library cells that have been optimised by WiCkeD tool [1] and 
proved in silicon. Therefore, we do not change their parameters. 
Our focus is only on variations of crucial circuit parameters 
(transistors widths and lengths, values of independent voltage 
sources, etc.). 

Our circuit design benchmark chosen is a symmetry recognition 
circuit included in a driving circuit concept of a piezoelectrical 
transformer power converter [3, 20]. It contains more 800 
transistors, including analogue-digital converters, comparators, 
flip-flops, etc.  Fig. 3 illustrates some key features of symmetry 
recognition. 

Although we illustrate our approach for the symmetry recognition 
circuit it can be easily expanded to different applications areas of 
electronic systems (automotive electronics, telecommunication, 
etc.). Note, that the correspondent service for new features should 
be added to the software framework by application engineers. 

The symmetry recognition circuit has been designed by a human 
designer for another design performance. We have applied our  

approach to reach new design goals and to minimize chip area. 
The input specification for the symmetry recognition design 
benchmark is summarized in Table 1. 

Optimisation problem is given as follows: 

,)),(),(()(min 21 Ω∈= XXfXfXf  

where X= (x1, …, xm) is a real variable vector, Ω is the feasible 
solution space. For the evaluation of the fitness function f1(X) the 
values of the standard deviations of symmetry recognition are 
calculated across evaluation points Nc  
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Figure 3. Load-symmetry recognition circuit principle of a sine-wave 
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Table 1. Input specifications for our symmetry recognition design benchmark 

Circuit Specifications Values 

Frequency range 25 kHz – 500 kHz 

Evaluation points 25 kHz, 125 kHz, 250 kHz, 500 kHz 

Time asymmetry coefficient T1/T2 0.8; 0.9; Δ 0.01 

Variations of DC voltage source  0.8 -2 V; Δ 0.1 V 

Transistor length 1.5 -9.9 μm; Δ 0.3 μm 

Transistor width of P-channel current mirror 5.3 -18.1 μm; Δ 0.1 μm 

Par2 1.0 -2.0; Δ 0.02 

where  fi is the recognition asymmetry; 

the fitness function f2(X) is evaluated as follows: 

,)()()(
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+=
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N

k
pk XfXfXf  

where fpk and fnk are P- and N-transistors area according to the    

          technology B6CA, respectively; 

          Np and Nn are equal to the number of P- and N-transistors   

           in a given netlist, respectively. 

We assume that asymmetry has been recognized after the output 
voltage of the symmetry recognition circuit [3, 20] is below 1 V. 
100% performance value of symmetry recognition circuit is 
achieved when asymmetry has been recognized at all evaluation 
points.  

The stopping criterion is a finding a circuit with chip area that is 
equal to minimal chip area according to technology constraints 
or computational costs exceed a given limit. 

Out technology is the Infineon BiCMOS technology B6CA. We 
use the correspondent B6CA transistors models. However, 
EvolCircuit can be expanded for different technologies easily by 
application engineers.  

Design heuristic are given as follows: 

- The lengths of all transistors are equal to l. 

- The widths of the transistors of current mirrors are equal. 

- The width of the transistor of the current source should be set 
to gVw , where w is the width of the transistors of P-channel 

current mirror. In our experiments we set Vg to 2.1 as a 
relationship between the currents of the symmetry recognition 
circuit. 

- The width of the transistors of inverters should be set to 2w . 

-   The width of the transistors of N-channel current mirror 
should be set to  

⎩
⎨
⎧

≥
<∗

=
mwm
mwwPar

w
N

N
N μμ

μ
20,20
20,2  

where wN is the transistor width of N-channel current mirror. 

Note, that we restrict our design space according to the 
technology B6CA constraints in order to avoid incorrect 
solutions. 

We examined the behaviour of different algorithms for the fixed 
number of bits n=22 with a truncation threshold τ from 0.2 to 
0.5. Population  size  changes  from N=4 to  N=10. Figures  4 -7  
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Figure 4. Performance (average of 10 runs) behaviour of classical UMDA for population size N=4 and truncation selection with 
τ=0.5 a) for deviations of symmetry recognition b) for chip area variations in microns. 
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Figure 5. Performance (average of 10 runs) behaviour of classical UMDA for population size N=10 and truncation selection 
with τ=0.2 a) for deviations of symmetry recognition b) for chip area variations in microns. 
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Figure 6. Performance (average of 10 runs) behaviour of classical UMDA for population size N=10 and truncation selection 
with τ=0.5 a) for deviations of symmetry recognition b) for chip area variations in microns. 
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Figure 7. Performance (average of 10 runs) behaviour of UMDA with elitism for population size N=4 and truncation selection 
with τ=0.5 a) for deviations of symmetry recognition b) for chip area variations in microns. 
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Figure 8. A comparison for different circuits a) performance and b) chip area in microns 

show how the best and average fitness functions and the best and 
average chip area are changed when algorithms settings are 
modified. The line min shows minimal chip area according to the 
technological restrictions. Figures 4, 6 illustrate the case in which 
the population size varies between N=4 and N=10 and the 
truncation threshold is equal to τ=0.5. Figure 5 shows the case in  
which  the  population  size  is  fixed  N=10,  whilst  the  
truncation  threshold  is decreased to τ=0.2. Note that we use 
these population sizes to find a compromise between 
computational costs and obtaining reasonable results. 

The most obvious fact is that the optimisation speed is generally 
enhanced where larger population sizes and smaller truncation 
selection threshold are used. Therefore, for multi-objective circuit 
optimisation we should use larger population size in despite of 
higher computational costs. 

In order to enhance design capabilities we have introduced elitism 
in evolutionary process. Figure 7 illustrates the case in which the 
population size is equal to N=4 and the truncation threshold is 
equal to τ=0.5. It is obvious that that elitism allows to increase an 
efficiency of evolutionary search. 

During evolutionary runs the required design specifications have 
been met. The best circuit has the required standard deviations of 
symmetry recognition and smaller chip area. Fig. 8 shows the 
performance of symmetry recognition and the chip area of the 
initial and the optimised circuits. Bar 1 shows the best initial 
circuit characteristics, bar 2 shows the best results of single-
objective optimisation (SOO) [24], bar 3 shows the best results of 
multi-objective optimisation (MOO).  

It is obvious that multi-objective optimisation of mixed analogue-
digital signal circuits based on the UMDA is able to find a circuit 
with the required design specifications and smaller chip area.  

5. CONCLUSIONS 
In this paper the application of the UMDA to multi-objective 
optimisation of mixed analogue-digital signal circuits was 
presented. The objective was to apply smart algorithms, e.g. 
evolutionary probabilistic models, in industrial design practice, 
e.g. to optimise existing IP blocks. It was shown that both 
classical UMDA and its modifications with elitism can be used to 
meet new design performance and to minimize chip area. It seems 
that the UMDA with higher population sizes is more suitable for 

multi-objective optimisation of mixed analogue-digital signal 
circuits. Advantages of this approach are the overcoming design 
problems and meeting design goals. 

The approach was validated by optimising the symmetry 
recognition circuit containing analogue-digital converter, flip-
flops, comparators, etc. Experimental results validate the 
methodology by comparing the performance of the optimised 
circuits with the initial circuit. 

In this paper the results of circuit performance optimisation and 
minimisation of chip area have been discussed. However, 
industrial design practice expects high yield of an optimised 
solution as well. In the future research we will expand our 
approach to optimise a given design for manufacturability as well. 
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